
1 22 v2

22: EVENT FLAGS FOR THREADS AND
INTERRUPTS

v2

2 22 v2

EVENTS FLAGS AND THREADS

3 22 v2

RTX5 Demo Tasks and Delays: Ongoing RGB/Flasher Example

 Continue with LED example from ESF textbook
 Port to use RTX5

 Start with simple version. Make minimal changes
because we aren’t experts on the RTOS yet:
 We know about just a few RTOS features
 We don’t know which of those features actually matter

 Set program up as three separate threads
 Threads communicate using shared variables

 g_flash_LED selects operating mode
 g_w_delay, g_RGB_delay set flashing speed

Thread_
Read_

Switches

Thread_Flash

g_w_delay g_flash_LED g_RGB_delay

Thread_RGB

RGB LEDs

Switches

4 22 v2

Task Structure Modification

 Use infinite loop in each task
 Need a blocking call in each path through the loop

 Add osDelay call in else cases for Thread_Flash and
Thread_RGB
 Other methods possible

 Thread_Read_Switches already has osDelay which
executes on every path through its loop

 Shared variable (g_flash_LED)
 Defines operating mode
 Thread does scheduling internally with test

(if g_flash_LED { … })
 Only provides loose synchronization, doesn’t

leverage OS scheduler

void Thread_Flash(void * arg) {
while (1) {

if (g_flash_LED) {
Control_RGB_LEDs(1, 1, 1);

 osDelay(g_w_delay);
Control_RGB_LEDs(0, 0, 0);

 osDelay(g_w_delay);
} else {

 osDelay(1);
}

}
}

5 22 v2

Speed Up Response By Using Switch Interrupt?

 Polling switches is slow, so let’s use a switch change
interrupt to update the shared variables

 When are Thread_Flash, Thread_RGB affected by change
in g_flash_LED?
 RTOS Scheduler is oblivious to changes

 Doesn’t know of connection between g_flash_LED and threads
 Depends on thread behavior

 Coder must build in polling support, thread yield operations
 When: After running long enough for thread to read g_flash_LED
 … depends on polling period, what else is running, priority, etc.

 Delay is dominated by task running and polling the shared
variable g_flash_LED
 Thread_Flash sees change soon, because 1 tick (1 ms)

osDelay period for polling when inactive
 Thread_RGB sees change much later, because it is blocking

with osDelay call, and will still do green and blue before
polling the variable

Time

Switch 1 pressed

Thread_Flash

Switch Inputs

LED Output R

Idle Thread

DelayIRQ_Handler

Thread_RGB

Polling
Period

Polling
Period

Polling
Period

Flash delay period Flash delay period

Only read g_flash_LED
after red delay expires,

and have cycled through
green and blue

6 22 v2

More Limitations

 What about a very quick button press?
 g_flash_LED is set to 1 and then 0 before

Thread_Flash gets a chance to run
 We lose that switch press.
 Does that matter? Depends on application.

 What about a ten second button press?
 g_flash_LED only goes up to 1
 We lose track of how long the switch is

pressed.
 Does that matter? Depends on application.

7 22 v2

 Start with simple version:
 #define DON’T_USE_EVENTS (1)
 Uses shared variable g_flash_LED

 Thread_Read_Switches
 Polls switches periodically (not using

interrupt here yet)
 If SW1 is newly pressed,

tell Thread_Flash: set g_flash_LED to 1
else

clear g_flash_LED to 0
 Thread_Flash waits for switch press

 If g_flash_LED is 1,
clear it to zero
flash LEDs magenta/blue five times

 Same limitations as non-preemptive task
version
 Sampling period in Thread_Read_

Switches drives max response time, min
switch press duration

 Polling slows response, raises CPU load
 RTOS can’t help much, doesn’t know

relationship between threads and
g_flash_LED. Coder must implement
polling and yield operations.

 Improve by using RTOS event flag feature
 Will synchronize part of Thread_Flash to run

after Thread_Read_Switches detects a switch
event

New Example Program: RTX5 Demo Events
Code available in Class Repository under RTX5

Thread_
Read_

Switches

Thread_
Flash

g_flash_LED

8 22 v2

 Background
 Concurrent preemptive threads have

arbitrary execution order and interleaving
 Sometimes want to synchronize code:

enforce order of code execution between
parts of different threads

 OS has synchronization primitive to
signal an event has occurred: event flag

 Code structure:
 A uses signal event OS call to trigger (signal,

release) B
 B uses wait for event OS call

 Can put wait for event call into a loop to
allow it to service a series of events

Concepts of Synchronization with Events

A1 A2Signal Event

B1 B2Wait for Event

Initialize Service EventWait for Event

9 22 v2

 Goal: Don’t flash LED until after leading edge of switch press
 TRS: Thread_Read_Switches

 Signals TF to flash LED each time switch is pressed
 Three parts: initialization, read switches, signal that switch has been pressed

 TF: Thread_Flash
 Flashes LED five times each time it is signaled
 Three parts: initialization, wait for signal, flash LED

Applying Synchronization

TF

TRS

Init Wait Flash

Init RS Signal Polling Delay

10 22 v2

 Thread_Read_Switches (low priority) will set event flag based on switches
 Thread_Flash (high priority) will wait for event flag to become set with only one call to RTOS.

 If event flag is set, Thread_Flash can continue executing (remains ready, returns to running)
 If event flag is not set, RTOS moves Thread_Flash to blocked state. When event flag is later set, RTOS will move

Thread_Flash to ready state and clear that event flag.
 Examine two (of many) possible execution sequences

Behavior Using Event Flags
Use to indicate switch has been pressed or released

Ready

Thread_
Read_Switches

starts first

Init

Flash

Flash can runFlash can’t run yet

Ready Init Wait

RS Signal

Thread Blocked

Ready Thread BlockedCall
OSDelay

TF

TRS

Thread Blocked
Thread_

Flash starts
first

Ready Init RS

Init Flash

Flash can runFlash can’t run yet

Thread Blocked ReadyWait

Signal

TF

TRS Call
OSDelay

11 22 v2

 Don’t let Thread B start to execute section B2 until Thread A has
completed section A1

 Four possible cases based on
 Thread priority
 Initial thread execution order

General Synchronization

A
 r

a
n

 f
ir

s
t

B
 r

a
n

 f
ir

s
t

Thread B

Thread A A1 A2

B1 B2

A1 A2

B1 B2

B2 can runB2 must wait

Blocked Ready

A1 A2

B1 B2

B2 can runB2 must wait

Ready

Blocked Ready Blocked

A1 A2

B1 B2

B2 can runB2 must wait

Ready Ready

A1 A2

B1 B2

B2 can runB2 must wait

Blocked

ReadyReady

PA > PB PA < PB

12 22 v2

 Allows threads and ISRs to set event to signal other threads
 0: “Event 3 hasn’t occurred (since last service (if any))”
 1: “Event 3 occurred and hasn’t been serviced”

 Can trigger on combination of flags. Thread can
wait for …
 Any specified flag to be set
 All of its specified flags to be set

 Specify which flags matter with mask argument
 Event flags object holds 31 binary flags
 Thread flags also exist

 Event flag object already built into each thread
 Limitation: No handshaking enforced

 OK to raise a flag which is already up,
 Of course, you could add code to specifically test to see if it is

up before trying to raise it, but there are better ways to get
handshaking

CMSIS-RTOS2 Event Flags

Thread
Thread
or ISR

Thread
or ISR Thread

Flag 0

Flag 1

Flag 30

mask =
0x00000001

mask =
0x00000002

mask =
0x40000000

Set

Set

Wait

Wait

13 22 v2

Behavior of Thread Calling Wait for Event
Applies OS superpower of thread management

14 22 v2

 osEventFlagsNew(attr)
 Create new event flags object
 Can use attr to define attributes

 osEventFlagsSet (ef_id, flags)
 Set event flags (for ef_id) which are set (1) in flags

argument
 Returns previous event flags, or error (unknown,

illegal param., invalid resource state)
 osEventFlagsClear(ef_id, flags) – used less often

 Clears thread’s signal flags which are set (1) in flags
argument

 Returns previous event flags, or error code
(unknown, illegal param., invalid resource state)

 osEventFlagsGet(ef_id) – used less often
 Returns current value of flags

 osEventFlagsWait (ef_id, flags, options, timeout)
 options: osFlagsWaitAny, osFlagsWaitAll
 Checks to see if specified flags are set

 If so, clears them and returns immediately
 If not, waits until they are set, then clears them and

returns
 If timeout occurs, returns with error code

 Return value: bit 31 indicates error
 0? OK, Event flags before OS cleared them.
 Using osFlagsWaitAny? Tells which event(s) occurred

 1? Error code: unknown, timeout, parameter, resource.
 Mask for bit 31 defined in cmsis_os2.h

CMSIS-RTOS2 Event Flag Functions
https://www.keil.com/pack/doc/CMSIS/RTOS2/html/group__CMSIS__RTOS__EventFlags.html

if (return_value & osFlagsError)
identify error and handle it

else
identify which event(s) occurred

15 22 v2

 Use RTOS event flag to indicate switch has been pressed
 Thread RS can set event flag
 Thread F can wait for event flag to become set with only one call to RTOS.

 If event flag is set, RTOS clears event flag and thread F can continue
executing (remains ready)

 If event flag is not set, RTOS moves thread F to blocked state. When event
flag is later set, RTOS will move F to ready state and clear that event flag.

 Thread_Read_Switches polls switches
 If SW1 newly pressed, send event to Thread_Flash
 Later we will replace this thread with an interrupt

 Thread_Flash waits for event
 When event occurs,

 Event is cleared by RTOS
 Thread unblocks, resumes and flashes LEDs magenta/blue five times

A Better Version: RTX5 Demo Using RTOS Events
#define DON’T_USE_EVENTS (0)

Thread_
Read_

Switches

Thread_
Flash

Event

16 22 v2

Demo Initialization Code

17 22 v2

Demo Event Code

18 22 v2

 Can signal a specific thread
 “Hey Bob! Event 3 occurred!”
 Compare with Event Flags – accessible to

all threads: “If anyone cares, Event 3
occurred.”

 Each thread is allocated 31 event flags
 Thread can wait for

 Any specified flags to be set
 All specified flags to be set

 Other threads or ISRs can set or clear
one or more of a thread’s signal flags

CMSIS-RTOS2 Thread Flags
Set of Event Flags built into each thread

Thread

Thread
or ISR

Thread
or ISR

Set
Wait

WaitSet

19 22 v2

 osThreadFlagsSet (tid, flags)
 Set event flags (for t_id) which are set (1) in

flags argument
 Returns previous event flags, or error code

(unknown, illegal parameter, resource in invalid
state)

 osThreadFlagsClear(flags) – used less often
 Clears specified (1) flags in currently-running

thread
 Returns previous event flags, or error

(unknown, illegal parameter, resource in invalid
state)

 osThreadFlagsGet() – used less often
 Returns current value of flags

 osThreadFlagsWait (flags, options,
timeout)
 options: osFlagsWaitAny, osFlagsWaitAll,

osFlagsNoClear
 Checks to see if specified flags are set

 If so, clears them and returns immediately
 If not, waits until they are set, then clears

them and returns
 If timeout occurs, returns with error code

 Return value
 Event flags before clearing, or error code

(unknown, timeout, parameter, resource)

CMSIS-RTOS2 Thread Flag Functions

20 22 v2

Handshake?Can Accumulate Multiple
Pending Events?

Information ProvidedReceiver
Thread

NoNo “The event has occurred”Any threadEvent Flag

NoNo“The event has occurred”Specified threadThread Flag

YesYes (counting semaphore),
No (binary semaphore)

“The event has occurred”Any threadSemaphore

YesYes, up to number of available
queue elements

“An event described by
this message has
occurred”

Any threadMessage
Queue

Communication Between Threads (and ISRs)

21 22 v2

USING INTERRUPTS WITH AN RTOS

22 22 v2

Using Interrupts with RTX

 Design guidelines
 Must not call functions which

may block
 Make ISR as short as practical

to minimize delays to high-
priority processing

 Defer work to a thread –
signal it with an event
or another mechanism

 To simplify development and
debugging, avoid ISR nesting

 Be careful with RTOS calls
from an ISR
 Some functions will return

error code if called from ISR
 See documentation to see

which functions can be called
from ISR

 RTOS call could cause
blocking or unwanted context
switching

 Data point: Automotive
Software
 AutoSAR uses OSEK/VDX

scheduler
 Developers allow interrupt

nesting (handlers are
preemptible)

 AutoSAR divides interrupts
into two classes, based on
whether they are allowed to
trigger context switches

 Developers don’t use
mutexes, just disable and
restore interrupts for critical
sections (speed)

23 22 v2

RTX5 Functions Which Can Be Called From An ISR

 May need specific values of arguments
 E.g. set timeout = 0 so function will return

immediately with error code rather than block

 osKernel
 GetTickCount, GetTickFreq, GetSysTimerCount,

GetSysTimerFreq

 osThreadFlags
 Set

 osEventFlags
 Set, Clear, Get, Wait

 osSemaphore
 Acquire, Release, GetCount

 osMemoryPool
 Alloc, Free, GetCapacity, GetBlockSize,

GetCount, GetSpace

 osMessageQueue
 Put, Get, GetCapacity, GetMsgSize, GetCount,

GetSpace

24 22 v2

 PORTD_IRQHandler responds to switches
 If SW1 pressed or released, send event to

Thread_Flash

 Thread_Flash waits for event
 Flashes LEDs 5 times based on event

 Press Event: Magenta/Blue
 Release Event: Green/Yellow

RTX5 Demo: Events with Interrupts

Thread_
Flash

Event Flags
evFlags_id

PORTD_
IRQHandler

25 22 v2

Demo Code - Initialization

26 22 v2

Demo Code – IRQ Handler

Switch 1

ISR

Thread_Flash

evflags_id
PRESSED

RELEASED

27 22 v2

Demo Code – IRQ Handler

Switch 1

ISR

Thread_Flash

evflags_id
PRESSED

RELEASED

28 22 v2

 Why does it sometimes have extra
flashes?

Demo Code – Thread_Flash

