Check for
Updates

Process Synchronization and IPC

CRAIG E. WILLS

Worcester Polytechnic Institute {cew@cs.wpi.edu)

Process synchronization (also referred
to as process coordination) is a funda-
mental problem in operating system de-
sign and implementation whenever two
or more processes must coordinate their
activities based upon a condition. A spe-
cific problem of synchronization is mu-
tual exclusion, which requires that two
or more concurrent activities do not si-
multaneously access a shared resource.
This resource may be shared data
among a set of processes where the in-
structions that access these shared data
form a critical region (also referred to as
a critical section).

Processes involved in synchronization
become indirectly aware of each other
by waiting on a condition that is set by
another process. Processes can also
communicate directly with each other
through interprocess communication
(IPC). IPC causes communication to be
sent between two or more processes. A
common form of IPC is message pass-
ing.

UNDERLYING PRINCIPLES

Process synchronization and IPC arose
from the need to coordinate concurrent
activities in a multiprogrammed operat-
ing system. A fundamental synchroniza-
tion problem is mutual exclusion, which
was described by Dijkstra [1965]. Two
other fundamental synchronization
problems are the producer/consumer
problem, where one process produces
data to be consumed by another process,
and the readers/writers problem, which
occurs when multiple readers and writ-
ers want access to a shared object such
as a database.

Many approaches are available for
solving mutual exclusion and synchroni-
zation problems, but there are a number
of issues concerning the implementation
of solutions. The primary issues are
whether the solution requires processor
synchronicity (uninterruptible proces-
sors), which works only on a uniproces-
sor, versus store synchronicity (atomic
memory references); whether the solu-
tion requires busy waiting, the contin-
ued polling of a condition variable;
whether the mechanism has inherent
problems with programmer error; whether
the synchronization solution leads to
starvation, where a process is indefi-
nitely denied access to a resource while
other processes are granted access to
the resource; and whether the solution
can deadlock, where a set of processes
using shared resources or communicat-
ing with each other are permanently
blocked. The classic dining philoso-
phers problem is often used to test syn-
chronization solutions because it has
the potential of leading to both dead-
lock and starvation.

Interprocess communication problems
generally involve direct communication
between two or more processes, in con-
trast to synchronization, where pro-
cesses communicate indirectly by wait-
ing on or setting a condition. IPC
mechanisms generally communicate by
passing messages between processes.
There are a number of issues: whether
communication is addressed directly to
a process or through an intermediate
mechanism such as a mailbox; whether
the message-passing mechanism allows
messages to be buffered if the receiving
process is currently not ready to receive

Copyright © 1996, CRC Press.

ACM Computing Surveys, Vol. 28, No. 1, March 1996


http://crossmark.crossref.org/dialog/?doi=10.1145%2F234313.234401&domain=pdf&date_stamp=1996-03-01

210 o Craig E. Wills

a message; whether the send operation
blocks if there is no space to buffer a
message; whether the receive operation
blocks if there is no message available;
whether messages are fixed or variable
size; and whether the mechanism uses
synchronous reception, where messages
are received only when the receive oper-
ation is invoked, or an asynchronous
approach where message handlers are
used.

BEST PRACTICES

This section discusses best, or common,
practices for synchronization and IPC.
More concurrent programming exam-
ples can be found in Ben-Ari [1990],
Raynal [1986], and Brinch Hansen
[1973]. Andrews and Schneider [1983]
provide a survey of synchronization and
IPC techniques.

Synchronization ~ Mechanisms. The
mechanisms for synchronization are di-
vided into four types based on their
level of implementation and support:
software only, hardware support, oper-
ating-system support, and language
support. In addition, hybrid solutions
exist that combine more than one ap-
proach.

Software-based synchronization solu-
tions use shared variables to control
access to a critical region. Dekker was
the first to devise a software solution
that correctly handles the mutual exclu-
sion problem among a set of processes
[Dijkstra 1965]. Peterson [1981] pro-
vided a simpler solution of the same
problem.

One of the simplest ways to enforce
mutual exclusion is to disable hardware
interrupts at the start of the critical
region, thus ensuring that the process
does not give up the CPU (through a
context switch) before completing the
critical region. Another hardware-based
approach is to use special instructions
to implement mutual exclusion. One
such instruction is Test and Set,
which returns the previous value of a
target variable and sets the target to the

ACM Computing Surveys, Vol. 28, No. 1, March 1996

given value. This instruction is performed
in an atomic manner so a context switch
cannot occur in the middle of it. The ad-
vantages of this machine-instruction ap-
proach are its simplicity and the fact that
it works for any number of processors and
processes. Its primary disadvantage, par-
ticularly on a uniprocessor, is its use of
busy waiting.

To avoid problems with busy waiting,
semaphores, an important synchroniza-
tion primitive, can be constructed by
adding process-coordination support to
the operating system. The concept of a
semaphore was first introduced by Dijk-
stra [1968]. Semaphores are data struc-
tures consisting of an identifier, a
counter, and a queue; processes waiting
on a semaphore are blocked and placed
on the queue; processes signaling a
semaphore may unblock and remove a
process from the queue; and the counter
maintains a count of waiting processes.
Not only can semaphores be used for
mutual exclusion, but they also provide
a mechanism to solve other synchroni-
zation problems.

Some programming languages pro-
vide constructs to implicitly guarantee
mutual exclusion. One such construct is
a monitor [Hoare 1974], which permits
only one process to be executing in a
monitor at a time. Many other synchro-
nization primitives have been proposed,
but in general can be expressed in
terms of the solutions already given.
Some of these primitives are critical
regions, serializers, path expressions,
and event counts and sequencers.

Modern operating systems have mi-
grated from monolithic systems written
for a uniprocessor in which disabling
interrupts were used to access shared
data structures. In modern systems,
complex locks, which combine the use of
spin locks with the semantics of sema-
phores, are used for better correctness
and performance on uni- and multipro-
cessors.

IPC Mechanisms. The simplest form
of message passing is to send messages
directly from one process to another.



Process Synchronization and IPC L

Typically a process can buffer one mes-
sage so that both the send and receive
operations may potentially block. An-
other direct message-passing mecha-
nism is implemented with rendezvous
so that both operations block until the
receiving process has actually copied
the message from the sender.

Rather than send directly to process,
a more common approach is to define
another operating-system abstraction
called a mailbox (also referred to as a
port). Mailboxes are buffers that hold
messages sent by one process to be re-
ceived by another process. Thus there is
indirect communication between the
two processes.

A special case of IPC is the pipe ab-
straction, which is a wunidirectional,
stream communication abstraction. An-
other IPC form is software interrupts,
which associate interrupts sent to a pro-
cess with interrupt handler routines.

SUMMARY

In summary, synchronization and IPC
are fundamental to multiprogrammed
operating system design. Primitives
that solve problems such as mutual ex-
clusion and producer/consumer range
from software-only approaches, to spe-
cial hardware instructions, to primi-
tives constructed by the operating sys-

211

tem and programming languages. The
adoption of traditional synchronization
primitives for multithreaded, message-
based operating systems running in a
multiprocessor environment is leading
to work on hybrid approaches for syn-
chronization.

REFERENCES

ANDREWS, G. R. AND ScCHNEIDER, F. B. 1983.
Concepts and notations for concurrent pro-
gramming. ACM Comput. Surv. 15, 1, (March)
3-43.

BEN-ARI, M.
Distributed Programming. Prentice
Englewood Cliffs, NJ.

BriNCcH HANSEN, P. 1973. Operating Systems
Principles. Prentice Hall, Englewood Cliffs,
NJ.

DuksTRA, E. W. 1965. Solution of a problem in
concurrent programming control. Commun.
ACM 8, 9 (Sept.), 569.

DuksTRA, E. W. 1968. Co-operating sequential
processes. In Programming Languages, F.
Genuys, Ed., Academic Press New York, 43—
112. Reprint of Tech. Rep. EWD-123, Techno-
logical Univ., Eindhoven, the Netherlands
(1965).

Hoarg, C. A. R. 1975. Monitors: An operating
system structuring concept. Commun. ACM
17, 10 (Oct.), 549-557. Erratum in Commun.
ACM 18, 2 (Feb. 1975), 95.

PETERSON, G. L. 1981. Myths about the mutual
exclusion problem. Inf. Process. Lett. 12, 3
(June) 115-116.

RayNAL, M. 1986. Algorithms for Mutual Exclu-
sion. Wiley, New York.

1990. Principles of Concurrent and
Hall,

ACM Computing Surveys, Vol. 28, No. 1, March 1996



