Synchronization in Project

1. Safe Access to LCD

2. Scope Data Capture Triggering

3. Safe Buffer Management

Two threads access LCD, their critical
section execution must be mutually
exclusive (must not overlap)

e

[,/g(f\-f—n, .
TR Theas)

“ %
s r-;"j:@m TR
oc :r_,__) — L:,\:cu

e WE&;
Baft,

Culrepd/

’7; }4a€f)

e .
Aewed

NC STATE UNIVERSITY

NC STATE UNIVERSITY

Synchronization in Project

Buffer Synchronization using OS

ADC ISR (or a function it calls)
static int recording = 0;
static int n = ©;

read I measured from ADC
r = |osEventFlagsWait(..,ScopeArmed,..,0);
if (!(r & osFlagsError)) {
// No error, so test for event
if ((r == ScopeArmed) &&
(I _setpoint > trigger threshold)) {
recording = 1; ScopeArmed
n=0; Event Flag

} } Thread Draw Wavefor;;-..-~"‘~.~\\\
if (recording == 1) { while (1) {

save I measured to measured buffer[n] —>
save I_setpoint to setpoint_buffer[n]——y

osEventFlagsWait(..,BufFull,..,osWpitForever);
DrawWaveforms();
osEventFlagsSet(..,ScopeArmed);

N++;
if (n==BUFSIZE) {
recording = 0; BufFull
osEventFlagsSet(..,BufFull); Event Flag
}

}

Do normal control loop processing

NC STATE UNIVERSITY

Mutex for LCD Controller Access

NC STATE UNIVERSITY

Critical Section Length, Blocking and Responsiveness

= Threads A, B access shared resource R, other

threads C, D don’t

= Access resource safely by protecting critical
sections for R with mutex lock M_R

Threads A, B must acquire mutex M_R before
starting critical section

Threads A, B must release mutex M_R after
completing critical section

= |f mutex not available, then thread blocks

= Can monitor blocking activity on logic analyzer by
adding debug output signal

= Set before acquiring mutex, clear after acquiring

mutex

= Thread A, B holding mutex longer -

Longer possible blocking time for thread B, A =
worse responsiveness for B, A

If C, D independent of A, B and R, then no impact
on responsiveness for C, D

NC STATE UNIVERSITY

Critical Section Length, Blocking and Responsiveness

Code Level
Top: Thre.ad Acquire e Release
root function M_R = M_R

Intermediate

Section 3
Section 1 Section 2

Bottom

= To get best responsiveness, acquire/release mutex = Start simple: at a high level
immediately before/after each critical section = Protect all critical sections for R in thread by

= Hard! To do this, we need to know... acquiring M_R before first critical section, releasing

- How many critical sections in each thread? M_R after last critical section. Better safe than sorry.

= Where does each critical section start and end? = Mutex held conservatively -- for longer than necessary

= Finding critical sections in code requires analysis " Mutex was probably acquired earlier than needed

(thinking, development time) = |f 2+ critical sections, mutex was held when not needed

(between critical sections)
= Mutex was probably released later than necessary

NC STATE UNIVERSITY

Reducing Blocking Time

Code Level
Top: Thread
root function

. Release Acquire Release
Acquire M_R Hold M_R Hold M_R
Critical
Section 3

Intermediate

Critical Critical
Section 1 Section 2

Bottom
= Analyze critical sections to be able to reduce mutex holding time

= Break mutex holding time into pieces
= Release mutex after critical section, acquire before next critical section

= Hold for less time
= Don’t acquire so early, don’t release so late

Example from Project

Thread_
Draw_Waveforms

Ul_Draw_Waveforms

!

?

void Thread Draw_Waveforms(
void * arg) {

// Regular operation
while (1) {
osDelayUntil(tick);
osMutexAcquire(LCD_mutex,
osWaitForever);
UI Draw_Waveforms();
osMutexRelease(LCD mutex);

.-
}

= LCD Controller interface

= Used by two threads: Thread _Draw_Waveforms,
Thread _Draw_UIl_Controls

= Want to protect with LCD_mutex

Thread
Draw_UI_Controls

Q
&
NZ
Qg/

\.)\\Q/
o
V

!

Ul_Update_Controls

'

?

void Thread Draw_UI Controls(
void * arg) {

// Regular operation
while (1) {
osDelayUntil(tick);
osMutexAcquire(LCD_mutex,
osWaitForever);
UI Update Controls(0);
osMutexRelease(LCD_mutex);

-
}

= Where should threads acquire and release

LCD_mutex?

= Depends on number, position and duration of
critical sections

= Easy first solution: in or near thread root function

NC STATE UNIVERSITY

Example from Project

= |f mutex is held too long, responsiveness suffers, must improve
= Look for code which may be a critical section or contain one
(e.g. through subroutine calls).
= What does a critical section look like?
= “Any code that talks to the LCD Controller”
= What does that look like? How does code talk to the
LCD controller?
= Functions to access GPIO-emulated LCD interface bus
= LCD_24S Write_[Command |Data]
= (Read not implemented yet)
= LCD interface transactions
= Two types
= Write command, write optional data parameters
= Write command, read optional data parameters

NC STATE UNIVERSITY

Thread_
Draw_Waveforms

Thread
Draw_UI_Controls

v

v

Ul_Draw_Waveforms

Ul_Update_Controls

\/
?
k ‘»
LCD_24S_ LCD_24S_

Write_Command

Write_Data

Writell Write BB Write
Cmd | Param Param

Writel]l Read BN Read
Cmd | Param Param

NC STATE UNIVERSITY

LCD Ctlr. Frame Buffer Contents

Draw a Filled Rectangle

. . . . C C
= Writing pixels to rectangle is fundamental operation end
= Many shapes are rectangles. Pixel: 1 x 1, rectangle:n xm, Hline:nx 1, Vline: 1 xn R ‘...L.
= Character? Rectangle with font bitmap selecting fore/background color per pixel - -----

= LCD controller (ST7789) has H/W support for drawing rectangles quickly
= “Fill this rectangle with these pixels from left to right, wrapping rows as needed.”

= LCD commands used
= Column Address Set: CASET (0x2A)

= Set column range in frame buffer to W, Cmd
C.iart (params P1:P2) to Cg, 4 (P3:P4) 2A | P1|P2|P3|P4

= Row Address Set: RASET (0x2B) N
= Set row (page) range in frame buffer to R, (P1:P2) to R4 (P3:P4) v
= Memory Write: RAMWR (0x2C)

= Write the following pixel data items to that rectangle, wrapping to next row as needed ' Ip2lp3lpal..]..

10

Code and Critical Section

= Example code for LCD transactions ym Cmd
p1|p2|P3|Pa v

= Column Address Set: CASET (0x2A) ==&
= Row Address Set: RASET (0x2B)
= Memory Write: RAMWR (0x2C)

= Critical section
= Start?
= End?

11

NC STATE UNIVERSITY

NC STATE UNIVERSITY

Threads and Functions Accessing LCD Controller
Gathered from Linker-generated Callgraph

12

Thread_Draw_Waveforms

¥

Ul_Draw_Waveforms

v

Ul_Draw_Scope

Thread Draw_UI_Controls

v

Ul_Update_Controls

—

Ul_Draw_Slider | |Ul_Draw_Fields

LCD_Text_PrintStr_RC

v

LCD_Text_PrintChar

—

LCD_Plot_Pixel LCD_Fill_Rectangle LCD_Start_Rectangle | |LCD_Write_Rectangle_Pixel

RN

LCD_24S Write_Command

LCD_24S Write_Data

NC STATE UNIVERSITY

Threads and Functions Accessing LCD Controller
Gathered from Linker-generated Callgraph

= Where to acquire mutex and Easier but [Thread Draw Waveforms Thread_Draw_Ul_Controls
release mutex? less responsive Crit. Sect. Crit. Sect.

: . includes calls includes calls
= Must acquire mutex before critical
section starts Ul_Update_Controls

Crit. Sect. Crit. Sect.
includes calls includes calls

Jlid\y U l!
Crit. Sect.

includes calls

= Must release mutex after critical
section ends

= Trade-Offs

= Higher up in call graph:
easier, but longer blocking times

LCD_Text_PrintChar
" Crit. Sect. 3 WPD
includes calls

= Lower in call graph:
harder (requires more analysis),
shorter blocking times

LCD_Plot_Pixel LCD_Fill_Rectangle LCD_Start Rectang D Write
Harder but Rectangle_Pixel
more responsive
LCD_24S_ LCD_24S

Write_Command Write_Data

13

Is the Whole Transaction a Critical Section?

= QK to interleave critical sections ...

NC STATE UNIVERSITY

= During a transaction? Interleavin
= Probably usually not OK, but... g OK?

= ... maybe at very beginning or end, or special
cases? Need to analyze code more.

= Between transactions?
= Probably usually OK, but ...

= ...not when transactions from different threads
affect shared state... meaning what? Examine LCD
Controller example

14

NC STATE UNIVERSITY

Transaction Ordering: General Case

= Within Thread n, assume transactions Tnl, Tn2, = Does transaction ordering between different
Tn3 must be performed in order threads matter?
Thread A/ | | | = If not, we can interleave transactions arbitrarily,
RO |‘ switching between threads without restrictions
| | | | | Thread A/ : : : : :
Thread B/ : : : : : :
| | | | < TB1 >—>< TB2 >—>< TB3 >
Thread A / : : : : : :
| | | | < TA1 >—>< TA2 >—>< TA3 >
Thread B/ : : : : : :
Thread A / : : : : : :
| TA1) : : =< TA2 >—>< TA3 > |
Thread B/ : : : : : :
| | TB1 B2 O | —> TB3

15

Transaction Ordering: LCD Controller

= Does transaction ordering between different
threads matter?

= Depends on nature of interleaved transactions — do they
access shared state within the LCD Controller?

= Consider transactions to draw a rectangle (or
pixel, character, horizontal/vertical line)
= Transaction 1: Set Column Range in Frame Buffer
= Transaction 2: Set Row Range in Frame Buffer
= Transaction 3: Write Pixel Color Data to Frame Buffer

16

NC STATE UNIVERSITY

NC STATE UNIVERSITY

Critical Sections and LCD Code

= Each transaction has a critical section.

= Does critical section span entire transaction? Where does it start, end?

No — Critical Section (Mostly

Interleaving OK? (Mostly) Yes

Preemption OK? Yes or Mostly Yes No — Critical Section Y

= Critical section:
= Starts with writing command
= Ends when last parameter has been read or written

= Which is the last parameter for a transaction?
= Release mutex after that last parameter

17

Finer-Grain Concurrency for LCD Controller Interface?

= Write to / read from the LCD controller by emulating a bus with GPIO
= Write command byte, write parameter byte(s)

N I
GPIO:D_NC || direction to output |[Bus to all zeroes|| GPIO:Data Bus || GPIO:NWR | GPIO:NWR
koo S e I
| ecroond e o | I

= Write command byte, read parameter byte(s)

Write command
Clear Set GPIO:Data Bus |[|Clear GPIO:Data|| Set any ones in Clear Set
GPIO:D_NC || direction to output |[Bus to all zeroes|| GPIO:Data Bus || GPIO:NWR | GPIO:NWR
Set GPI0:D_Nc|| et CPlO:DataBus | - pio:NRD ‘ Set GPIO:NRD
direction to input

18

Threads and Functions Accessing LCD Controller
Gathered from Linker-generated Callgraph

19

Thread_

Draw_Waveforms

v

Draw_Ul_Controls

Thread_

Ul_Draw_Waveforms

Thread
Fault_Injector

v

'

Ul_Update_Controls

Ul_Draw_Scope

LCD_Plot_Pixel

LCD_Fill_Rectangle

LCD_Text_PrintStr_RC

v

LCD_Text_PrintChar

LCD_Start_Rectangle

—

LCD_24S_

Write_Command

LCD_24S
Write_Data

NC STATE UNIVERSITY

.

LCD_Write_
Rectangle_Pixel

Threads and Functions Accessing LCD Controller
Gathered from Linker-generated Callgraph

20

Thread_

Draw_Waveforms

v

Draw_Ul_Controls

Thread_

Ul_Draw_Waveforms

Thread
Fault_Injector

v

'

Ul_Update_Controls

Ul_Draw_Scope

LCD_Plot_Pixel

LCD_Fill_Rectangle

LCD_Text_PrintStr_RC

v

LCD_Text_PrintChar

LCD_Start_Rectangle

—

LCD_24S_

Write_Command

LCD_24S
Write_Data

NC STATE UNIVERSITY

.

LCD_Write_
Rectangle_Pixel

NC STATE UNIVERSITY

Threads and Functions Accessing LCD Controller
Gathered from Linker-generated Callgraph

= Where to acquire mutex and Easier but [Thread Draw Waveforms Thread_Draw_Ul_Controls
release mutex? less responsive Crit. Sect. Crit. Sect.

: . includes calls includes calls
= Must acquire mutex before critical
section starts Ul_Update_Controls

Crit. Sect. Crit. Sect.
includes calls includes calls

Jlid\y U l!
Crit. Sect.

includes calls

= Must release mutex after critical
section ends

= Trade-Offs

= Higher up in call graph:
easier, but longer blocking times

LCD_Text_PrintChar
" Crit. Sect. 3 WPD
includes calls

= Lower in call graph:
harder (requires more analysis),
shorter blocking times

LCD_Plot_Pixel LCD_Fill_Rectangle LCD_Start Rectang D Write
Harder but Rectangle_Pixel
more responsive
LCD_24S_ LCD_24S

Write_Command Write_Data

21

LCD Update Code

22

NC STATE UNIVERSITY

Thread_Update_Screen

Thread_Read TS

Thread_Read_Accelerometer

>~/

LCD_Text_PrintStr_RC

\

LCD_Draw_Line

LCD_Text_PrintChar

|

R

LCD_Fill_Rectangle

LCD_Plot_Pixel

LCD_Start_Rectangle

LCD_Write_Rectangle_Pixel

o~

LCD_24S Write_Command

LCD_24S Write_Data

‘e

	Mutex for LCD_v1
	Synchronization in Project
	Synchronization in Project
	Buffer Synchronization using OS
	Mutex for LCD Controller Access
	Critical Section Length, Blocking and Responsiveness
	Critical Section Length, Blocking and Responsiveness
	Reducing Blocking Time
	Example from Project
	Example from Project
	Draw a Filled Rectangle
	Code and Critical Section
	Threads and Functions Accessing LCD Controller
	Threads and Functions Accessing LCD Controller
	Is the Whole Transaction a Critical Section?
	Transaction Ordering: General Case
	Transaction Ordering: LCD Controller
	Critical Sections and LCD Code
	Finer-Grain Concurrency for LCD Controller Interface?
	Threads and Functions Accessing LCD Controller
	Threads and Functions Accessing LCD Controller
	Threads and Functions Accessing LCD Controller
	LCD Update Code

