Name Email @ncsu.edu ECE 460/560

ECE 460/560 Fall 2025
Theory Homework 2 Solutions v3

This homework considers code and peripherals for the NXP KL25Z MCU with an Arm Cortex-M0+ CPU core. Some
questions below include references to the KL25Z Subfamily Reference Manual (https://wordpress-
courses2527.wolfware.ncsu.edu/ece-460560-fall-2025-emb-sys-arch/wp-
content/uploads/sites/27/2025/09/KL25P80M48SFORM-Rev-3.pdf) and Embedded Systems Fundamentals for
further details needed to complete this assighment.

Race Conditions

volatile int32_t pos = ©; // in memory

void ISR_ZL(void) { void T1 (void) {
pos = 0; int32_t target, pos_error, motor_dir;
// IZ.1 Zero out ri oo
// IZ.2 Store rl to pos while (1) {
} target = Read_UI();
pos_error = target - pos;
void ISR_QD(void) { // T1.10 Load r2 from target
read Z // T1.11 Load r3 from pos
if (Z == CLOSED) { // T1.12 Subtract: r4 = r3-r2
pos = 0; if (pos_error > 10)
// IQ.1 Zero out ro motor_dir = 1; // forward
// IQ.2 Store r@ to pos else if (pos_error < -10)
} else { motor_dir = -1; // reverse
read B else
if (B == 0) motor_dir = @; // stop
pos = pos+l; Control_Motor(motor_dir);
// IQ.10 Load r@ from pos }
// IQ.11 Add 1 to ro }
// I1Q.12 Store r@ to pos
else

pos = pos-1;

// 1Q.20 Load r@ from pos
// IQ.21 Add 1 to ro

// 1Q.22 Store ro to pos

}

This code builds on the quadrature decoder by allowing calibration to a fixed position using a limit switch and
code. When the limit switch is open, the quadrature decoder interprets encoder signals A and B to increment
or decrement the current position estimate. When the limit switch is closed, the position is fixed at zero and
the quadrature decoder ignores signals A and B. The code has one thread (T1) and two interrupt service
routines. ISR_ZL (short name IZ) runs after each time the zero limit switch closes (goes from OPEN t10
CLOSED). ISR_QD (short name IQ) runs after each positive transition on signal A.

Arm ISA assembly pseudo-code instructions are listed after certain lines of source code. For more details on
the Arm ISA, please refer to Chapter 4 of ESF. Assume that the ISRs and T1 use different registers in the CPU
core (r0, r1, etc.). This code has at least one data race bug which will result in the wrong value being stored in
variable pos after execution. The bug can be triggered by certain orderings and interleavings of instructions.

1 v3

Name

Email @ncsu.edu ECE 460/560

1. How many critical sections for pos are in:

a.

ISR_ZL

1 critical section (I1Z.2 writes pos).

ISR_QD

3 critical sections: (1Q.2), (1Q.10, 1Q.11, 1Q.12) and (1Q.20, 1Q.21, 1Q.22): each section reads and
then possibly writes pos).

T

This depends on whether it matters if pos changes after the load (T1.11) but before it is used
(T.12). Either is accepted for full credit.

Yes? 1 critical section.
e T1.11,T1.12
e T1.11 also ok

No? 0 critical sections.

e Instruction T1.11in Thread T1 reads the memory location of the variable pos to load register
r3. T1 does not write anything to that memory location. So, only one instruction (T1.11)
might be in a critical section for pos.

e |fT1.11 were to execute between 1Q.10 and 1Q.12 (or between 1Q.20 and 1Q.22), then T1
would be reading pos during an update by ISR_QD. This would lead to T1 getting the previous
value of pos, which would make T1.10 a critical section.

e However, T1is athread, and ISR_QD is an interrupt service routine. Threads are lower priority
than interrupt service routines, so T1 cannot preempt ISR_QD, so T1.11 will never execute
between 1Q.10 and 1Q.12, or Q.20 and 1Q.22.

Which of these is correct is unclear, but Yes is probably correct.
It may be defined by the programming language semantics, or it may be left undefined (compiler-
dependent). It is a complex topic; here are some discussions:

e Common Compiler Optimisations are Invalid in the C11 Memory Model and what we can do
about it, https://fzn.fr/readings/c11comp.pdf

e The Problem of Programming Language Concurrency Semantics,
https://www.cl.cam.ac.uk/~jp622/the_problem.pdf

e Programming language memory models: https://research.swtch.com/plmm

e Hardware memory models: https://research.swtch.com/hwmm

2. Listtheinstructions in three critical sections for variable pos in each of these ISRs or threads. Be sure not

to include extra instructions in the critical sections. Use the instruction identifiers (e.g. 1Z.1):

1Z2.2

1Q.2

1Q.10, 1Q.11, 1Q.12

1Q.20, 1Q.21, 1Q.22

T1.10T1.11T1.12

T1.10T2.11T72.12

Many students entered all three critical sections in first response box.

2 v3

Name

Email

@ncsu.edu

ECE 460/ 560

3. Give one example of an instruction sequence which triggers this data race bug. Both ISRs can preempt
thread T1, and each ISR can interrupt the other. List the instruction sequence (in order) which will trigger

the bug. Fillin the table below with the instruction identifiers. The columns marked - are for your notes
and scratch work (if needed). Only entries in T1, ISR_QD and ISR_ZL will be graded.

Exec. Variable in T ISR_QD) ISR_ZL)
Order Memory (1Q.#) (1Z.#)
1 6 Q.10 r0=6
2 6 1Z.1 r1=0
3 6,then 0 1Z.2
4 0 1Q.11 r0=7
5 0, then?7 1Q.12

Ordering for key instructions in race sequences (omits intervening instructions, e.g. 1Q.11in 1% bullet)
e 1Q.1012.21Q.12
e 1Q.201Z2.21Q.22
e T1.1112.2T1.12
e T1.111Q.12T1.12
e T1.111Q.22T1.12

4. ECE 560 Only: List three other different sequences of instruction execution which trigger the data race
bug.
The text section in Google Form was incorrectly created as question, so 5 free points.
Example sequences, but many more are possible (including those based on #3 above).
a. Sequence 2
1Q.10,1Q.11,1Z2.1,12.2,1Q.12
b. Sequence 3
1Q.20,12.1,12.2,1Q.21, 1Q.22
c. Sequence4
1Q.20,1Q.21,12.1,12.2,1Q.22
Full credit for ISR changing value of pos after T1 reads but before T1 uses it
Peripherals

Event Detection

Consider the UART1 peripheral, described in Chapter 40 of the SRM. It is able detect certain events and then
generate service requests (interrupt or Direct Memory Access). Start by reading Sections 40.1.3, 40.3.4 and

40.3.5 to answer these questions.

The UART1 peripheral has ten status flags as possible interrupt sources. Three of these sources can be used
to build a more complex protocol on top of what the UART provides: IDLE, RXEDGIF and LBKDIF. The other
seven status flag interrupt sources are TDRE, TC, RDRF, OR, FE, NF and PF. Which of these sources...

5. Synchronize transfer of data to the UART for serial transmission?
TDRE, TC

6. Synchronize transfer of data from the UART for serial reception?
RDRF

7. Indicate error conditions?
OR, FE, NF, PF

Name

Hardware and the Processing Chain

Email

@ncsu.edu

ECE 460/ 560

The MCU’s Analog to Digital Converter (ADC) is described in Chapter 28 of the SRM. You will evaluate
hardware features in the event processing chain. Start by reading Section 28.1.1 in the SRM for a list of the
features and a block diagram. Then skim Section 28.4 (ADC functional description) and its subsections for an
overview of the behavior and use of the ADC and its features.

Each feature may operate in one or more steps in the processing chain. For each row’s feature, mark its
step(s). Note that the ADC must be triggered in order to start a conversion. A column for this synchronization
stage (ADC Triggering) has been added before the event detection stages.

Analog to Digital Converter Feature

Triggering

Data
Conversion

Event Detection
from Converted

Data

Start ADC
Conversion

Sample
Quantize

Analyze

Decide

Schedule &
Dispatch

Processing
Work / Handler

Linear successive approximation
algorithm with up to 16-bit resolution

=<

Configurable sample time and
conversion speed/power

<
oS
Z

10.

Output modes: Differential 16-bit, 13-bit,
11-bit, and 9-bit modes, single-ended
16-bit, 12-bit, 10-bit, and 8-bit modes

11.

Single or continuous conversion, thatis,
automatic return to idle after single
conversion

12.

Conversion complete flag and interrupt

(ok)

13.

Software conversion trigger option

14.

Selectable hardware conversion trigger
with hardware channel select

(ok)

15.

Automatic compare with interrupt for
less-than, greater-than or equal-to,
within range, or out-of-range,
programmable value

16.

Hardware average function

17.

ECE 560 Only: Compensation for errors
in offset, plus-side gain and minus-side
gain

18.

ECE 560 Only: Self-Calibration mode to
determine correction values for offset,
plus-side gain and minus-side gain

19.

ECE 560 Only: Selectable voltage
reference: external or alternate

v3

Name Email ©@ncsu.edu ECE 460/560
Grading
Q Graded In...
Google | Spread
Question Forms sheet | Pts | Comments
Critical Sections 1 15
Instr. IDs 2 15
Data race example 3 5 Partial credit for preemption of T1, nonexistent
instructions ...
ODR intro (free points) 4 5
E % § Other data races 4a 5 Full credit given for reasonable responses
oo g Other data races 4b 5 Full credit given for reasonable responses
Other data races 4c 5 Full credit given for reasonable responses
o= Sync for data tx 5 5
UC>), = Sync for data rx 6 5
- Sync for errors 7 5
8 5
9 5
10 5
c 11 5
E CoCo flag & interrupt 12 5 ED:A, ED:D, S&D (2, 2, 1). PWH ok. 1 pt off per
go extra answer
% 13 5 1 pt off per extra answer.
3 14 5 1 pt off per extra answer.
§ Automatic compare 15 5 ED:A, ED:D, S&D (2, 2, 1). PWH ok. 1 pt off per
o extra answer
S Hardware average 16 5 Ev. Det.: Analyze and/or Proc. Work/Handler. 1
= pt off per extra answer.
T 17 5 DC:Q required. ED:A ok, PWH ok. 1 pt off per
extra answer
18 5 Flexible, looking for Trigger + multiple stages
19 5 DC:Q required. 1 pt off per extra answer.

560: 130 points

460: 130 - 30 =100 points

v3

Name

Email

Distribution of Responses to Questions 8 through 19

10

11

12

13

14

15

16

17

18

19

Linear successive
approximation algorithm with
up to 16-bit resolution

Configurable sample time and
conversion speed/power

Output modes: Differential 16-
bit, 13-bit, 11-bit, and 9-bit
modes, single-ended 16-bit,
12-bit, 10-bit, and 8-bit modes

Single or continuous
conversion, that is, automatic
return to idle after single
conversion

Conversion complete flag and
interrupt

Software conversion trigger
option
Selectable hardware

conversion trigger with
hardware channel select

Automatic compare with
interrupt for less-than, greater-
than or equal-to, within range,
or out-of-range, programmable
value

Hardware average function

ECE 560 Only: Compensation
for errors in offset, plus-side
gain and minus-side gain

ECE 560 Only: Self-Calibration
mode to determine correction
values for offset, plus-side gain
and minus-side gain

ECE 560 Only: Selectable

voltage reference: external or
alternate

Triggering:

Data

Start ADC = Conv.:
Conversion Sample Quantize

7

0-

45

84

40

13

20

18

44

16

36

58

Data
Conv.:

Ev. Det.:
Analyze

35

Ev. Det.: Sched. &
Decide Dispatch

75

66

71

33

47

12

22

v3

69

12

14

@ncsu.edu ECE 460/560

Proc.
Work/
Handler

11

54

43

15

28

