
Name ___ Email___________________@ncsu.edu ECE 460 / 560

1 v3

ECE 460/560 Fall 2025
Theory Homework 2 Solutions v3
This homework considers code and peripherals for the NXP KL25Z MCU with an Arm Cortex-M0+ CPU core. Some
questions below include references to the KL25Z Subfamily Reference Manual (https://wordpress-
courses2527.wolfware.ncsu.edu/ece-460560-fall-2025-emb-sys-arch/wp-
content/uploads/sites/27/2025/09/KL25P80M48SF0RM-Rev-3.pdf) and Embedded Systems Fundamentals for
further details needed to complete this assignment.

Race Conditions
volatile int32_t pos = 0; // in memory

void ISR_ZL(void) {
 pos = 0;
 // IZ.1 Zero out r1
 // IZ.2 Store r1 to pos
}

void ISR_QD(void) {
 read Z
 if (Z == CLOSED) {
 pos = 0;
 // IQ.1 Zero out r0
 // IQ.2 Store r0 to pos
 } else {
 read B
 if (B == 0)
 pos = pos+1;
 // IQ.10 Load r0 from pos
 // IQ.11 Add 1 to r0
 // IQ.12 Store r0 to pos
 else
 pos = pos-1;
 // IQ.20 Load r0 from pos
 // IQ.21 Add 1 to r0
 // IQ.22 Store r0 to pos
 }
}

void T1 (void) {
 int32_t target, pos_error, motor_dir;
 ...
 while (1) {
 target = Read_UI();
 pos_error = target - pos;
 // T1.10 Load r2 from target
 // T1.11 Load r3 from pos
 // T1.12 Subtract: r4 = r3-r2
 if (pos_error > 10)
 motor_dir = 1; // forward
 else if (pos_error < -10)
 motor_dir = -1; // reverse
 else
 motor_dir = 0; // stop
 Control_Motor(motor_dir);
 }
}

This code builds on the quadrature decoder by allowing calibration to a fixed position using a limit switch and
code. When the limit switch is open, the quadrature decoder interprets encoder signals A and B to increment
or decrement the current position estimate. When the limit switch is closed, the position is fixed at zero and
the quadrature decoder ignores signals A and B. The code has one thread (T1) and two interrupt service
routines. ISR_ZL (short name IZ) runs after each time the zero limit switch closes (goes from OPEN t1o
CLOSED). ISR_QD (short name IQ) runs after each positive transition on signal A.

Arm ISA assembly pseudo-code instructions are listed after certain lines of source code. For more details on
the Arm ISA, please refer to Chapter 4 of ESF. Assume that the ISRs and T1 use diƯerent registers in the CPU
core (r0, r1, etc.). This code has at least one data race bug which will result in the wrong value being stored in
variable pos after execution. The bug can be triggered by certain orderings and interleavings of instructions.

Name ___ Email___________________@ncsu.edu ECE 460 / 560

2 v3

1. How many critical sections for pos are in:
a. ISR_ZL

1 critical section (IZ.2 writes pos).
b. ISR_QD

3 critical sections: (IQ.2), (IQ.10, IQ.11, IQ.12) and (IQ.20, IQ.21, IQ.22): each section reads and
then possibly writes pos).

c. T1
This depends on whether it matters if pos changes after the load (T1.11) but before it is used
(T.12). Either is accepted for full credit.

Yes? 1 critical section.
 T1.11, T1.12
 T1.11 also ok

No? 0 critical sections.
 Instruction T1.11 in Thread T1 reads the memory location of the variable pos to load register

r3. T1 does not write anything to that memory location. So, only one instruction (T1.11)
might be in a critical section for pos.

 If T1.11 were to execute between IQ.10 and IQ.12 (or between IQ.20 and IQ.22), then T1
would be reading pos during an update by ISR_QD. This would lead to T1 getting the previous
value of pos, which would make T1.10 a critical section.

 However, T1 is a thread, and ISR_QD is an interrupt service routine. Threads are lower priority
than interrupt service routines, so T1 cannot preempt ISR_QD, so T1.11 will never execute
between IQ.10 and IQ.12, or IQ.20 and IQ.22.

Which of these is correct is unclear, but Yes is probably correct.
It may be defined by the programming language semantics, or it may be left undefined (compiler-
dependent). It is a complex topic; here are some discussions:

 Common Compiler Optimisations are Invalid in the C11 Memory Model and what we can do
about it, https://fzn.fr/readings/c11comp.pdf

 The Problem of Programming Language Concurrency Semantics,
https://www.cl.cam.ac.uk/~jp622/the_problem.pdf

 Programming language memory models: https://research.swtch.com/plmm
 Hardware memory models: https://research.swtch.com/hwmm

2. List the instructions in three critical sections for variable pos in each of these ISRs or threads. Be sure not

to include extra instructions in the critical sections. Use the instruction identifiers (e.g. IZ.1):
 IZ.2
IQ.2
IQ.10, IQ.11, IQ.12
IQ.20, IQ.21, IQ.22
T1.10 T1.11 T1.12
T1.10 T2.11 T2.12
Many students entered all three critical sections in first response box.

Name ___ Email___________________@ncsu.edu ECE 460 / 560

3 v3

3. Give one example of an instruction sequence which triggers this data race bug. Both ISRs can preempt
thread T1, and each ISR can interrupt the other. List the instruction sequence (in order) which will trigger
the bug. Fill in the table below with the instruction identifiers. The columns marked - are for your notes
and scratch work (if needed). Only entries in T1, ISR_QD and ISR_ZL will be graded.

Exec.
Order

Variable in
Memory

T1 -
ISR_QD

(IQ.#)
-

ISR_ZL
(IZ.#)

-

1 6 IQ.10 r0=6
2 6 IZ.1 r1=0
3 6, then 0 IZ.2
4 0 IQ.11 r0=7
5 0, then 7 IQ.12

Ordering for key instructions in race sequences (omits intervening instructions, e.g. IQ.11 in 1st bullet)
 IQ.10 IZ.2 IQ.12
 IQ.20 IZ.2 IQ.22
 T1.11 IZ.2 T1.12
 T1.11 IQ.12 T1.12
 T1.11 IQ.22 T1.12

4. ECE 560 Only: List three other diƯerent sequences of instruction execution which trigger the data race
bug.
The text section in Google Form was incorrectly created as question, so 5 free points.
Example sequences, but many more are possible (including those based on #3 above).

a. Sequence 2
IQ.10, IQ.11, IZ.1, IZ.2, IQ.12

b. Sequence 3
IQ.20, IZ.1, IZ.2, IQ.21, IQ.22

c. Sequence 4
IQ.20, IQ.21, IZ.1, IZ.2, IQ.22
Full credit for ISR changing value of pos after T1 reads but before T1 uses it

Peripherals
Event Detection
Consider the UART1 peripheral, described in Chapter 40 of the SRM. It is able detect certain events and then
generate service requests (interrupt or Direct Memory Access). Start by reading Sections 40.1.3, 40.3.4 and
40.3.5 to answer these questions.

The UART1 peripheral has ten status flags as possible interrupt sources. Three of these sources can be used
to build a more complex protocol on top of what the UART provides: IDLE, RXEDGIF and LBKDIF. The other
seven status flag interrupt sources are TDRE, TC, RDRF, OR, FE, NF and PF. Which of these sources…
5. Synchronize transfer of data to the UART for serial transmission?

TDRE, TC
6. Synchronize transfer of data from the UART for serial reception?

RDRF
7. Indicate error conditions?

OR, FE, NF, PF

Name ___ Email___________________@ncsu.edu ECE 460 / 560

4 v3

Hardware and the Processing Chain
The MCU’s Analog to Digital Converter (ADC) is described in Chapter 28 of the SRM. You will evaluate
hardware features in the event processing chain. Start by reading Section 28.1.1 in the SRM for a list of the
features and a block diagram. Then skim Section 28.4 (ADC functional description) and its subsections for an
overview of the behavior and use of the ADC and its features.

Each feature may operate in one or more steps in the processing chain. For each row’s feature, mark its
step(s). Note that the ADC must be triggered in order to start a conversion. A column for this synchronization
stage (ADC Triggering) has been added before the event detection stages.

Analog to Digital Converter Feature

Triggering Data
Conversion

Event Detection
from Converted

Data

Schedule &
Dispatch

Processing
Work / Handler

St
ar

t A
D

C

C
on

ve
rs

io
n

Sa
m

pl
e

Q
ua

nt
iz

e

A
na

ly
ze

D
ec

id
e

8. Linear successive approximation
algorithm with up to 16-bit resolution Y

9. Configurable sample time and
conversion speed/power

 Y (ok)

10. Output modes: Differential 16-bit, 13-bit,
11-bit, and 9-bit modes, single-ended
16-bit, 12-bit, 10-bit, and 8-bit modes

 Y

11. Single or continuous conversion, that is,
automatic return to idle after single
conversion

Y

12. Conversion complete flag and interrupt Y Y Y (ok)
13. Software conversion trigger option Y
14. Selectable hardware conversion trigger

with hardware channel select
Y (ok)

15. Automatic compare with interrupt for
less-than, greater-than or equal-to,
within range, or out-of-range,
programmable value

 Y Y Y (ok)

16. Hardware average function Y (ok)
17. ECE 560 Only: Compensation for errors

in oƯset, plus-side gain and minus-side
gain

 Y Y (ok)

18. ECE 560 Only: Self-Calibration mode to
determine correction values for oƯset,
plus-side gain and minus-side gain

Y Y Y Y Y (ok)

19. ECE 560 Only: Selectable voltage
reference: external or alternate

 Y

Name ___ Email___________________@ncsu.edu ECE 460 / 560

5 v3

Grading

Question

Q Graded In…

Pts Comments
Google
Forms

Spread
sheet

 # Critical Sections 1 15
 Instr. IDs 2 15
 Data race example 3 5 Partial credit for preemption of T1, nonexistent

instructions …

O
th

er

D
at

a
R

ac
es

 ODR intro (free points) 4 5
Other data races 4a 5 Full credit given for reasonable responses
Other data races 4b 5 Full credit given for reasonable responses
Other data races 4c 5 Full credit given for reasonable responses

Sy
nc

In

tr
pt

 Sync for data tx 5 5
Sync for data rx 6 5
Sync for errors 7 5

H
W

 a
nd

 P
ro

ce
ss

in
g

C
ha

in

 8 5
 9 5
 10 5
 11 5

CoCo flag & interrupt 12 5 ED:A, ED:D, S&D (2, 2, 1). PWH ok. 1 pt oƯ per
extra answer

 13 5 1 pt oƯ per extra answer.
 14 5 1 pt oƯ per extra answer.

Automatic compare 15 5 ED:A, ED:D, S&D (2, 2, 1). PWH ok. 1 pt oƯ per
extra answer

Hardware average 16 5 Ev. Det.: Analyze and/or Proc. Work/Handler. 1
pt oƯ per extra answer.

560: Compensation for errors
in oƯset, gains

17 5 DC:Q required. ED:A ok, PWH ok. 1 pt oƯ per
extra answer

560: Self-calibration mode 18 5 Flexible, looking for Trigger + multiple stages
560: Sel. Voltage Reference 19 5 DC:Q required. 1 pt oƯ per extra answer.

560: 130 points

460: 130 – 30 = 100 points

Name ___ Email___________________@ncsu.edu ECE 460 / 560

6 v3

Distribution of Responses to Questions 8 through 19

Q.

Triggering:
Start ADC

Conversion

Data
Conv.:

Sample

Data
Conv.:

Quantize

Ev. Det.:
Analyze

Ev. Det.:
Decide

Sched. &
Dispatch

Proc.
Work/

Handler

8
Linear successive
approximation algorithm with
up to 16-bit resolution

7 40 113 4 4 2 4

9
Configurable sample time and
conversion speed/power

0 113 74 0 0 2 2

10

Output modes: Differential 16-
bit, 13-bit, 11-bit, and 9-bit
modes, single-ended 16-bit,
12-bit, 10-bit, and 8-bit modes

0 13 109 2 1 3 11

11

Single or continuous
conversion, that is, automatic
return to idle after single
conversion

45 20 17 1 8 50 6

12
Conversion complete flag and
interrupt

2 3 1 35 71 93 54

13 Software conversion trigger
option

101 2 2 1 0 9 4

14
Selectable hardware
conversion trigger with
hardware channel select

84 18 4 2 2 9 3

15

Automatic compare with
interrupt for less-than, greater-
than or equal-to, within range,
or out-of-range, programmable
value

0 1 6 109 106 69 43

16 Hardware average function 1 44 62 64 16 12 15

17
ECE 560 Only: Compensation
for errors in offset, plus-side
gain and minus-side gain

0 16 75 33 12 1 8

18

ECE 560 Only: Self-Calibration
mode to determine correction
values for offset, plus-side gain
and minus-side gain

7 36 66 47 22 14 28

19
ECE 560 Only: Selectable
voltage reference: external or
alternate

7 58 71 1 1 1 3

