NC STATE UNIVERSITY

22: EVENT FLAGS FOR THREADS AND
INTERRUPTS

v2

NC STATE UNIVERSITY

EVENTS FLAGS AND THREADS

NC STATE UNIVERSITY
RTX5 Demo Tasks and Delays: Ongoing RGB/Flasher Example

Continue with LED example from ESF textbook @ @ Switches
\ /

= Port to use RTX5

Start with simple version. Make minimal changes Thre?jd_
Read

Switches

because we aren’t experts on the RTOS yet:
= We know about just a few RTOS features
= We don’t know which of those features actually matter

g w_delay g flash_LED g_RGB_delay

= Set program up as three separate threads

= Threads communicate using shared variables Thread Flash Thread RGB
= g flash_LED selects operating mode - -
= g w_delay, g RGB_delay set flashing speed N -

- -

m RGB LEDs

NC STATE UNIVERSITY

Task Structure Modification

= Use infinite loop in each task void Thread_Flash(void * arg) {

= Need a blocking call in each path through the loop while (1) {

: if (g_flash_LED) {
= Add osDelay call in else cases for Thread_Flash and control_RGB_LEDs(1, 1, 1);

Thread_RGB osDelay(g_w_delay);
= Other methods possible control_RGB_LEDs(0, 0, 0);
= Thread_Read_Switches already has osDelay which osDelay(g_w_delay);
executes on every path through its loop } else {
= Shared variable (g_flash_LED) osDelay(1);
= Defines operating mode ¥
= Thread does scheduling internally with test 1 }

(if g_flash_LED{... })

= Only provides loose synchronization, doesn’t
leverage OS scheduler

4 22 v2

NC STATE UNIVERSITY

Speed Up Response By Using Switch Interrupt?

Switch Inputs ‘
IRQ_Handler } Delay
Polling H Polling H Polling ‘H . H . H
Thread Flash H Period Period Serod Flash delay period Flash delay period
Thread RGB H Only read g _flash_ LED _,
N after red delay expires,
Idle Thread and have cycled through
green and blue
teoouput [
Time
= Polling switches is slow, so let’s use a switch change = Delay is dominated by task running and polling the shared
interrupt to update the shared variables variable g_flash_LED
= When are Thread_Flash, Thread_RGB affected by change = Thread_Flash sees change soon, because 1 tick (1 ms)
ing_flash_LED? osDelay period for polling when inactive
- TRTOS S_cheduler is oblivious to changes = Thread_RGB sees change much later, because it is blocking
= Doesn’t know of connection between g_flash_LED and threads with osDelay call, and will still do green and blue before
= Depends on thread behavior polling the variable

= Coder must build in polling support, thread yield operations
= When: After running long enough for thread to read g_flash_LED
= ... depends on polling period, what else is running, priority, etc.

5 22 v2

More Limitations

= What about a very quick button press?

= g flash_LEDis set to 1 and then O before
Thread_Flash gets a chance to run

= We lose that switc

= Does that matter? Depends on application.

= What about a ten second button press?
= g flash_LED only goesupto1l

= We lose track of how long the switch is
pressed.

= Does that matter? Depends on application.

NC STATE UNIVERSITY

NC STATE UNIVERSITY

New Example Program: RTX5 Demo Events
Code available in Class Repository under RTX5

= Start with simple version: = Same limitations as non-preemptive task
= #define DON'T_USE_EVENTS (1) version Thread
= Uses shared variable g_flash_LED = Sampling period in Thread_Read_ R.ead__
Switches drives max response time, min Switches
= Thread_Read_Switches switch press duration
= Polls switches periodically (not using = Polling slows response, raises CPU load
interrupt here yet) = RTOS can’t help much, doesn’t know = flash LED
= |f SW1 is newly pressed, relationship between threads and — T
tell Thread_Flash: set g_flash_LED to 1 g _flash_LED. Coder must implement
else polling and yield operations.
clear g_flash LED to O aad
= Thread_Flash waits for switch press = |mprove by using RTOS feature 3
= Ifg_flash_LEDis 1, = Will synchronize part of Thread_Flash to run
clear it to zero after Thread_Read_Switches detects a switch
flash LEDs magenta/blue five times event

NC STATE UNIVERSITY

Concepts of Synchronization with Events

Signal Event
Bl Wait for Event B2

= Background

= Concurrent preemptive threads have
arbitrary execution order and interleaving

Initialize Wait for Event Service Event

= Sometimes want to synchronize code:
enforce order of code execution between = Code structure:
parts of different threads = A uses signal event OS call to trigger (signal,
release) B

= B uses wait for event OS call
= Can put wait for event call into a loop to
allow it to service a series of events

= OS has synchronization primitive to
signal an event has occurred: event flag

8 22 v2

NC STATE UNIVERSITY

Applying Synchronization

|

-

= Goal: Don’t flash LED until after leading edge of switch press

= TRS: Thread_Read_Switches
= Signals TF to flash LED each time switch is pressed

= Three parts: initialization, read switches, signal that switch has been pressed

= TF: Thread_Flash

= Flashes LED five times each time it is signaled
= Three parts: initialization, wait for signal, flash LED

NC STATE UNIVERSITY

Behavior Using Event Flags

Use to indicate switch has been pressed or released

TRS Ready Thread Blocked
Thread_
Read_Switches Flash can’t run yet
starts first
TRS Ready Thread Blocked
Thread _
Flash starts Flash can’t run yet
first
TF Init Wait Thread Blocked ALY

Thread _Read_Switches (low priority) will set event flag based on switches

Thread_Flash (high priority) will wait for event flag to become set with only one call to RTOS.
= |f event flag is set, Thread_Flash can continue executing (remains ready, returns to running)

= |f event flag is not set, RTOS moves Thread_Flash to blocked state. When event flag is later set, RTOS will move
Thread_Flash to ready state and clear that event flag.

Examine two (of many) possible execution sequences

10 22 v2

NC STATE UNIVERSITY

General Synchronization

= Don’tlet Thread B start to execute section B2 until Thread A has -
completed section Al
= Four possible cases based on
Thread B

= Thread priority
= |nitial thread execution order

P, > Pg P, <Pg
"‘;; Ready Ready
=
(5= .
p B2 must wait B2 can run B2 must wait B2 can run
@
| S8
S| eecked Re BI B2 Bl EEEE
I
i Ready Ready Ready
h .
E B2 must wait B2 can run B2 must wait) e

I 22 v2

NC STATE UNIVERSITY

CMSIS-RTOS2 Event Flags

Allows threads and ISRs to set event to signal other threads = mask =

0x40000000
Wait

Flag 30

= 0: “Event 3 hasn’t occurred (since last service (if any))”

= 1: “Event 3 occurred and hasn’t been serviced”

= Can trigger on combination of flags. Thread can
wait for ...

= Any specified flag to be set

= All of its specified flags to be set Wait

= Specify which flags matter with mask argument '(l;fr]rlesal__\()j

= Event flags object holds 31 binary flags

(g [0 |0

) mask =
-] I
Thread flags a s'o exist N 0x00000002
= Event flag object already built into each thread Flag 0 K
e . ag mask =
Limitation: No handshaking enforced 0x00000001

= OKto raise a flag which is already up,

= Of course, you could add code to specifically test to see if it is
up before trying to raise it, but there are better ways to get
,, hangdshaking

N

NC STATE UNIVERSITY

Behavior of Thread Calling Wait for Event

Applies OS superpower of thread management

/m rezﬂ& *)‘ml GEB

\/

Dj }5 Q\Nﬂd’ f s ?vfe
t&,bww = Tf;ﬁ%;
?mffmﬁaﬁ
t
e e
- Y
— U wa WW 62m}//ﬂw

Tl read

13 22 v2

CMSIS-RTOS2 Event Flag Functions

https://www.keil.com/pack/doc/CMSIS/RTOS2/html/group CMSIS RTOS EventFlags.html

= osEventFlagsNew(attr) = osEventFlagsWait (ef_id, flags, options, timeout)
= Create new event flags object = options: osFlagsWaitAny, osFlagsWaitAll
= Can use attr to define attributes = Checks to see if specified flags are set
= osEventFlagsSet (ef_id, flags) = If so, clears them and returns immediately
= If not, waits until they are set, then clears them and

= Set event flags (for ef_id) which are set (1) in flags

returns
argument

= |f timeout occurs, returns with error code

Returns previous event flags, or error (unknown,

illegal param., invalid resource state) * Return value: bit 31 indicates error

= (0? OK, Event flags before OS cleared them.

= Using osFlagsWaitAny? Tells which event(s) occurred
= 1? Error code: unknown, timeout, parameter, resource.
= Mask for bit 31 defined in cmsis_os2.h

- #define osFlagsError 0x80000000U

if (return_value & osFlagsError)
identify error and handle it
else
= identify which event(s) occurred

A Better Version: RTX5 Demo Using RTOS Events
#define DON’T_USE_EVENTS (0)

Use RTOS event flag to indicate switch has been pressed
= Thread RS can set event flag
= Thread F can wait for event flag to become set with only one call to RTOS.

= If event flag is set, RTOS clears event flag and thread F can continue
executing (remains ready)

= |If event flag is not set, RTOS moves thread F to blocked state. When event
flag is later set, RTOS will move F to ready state and clear that event flag.

Thread_Read_Switches polls switches
= |f SW1 newly pressed, send event to Thread_Flash

= Later we will replace this thread with an interrupt

Thread_Flash waits for event
= When event occurs,
= Eventis cleared by RTOS
= Thread unblocks, resumes and flashes LEDs magenta/blue five times

15 22 v2

NC STATE UNIVERSITY

@

Thread
Read
Switches

NC STATE UNIVERSITY

Demo Initialization Code

osEventFlagsId t evflags id; // Use bit 0 (wvalue of 1) for flash request
void Init My RTOS Objects(void) {
tid Flash = osThreadNew (Thread Flash, NULL, NULL); // Create thread
tid Read Switches = osThreadNew(Thread Read Switches, NULL, NULL); // Create thread

evflags id = osEventFlagsNew (NULL) ;
}

int main (void) {
// System Initialization
SystemCoreClockUpdate () ;

Init RGB LEDs () ;
Init Switches();

osKernelInitialize(): // Initialize CMSIS—-RTOS
Init My RTOS Objects():

osKernelStart () ; // Start thread execution
for (z:) {1}

NC STATE UNIVERSITY

Demo Event Code

// Event flag masks

#define PRESSED (1)

#define . .

Serine HETERSED 55 void Thread Flash(void * arg) {

int n;
uint32_t result;
void Thread Read Switches(void * arg) { while (1) {
int previously pressed=0; result = osEventFlagsWait (evflags_id, PRESSED,
while (1) { osFlagsWaitAny, osWaitForever);
osDelay (200) ; if (result & osFlagsError) ({
if (SWITCH PRESSED(SW1 P0OS)) { // identify error, handle it
if (previously pressed == 0) } else { // identify event, handle it
osEventFlagsSet (evflags_id, PRESSED); if (result & PRESSED) {
previously pressed = 1; for (n=0; n<5; n++) {
} else { Control RGB LEDs(1l, 0, 1);
previously pressed = 0; osDelay(g_w_delay) ;
} Control RGB LEDs (0, 0, 1);
} osDelay(g_w_delay):;
} }

Control RGB_LEDs (0, 0, 0);
} // else other events here

17 22 v2

NC STATE UNIVERSITY

CMSIS-RTOS2 Thread Flags

Set of Event Flags built into each thread

= Can signal a specific thread

= “Hey Bob! Event 3 occurred!” Thread
or ISR

= Compare with Event Flags — accessible to
all threads: “If anyone cares, Event 3

occurred.” Thread
Each thread is allocated 31 event flags

Thread can wait for
= Any specified flags to be set

= All specified flags to be set

Other threads or ISRs can set or clear
one or more of a thread’s signal flags

NC STATE UNIVERSITY

CMSIS-RTOS2 Thread Flag Functions

= osThreadFlagsSet (tid, flags) = osThreadFlagsWait (flags, options,
= Set event flags (for t_id) which are set (1) in timeout)
flags argument = options: osFlagsWaitAny, osFlagsWaitAll,
= Returns previous event flags, or error code osFlagsNoClear
(unknown, illegal parameter, resource ininvalid =« Checks to see if specified flags are set
state)

= |f so, clears them and returns immediately

= If not, waits until they are set, then clears
= them and returns

= |f timeout occurs, returns with error code
= Return value

= Event flags before clearing, or error code
(unknown, timeout, parameter, resource)

NC STATE UNIVERSITY

Communication Between Threads (and ISRs)

Receiver Information Provided Can Accumulate Multiple | Handshake?
Thread Pendlng Events?
No

Event Flag Any thread “The event has occurred”
Thread Flag Specified thread “The event has occurred” No No

Semaphore Any thread “The event has occurred” Yes (counting semaphore), Yes
No (binary semaphore)

Message Any thread “An event described by Yes, up to number of available Yes
Queue this message has queue elements
occurred”

NC STATE UNIVERSITY

USING INTERRUPTS WITH AN RTOS

NC STATE UNIVERSITY

Using Interrupts with RTX

= Design guidelines = Be careful with RTOS calls = Data point: Automotive

= Must not call functions which from an ISR Software
may block = Some functions will return = AutoSAR uses OSEK/VDX

= Make ISR as short as practical error code if called from ISR scheduler
to minimize delays to high- = See documentation to see = Developers allow interrupt
priority processing which functions can be called nesting (handlers are

= Defer work to a thread — from ISR preemptible)
signal it with an event = RTOS call could cause = AutoSAR divides interrupts
or another mechanism blocking or unwanted context into two classes, based on

= To simplify development and switching whether they are allowed to
debugging, avoid ISR nesting trigger context switches

= Developers don’t use
mutexes, just disable and
restore interrupts for critical
sections (speed)

22 22 v2

NC STATE UNIVERSITY

RTX5 Functions Which Can Be Called From An ISR

23

May need specific values of arguments

E.g. set timeout = 0 so function will return
immediately with error code rather than block

osKernel

= GetTickCount, GetTickFreq, GetSysTimerCount,

GetSysTimerFreq

osThreadFlags

Set

osEventFlags

Set, Clear, Get, Wait

osSemaphore
= Acquire, Release, GetCount

22

v2

= osMemoryPool

= Alloc, Free, GetCapacity, GetBlockSize,
GetCount, GetSpace

= osMessageQueue

= Put, Get, GetCapacity, GetMsgSize, GetCount,
GetSpace

RTX5 Demo: Events with Interrupts

= PORTD_IRQHandler responds to switches

= |f SW1 pressed or released, send event to
Thread_Flash

= Thread_Flash waits for event
= Flashes LEDs 5 times based on event
= Press Event: Magenta/Blue
= Release Event: Green/Yellow

24 22 v2

NC STATE UNIVERSITY

PORTD _
IRQHandler

Event Flags
evFlags_id

NC STATE UNIVERSITY

Demo Code - Initialization

int main (void) { osThreadld t tid Flash;

// System Initialization o
SyaT s TeElb Tt) & osEventFlagslId t evflags id;

Init RGB_LEDs(): void Init My RTOS Objects(void) {
) : tid Flash = osThreadNew (Thread Flash, NULL, NULL):

Init Switches(
evilags id = osEventFlagsNew (NULL) ;

osKernellInitialize(): }
Init My RTOS Objects()

Initialize Interrupts(): void Initialize Interrupts(void) ({

/* Configure PORT peripheral. Select GPIO and enable pull-up

1 = =1 1 =1 1 = 1 :':
osKernelStart () ; resistors and interrupts on all edges for pins connected to switches */

} PORTD->PCR[SW1_POS] = PORT PCR_MUX (1) | PORT PCR_PS MASK |
PORT PCR_PE MASK | PORT PCR IRQC(11):
PORTD->PCR[SW2_ POS] = PORT PCR_MUX (1) | PORT PCR_PS MASK |

PORT PCR_PE MASK | PORT PCR _IRQC(11):

/* Configure NVIC */

NVIC SetPriority(PORTD IRQn, 128);
NVIC ClearPendingIRQ (PORTD IRQn) ;
NVIC_EnableIRQ(PORTD IRQn);

/* Configure PRIMASK */

enable irqg():
25 22 v2 } — =

NC STATE UNIVERSITY

Demo Code — IRQ Handler

Switch |

ISR

evflags_id
PRESSED
RELEASED

Thread Flash
- >

void PORTD IRQHandler (void) { i wwent Flag waska
PTE->PS50R ? MASK{DBG_l}; #define PRESSED (1)
// Read switches #define RELEASED (2)
if {{PORTD->ISFR & MASK{SWl_EOS}}} {
if (SWITCH PRESSED(SW1 POS)) {
osEventFlagsSet (evflags id, PRESSED);
} else |
osEventFlagsSet{evflaqs_id, EELERSED) ;
}

}
// clear status flags

EORTH >I5FR — UXTUITTEITES
PTB->PCOR = MASK(DBG 1};
}

26 22 v2

NC STATE UNIVERSITY

Demo Code - IRQ Handler

//\5\2 \ L L 1
Switch | (UG’Q%GZzé I'@”’&SSQC\’ Tj?e)@e}%
evﬂagslsilz (Y%J rl Leg\
PRESSED | O N &—0 4‘l§;’=————‘——“
RELEASED | © A) Va_
Thread_Flash Fbloakeé O e\rqaq))((x | wa\ \]}}ealmec\ S os\be(M =
| — 4
void PORTD IRQHandler (void) { ﬁ@ L);D Sy LF WREHE E16 mas&h?[/\ /}/
PTB->PSOR = MASK(DBG_].) ; #define PRESSED @ / Oe
// Read switches #define RELEASED Pl

if ((PORTD->ISFR & MASK(SW1 POS))) { @‘F‘

if (SWITCH PRESSED(SW1 POS)) {

osEventFIagsset (evilags id, PRESSED);< o<

} else {
osEventFlagsSet (evflags id, RELEASED)iég////

}

}
// clear status flags \\A/‘/W\(\m\((/ Z_V\ @E_Y\ é‘}o

PORTD->ISFR = Oxffffffff;

} PTB->PCOR = MASK (DBG_1) ; ? @MW/

NC STATE UNIVERSITY

Demo Code — Thread_Flash

while (1) {
result = osEventFlagsWait (evflags id,
// Event flag masks PRESSED | RELEASED, osFlagsWaitAny, osWaitForever):
#define PRESSED (1) if (result & osFlagsError) {
#define RELEASED (2) // identify error, handle it
} else { // identify event, handle it
void Thread Flash(void * arg) { if (result & PRESSED) {
int n; for (n=0; n<5; n++) {
uint32 t result; Control RGB LEDs(1l, 0, 1);

osDelay(g w_delay):;
Control RGB LEDs (0, 0, 1);

. . osDelay(g w _delay):
= Why does it sometimes have extra }

5 }
flashes: if (result & RELEASED) {

for (n=0; n<5; n++) {
Control RGB LEDs(1l, 1, 0);
osDelay(g w_delay):
Control RGB LEDs (0, 1, 0);
osDelay(g w _delay):

}

}
Control RGB LEDs (0, 0, 0);

28 22 v2

