
1

Synchronization in Project

1. Safe Access to LCD 2. Scope Data Capture Triggering 3. Safe Buffer Management

Two threads access LCD, their critical
section execution must be mutually
exclusive (must not overlap)

2

Synchronization in Project

3

Buffer Synchronization using OS
ADC ISR (or a function it calls)
static int recording = 0;
static int n = 0;

read I_measured from ADC
r = osEventFlagsWait(…,ScopeArmed,…,0);
if (!(r & osFlagsError)) {
 // No error, so test for event
 if ((r == ScopeArmed) &&
 (I_setpoint > trigger_threshold)) {
 recording = 1;
 n = 0;
 }
}
if (recording == 1) {
 save I_measured to measured_buffer[n]
 save I_setpoint to setpoint_buffer[n]
 n++;
 if (n==BUFSIZE) {
 recording = 0;
 osEventFlagsSet(…,BufFull);
 }
}
Do normal control loop processing

BufFull

Event Flag

ScopeArmed

Event Flag

Thread Draw Waveforms
while (1) {
 osEventFlagsWait(…,BufFull,…,osWaitForever);
 DrawWaveforms();
 osEventFlagsSet(…,ScopeArmed);
}

4

Mutex for LCD Controller Access

5

▪ Threads A, B access shared resource R, other
threads C, D don’t

▪ Access resource safely by protecting critical
sections for R with mutex lock M_R

▪ Threads A, B must acquire mutex M_R before
starting critical section

▪ Threads A, B must release mutex M_R after
completing critical section

▪ If mutex not available, then thread blocks

▪ Can monitor blocking activity on logic analyzer by
adding debug output signal

▪ Set before acquiring mutex, clear after acquiring
mutex

▪ Thread A, B holding mutex longer →

▪ Longer possible blocking time for thread B, A =
worse responsiveness for B, A

▪ If C, D independent of A, B and R, then no impact
on responsiveness for C, D

Critical Section Length, Blocking and Responsiveness

6

▪ To get best responsiveness, acquire/release mutex
immediately before/after each critical section

▪ Hard! To do this, we need to know…
▪ How many critical sections in each thread?

▪ Where does each critical section start and end?

▪ Finding critical sections in code requires analysis
(thinking, development time)

▪ Start simple: at a high level

▪ Protect all critical sections for R in thread by
acquiring M_R before first critical section, releasing
M_R after last critical section. Better safe than sorry.

▪ Mutex held conservatively -- for longer than necessary

▪ Mutex was probably acquired earlier than needed

▪ If 2+ critical sections, mutex was held when not needed
(between critical sections)

▪ Mutex was probably released later than necessary

Critical Section Length, Blocking and Responsiveness
Code Level
Top: Thread

root function
Acquire

M_R
Hold M_R

Release
M_R

Intermediate
Critical

Section 3
Critical

Section 1
Critical

Section 2

Bottom

7

▪ Analyze critical sections to be able to reduce mutex holding time

▪ Break mutex holding time into pieces
▪ Release mutex after critical section, acquire before next critical section

▪ Hold for less time
▪ Don’t acquire so early, don’t release so late

Reducing Blocking Time
Code Level
Top: Thread

root function

Acquire M_R Hold M_R
Release

M_R
Acquire

M_R
Hold M_R

Release
M_R

Intermediate
Critical

Section 3
Critical

Section 1
Critical

Section 2

Bottom

8

▪ LCD Controller interface

▪ Used by two threads: Thread_Draw_Waveforms,
Thread_Draw_UI_Controls

▪ Want to protect with LCD_mutex

▪ Where should threads acquire and release
LCD_mutex?

▪ Depends on number, position and duration of
critical sections

▪ Easy first solution: in or near thread root function

Example from Project

UI_Draw_Waveforms

Thread_
Draw_Waveforms

?

UI_Update_Controls

Thread_
Draw_UI_Controls

?

void Thread_Draw_UI_Controls(
 void * arg) {
 …
 // Regular operation
 while (1) {
 osDelayUntil(tick);
 osMutexAcquire(LCD_mutex,
 osWaitForever);
 UI_Update_Controls(0);
 osMutexRelease(LCD_mutex);
 …
 }
}

void Thread_Draw_Waveforms(
 void * arg) {
 …
 // Regular operation
 while (1) {
 osDelayUntil(tick);
 osMutexAcquire(LCD_mutex,
 osWaitForever);
 UI_Draw_Waveforms();
 osMutexRelease(LCD_mutex);
 …
 }
}

9

▪ If mutex is held too long, responsiveness suffers, must improve

▪ Look for code which may be a critical section or contain one
(e.g. through subroutine calls).

▪ What does a critical section look like?

▪ “Any code that talks to the LCD Controller”

▪ What does that look like? How does code talk to the
LCD controller?

▪ Functions to access GPIO-emulated LCD interface bus

▪ LCD_24S_Write_[Command|Data]

▪ (Read not implemented yet)

▪ LCD interface transactions

▪ Two types

▪ Write command, write optional data parameters

▪ Write command, read optional data parameters

Example from Project

Write
Cmd

Write
Param

… Write
Param

Transaction 1 Transaction 2

Write
Cmd

Read
Param

… Read
Param

UI_Draw_Waveforms

Thread_
Draw_Waveforms

UI_Update_Controls

Thread_
Draw_UI_Controls

LCD_24S_
Write_Command

LCD_24S_
Write_Data

?

10

▪ Writing pixels to rectangle is fundamental operation

▪ Many shapes are rectangles. Pixel: 1 x 1, rectangle: n x m, H line: n x 1, V line: 1 x n

▪ Character? Rectangle with font bitmap selecting fore/background color per pixel

▪ LCD controller (ST7789) has H/W support for drawing rectangles quickly

▪ “Fill this rectangle with these pixels from left to right, wrapping rows as needed.”

▪ LCD commands used

▪ Column Address Set: CASET (0x2A)

▪ Set column range in frame buffer to
Cstart (params P1:P2) to CEnd (P3:P4)

▪ Row Address Set: RASET (0x2B)

▪ Set row (page) range in frame buffer to RStart (P1:P2) to REnd (P3:P4)

▪ Memory Write: RAMWR (0x2C)

▪ Write the following pixel data items to that rectangle, wrapping to next row as needed

Draw a Filled Rectangle

Wr. Cmd
2A

Wr.
P1

Wr.
P2

Wr.
P3

Wr.
P4

LCD Ctlr. Frame Buffer Contents

Cstart Cend

Rstart

REnd

Set Column Range Set Row Range Write Pixel Colors

Wr.
Cmd 2B

Wr.
P1

Wr.
P2

Wr.
P3

Wr.
P4

Wr.
Cmd 2C

Wr.
P1

Wr.
P2

Wr.
P3

Wr.
P4

Wr.
…

Wr.
…

Wr.
…

Wr.
…

Wr.
Pn

f

f

f

11

▪ Example code for LCD transactions

▪ Column Address Set: CASET (0x2A)

▪ Row Address Set: RASET (0x2B)

▪ Memory Write: RAMWR (0x2C)

▪ Critical section
▪ Start?

▪ End?

Code and Critical Section

Wr. Cmd
2A

Wr.
P1

Wr.
P2

Wr.
P3

Wr.
P4

Set Column Range Set Row Range Write Pixel Colors

Wr.
Cmd 2B

Wr.
P1

Wr.
P2

Wr.
P3

Wr.
P4

Wr.
Cmd 2C

Wr.
P1

Wr.
P2

Wr.
P3

Wr.
P4

Wr.
…

Wr.
…

Wr.
…

Wr.
…

Wr.
Pn

f

f

f

12

Threads and Functions Accessing LCD Controller
Gathered from Linker-generated Callgraph

UI_Update_Controls

UI_Draw_Scope

LCD_Text_PrintStr_RC

LCD_Text_PrintChar

LCD_Start_Rectangle LCD_Write_Rectangle_PixelLCD_Fill_RectangleLCD_Plot_Pixel

UI_Draw_Waveforms

Thread_Draw_Waveforms

LCD_24S_Write_Command LCD_24S_Write_Data

Thread_Draw_UI_Controls

UI_Draw_FieldsUI_Draw_Slider

13

UI_Update_Controls

Threads and Functions Accessing LCD Controller
Gathered from Linker-generated Callgraph

LCD_24S_
Write_Command

LCD_24S_
Write_Data

▪ Where to acquire mutex and
release mutex?
▪ Must acquire mutex before critical

section starts

▪ Must release mutex after critical
section ends

▪ Trade-Offs
▪ Higher up in call graph:

easier, but longer blocking times

▪ Lower in call graph:
harder (requires more analysis),
shorter blocking times

LCD_Plot_Pixel
T1: SetColRange

T2: SetRowRange

T3: WritePixelData

Thread_Draw_Waveforms

LCD_Start_Rectangle
T1: SetColRange

T2: SetRowRange

T3: Write

LCD_Write_
Rectangle_Pixel

(T3 cnt.) PixelData

LCD_Fill_Rectangle
T1: SetColRange

T2: SetRowRange

T3: WritePixelData

UI_Draw_Scope

LCD_Text_PrintChar
T1: SCR T2: SRR T3: WPD

LCD_Text_PrintStr_RC

UI_Draw_Waveforms

Thread_Draw_UI_ControlsEasier but
less responsive

Harder but
 more responsive

Crit. Sect.
includes calls

Crit. Sect.
includes calls

Crit. Sect.
includes calls

Crit. Sect.
includes calls

Crit. Sect.
includes calls

Crit. Sect.
includes calls

14

▪ OK to interleave critical sections …
▪ During a transaction?

▪ Probably usually not OK, but…

▪ … maybe at very beginning or end, or special
cases? Need to analyze code more.

▪ Between transactions?

▪ Probably usually OK, but …

▪ … not when transactions from different threads
affect shared state… meaning what? Examine LCD
Controller example

Interleavin
g OK?

Yes? No? Ye
s?

No? Yes
?

No? Ye
s

First
Transactio

n

Middle
Transactio

ns

Last
Transacti

on

Is the Whole Transaction a Critical Section?

15

▪ Within Thread n, assume transactions Tn1, Tn2,
Tn3 must be performed in order

▪ Does transaction ordering between different
threads matter?

▪ If not, we can interleave transactions arbitrarily,
switching between threads without restrictions

Transaction Ordering: General Case

16

▪ Does transaction ordering between different
threads matter?
▪ Depends on nature of interleaved transactions – do they

access shared state within the LCD Controller?

▪ Consider transactions to draw a rectangle (or
pixel, character, horizontal/vertical line)
▪ Transaction 1: Set Column Range in Frame Buffer

▪ Transaction 2: Set Row Range in Frame Buffer

▪ Transaction 3: Write Pixel Color Data to Frame Buffer

Transaction Ordering: LCD Controller

17

▪ Each transaction has a critical section.
▪ Does critical section span entire transaction? Where does it start, end?

▪ Critical section:

▪ Starts with writing command

▪ Ends when last parameter has been read or written

▪ Which is the last parameter for a transaction?
▪ Release mutex after that last parameter

Critical Sections and LCD Code

Interleaving OK? (Mostly) Yes No – Critical Section (Mostly) Yes
Prepare for transaction Write command Write Parameter … Write Last Parameter

Preemption OK? Yes or Mostly Yes No – Critical Section Y

Prepare for transaction Write command Read Parameter … Read Last Parameter

18

▪ Write to / read from the LCD controller by emulating a bus with GPIO

▪ Write command byte, write parameter byte(s)

▪ Write command byte, read parameter byte(s)

Finer-Grain Concurrency for LCD Controller Interface?

Write command Write Parameter Write Parameter

Write command Read Parameter

Clear
GPIO:D_NC

Set GPIO:Data Bus
direction to output

Clear GPIO:Data
Bus to all zeroes

Set any ones in
GPIO:Data Bus

Clear
GPIO:NWR

Set
GPIO:NWR

Set GPIO:D_NC
Set GPIO:Data Bus
direction to output

Clear GPIO:Data
Bus to all zeroes

Set any ones in
GPIO:Data Bus

Clear
GPIO:NWR

Set
GPIO:NWR

Set GPIO:D_NC
Set GPIO:Data Bus
direction to input

Clear GPIO:NRD
Read GPIO:Data

Bus
Set GPIO:NRD

Clear
GPIO:D_NC

Set GPIO:Data Bus
direction to output

Clear GPIO:Data
Bus to all zeroes

Set any ones in
GPIO:Data Bus

Clear
GPIO:NWR

Set
GPIO:NWR

Set GPIO:D_NC
Set GPIO:Data Bus
direction to output

Clear GPIO:Data
Bus to all zeroes

Set any ones in
GPIO:Data Bus

Clear
GPIO:NWR

Set
GPIO:NWR

19

Threads and Functions Accessing LCD Controller
Gathered from Linker-generated Callgraph

Thread_
Fault_Injector

UI_Update_Controls

UI_Draw_Scope LCD_Text_PrintStr_RC

LCD_Text_PrintChar

LCD_Start_Rectangle
LCD_Write_

Rectangle_PixelLCD_Fill_RectangleLCD_Plot_Pixel

UI_Draw_Waveforms

Thread_
Draw_Waveforms

LCD_24S_
Write_Command

LCD_24S_
Write_Data

Thread_
Draw_UI_Controls

20

Threads and Functions Accessing LCD Controller
Gathered from Linker-generated Callgraph

Thread_
Fault_Injector

UI_Update_Controls

UI_Draw_Scope LCD_Text_PrintStr_RC

LCD_Text_PrintChar

LCD_Start_Rectangle
LCD_Write_

Rectangle_PixelLCD_Fill_RectangleLCD_Plot_Pixel

UI_Draw_Waveforms

Thread_
Draw_Waveforms

LCD_24S_
Write_Command

LCD_24S_
Write_Data

Thread_
Draw_UI_Controls

21

UI_Update_Controls

Threads and Functions Accessing LCD Controller
Gathered from Linker-generated Callgraph

LCD_24S_
Write_Command

LCD_24S_
Write_Data

▪ Where to acquire mutex and
release mutex?
▪ Must acquire mutex before critical

section starts

▪ Must release mutex after critical
section ends

▪ Trade-Offs
▪ Higher up in call graph:

easier, but longer blocking times

▪ Lower in call graph:
harder (requires more analysis),
shorter blocking times

LCD_Plot_Pixel
T1: SetColRange

T2: SetRowRange

T3: WritePixelData

Thread_Draw_Waveforms

LCD_Start_Rectangle
T1: SetColRange

T2: SetRowRange

T3: Write

LCD_Write_
Rectangle_Pixel

(T3 cnt.) PixelData

LCD_Fill_Rectangle
T1: SetColRange

T2: SetRowRange

T3: WritePixelData

UI_Draw_Scope

LCD_Text_PrintChar
T1: SCR T2: SRR T3: WPD

LCD_Text_PrintStr_RC

UI_Draw_Waveforms

Thread_Draw_UI_ControlsEasier but
less responsive

Harder but
 more responsive

Crit. Sect.
includes calls

Crit. Sect.
includes calls

Crit. Sect.
includes calls

Crit. Sect.
includes calls

Crit. Sect.
includes calls

Crit. Sect.
includes calls

22

LCD Update Code

	Mutex for LCD_v1
	Synchronization in Project
	Synchronization in Project
	Buffer Synchronization using OS
	Mutex for LCD Controller Access
	Critical Section Length, Blocking and Responsiveness
	Critical Section Length, Blocking and Responsiveness
	Reducing Blocking Time
	Example from Project
	Example from Project
	Draw a Filled Rectangle
	Code and Critical Section
	Threads and Functions Accessing LCD Controller
	Threads and Functions Accessing LCD Controller
	Is the Whole Transaction a Critical Section?
	Transaction Ordering: General Case
	Transaction Ordering: LCD Controller
	Critical Sections and LCD Code
	Finer-Grain Concurrency for LCD Controller Interface?
	Threads and Functions Accessing LCD Controller
	Threads and Functions Accessing LCD Controller
	Threads and Functions Accessing LCD Controller
	LCD Update Code

