2|: Preempting and Resuming Tasks
v2

Overview

* How does preemption
improve responsiveness?

* How do we preempt and
resume tasks?

= What states can a task
be in, given a preemptive
scheduler?

Less CPU Overhead

Using Hardware
Peripherals

Removing Polling
and Busy-Waiting

Starter Program

NC STATE UNIVERSITY

Better Modularity

Task-Based Program

Better Responsiveness

—> Interrupts

Shorter Tasks
Task Prioritization

Task Preemption

NC STATE UNIVERSITY

Tasks, Threads and Processes

= Two types of software processes:
= Tasks, threads: Arm CPU executes in thread mode
= Both terms used interchangeably here
= Interrupt/Exception handlers: Arm CPU executes in handler mode

= Many embedded systems use single address space

= All software processes can access the entire address space (unless restricted with privileges or other
partitioning)

= Simple, inexpensive, but vulnerable
= More complex computer systems provide separate memory spaces

= Goal: Protect processes from each other. Process can access only its memory space (and no other)

= Example Implementation: memory address translation with virtual memory system
= Refining the terms

= A process contains one (main) or more threads
= All threads in a process can access its address space (and no other)

NC STATE UNIVERSITY

Improving Task A’s Responsiveness

From Task Release to Task Completion Task A is released

(becomea\ready to run)

Note: independent tasks

= Non-prioritized ' "/

Prioritized (A>B>C)

Prioritized and Preemptive

NC STATE UNIVERSITY

Response Time and Task Prioritization

Non-Preemptive Non-Preemptive Preemptive
Static Scheduling Prioritized Scheduling Dynamic Scheduling

IfBis
longest
task

If Cis
longest
task

Each task depends on all Each task depends on higher' Each task depends on higher
other tasks and ISRs priority tasks, the longest other priority tasks and ISRs and
task (regardless of priority) nothing else
5w and ISRs

How to Preempt and Resume Tasks

Thread State Information

i IRQ_Handler_B i

............................

main

Frame=8 bytes

f1l
Frame=12 bytes

__i4tof4
Frame=20 bytes

/

__ltof
Frame=16_bytes

f10
Frame=12 bytes

,,,,,,,,,,,,,,,,,,,

Frame=12 bftes

'HK; E

IRQ _Handler_A
Frame=8 bytes

!

IAl

sdf
Frame=44 bytes

| TA2 | | IA3 |

NC STATE UNIVERSITY

= Context: snapshot of the thread’s current execution state

= Context information is needed for active functions
= Active function has started (activated) but has not finished
(deactivated)
= Active functions include main() and any active subroutine
calls or interrupt/exception handlers
= Each active function may have:
= Next instruction to execute (program ctr., instr. ptr.)
= Function arguments
= Local variables
= Doesn’t include variables shared with other threads (e.g.
globals), since used for communication
= Where to go after function ends (return address)
= Subroutine: Where do | go in the function that called me?

= Handler: Which do | go in the function was running when |
started?

NC STATE UNIVERSITY

Context Locations

. CPU Registers Call Stack
IRQ 25 RO
| IRQ_Handler 8 | TRQ_Handler_A R1
........................... Frame=8 bytes Frame=8 bytes A2
R3
- - f1 R4
| fl | Frame=12 bvtes IALl R5
......... /\ Frame=12 bytes R6 Lo
__i4tof4 L famul | . : : R7 IRQ_Handler_A
Frame=20 bvtes [' TA2 . . IA3 ' R8
/ \ : ; ‘) R9 Sd‘F
T R10
= [F10
Rie __Ttof
=00 SP (R13) -
Frame=12 byvtes LR (R14) __1i4tof4
PC (R15) 1
sdf PSR
Frame=44 bytes PRIMASK main
CONTROL
= Context is in registers and memory = May have two stacks
= Based on program, ISA (register set, instructions, = One for thread’s function calls
addressing), compiler optimizations = One for interrupt/exception handlers
= Program Call Stack = Simple example here: one stack holds both calls
= Holds stack frame/activation record for each active and handlers
function = |f we save a thread’s context, can resume it later
" Stack organized by nesting sequence of currently = .. and share the processor among multiple threads

" active functions and handlers

Managing Multiple Threads

= Each thread in a preemptive system needs its own
call stack

= Must store the context of each non-running thread
= Stored on thread’s stack — we’ll see why soon

= Also need a thread control block (TCB) for each
thread, stored in static data section (fixed locations)

= Kernel swaps information between CPU registers and
thread’s context storage (e.g. on top of stack) to
suspend or resume a thread

9 v2

CPU Registers

RO
R1
R2
R3
R4
R5
R6
R7
RS
R9

R10
R11
R12

SP (R13) —

LR (R14)

PC (R15)

PSR
PRIMASK
CONTROL

NC STATE UNIVERSITY

Memory
]

B context

i

B stack

A context

A stack

NC STATE UNIVERSITY

Context Switching from Thread A to B

Save Context Restore Context
Scheduler

HW SW SW HW CPU Registers ~ Memory

Starts with exception handler
= Hardware pushes some of CPU context onto stack: xPSR, PC, LR, R12, R3-R0O
= Software saves future value of A’s SP into its TCB
= Offset of 32 bytes for upcoming push B corftext

= Software pushes remaining CPU registers onto A’s stack: R4-R11 B stack

= Future value saved in TCB is now correct .-
. R4-R11
Scheduler decides what to run XPSR, PC...

SW loads stack pointer with B’s saved stack pointer value and restore B’s
context

A stack

= Software pops values from B’s stack into CPU registers R4-R11

= CPU exits handler by loading PC with EXC_RETURN, causing popping of RO-R3,
R12, LR, PC, xPSR PRIMASK

B resumes executing... CONTROL —

= Because PC was loaded with B’s PC value

10 v2

Example: RTX5 Code to Save and Restore Context

= Discussion of using PendSV and
SVCall exception handlers in OS

= Advanced topic, not covered here

= https://developer.arm.com/docume

ntation/107706/0100/System-
exceptions/Pended-SVC---
PendSV?lang=en

SVC ContextSave

MRS RO, PSP "FC}
SUBS RO, RO, $32 (
STR — ~&D, [RL, #TCB SP DFS])
—— STMIA RO!, {R4-R7}
PUSH MOV R4, RS
MOV R5,RY
MOV R6,R10
MOV R7,R11
PUSH —STMIA RO!, {R4-R7}
SVC ContextRestore
LDR RO, [R2, #TCB_SP_OFS]
ADDS RO, RO, #16
POP — LDMIA RO!, {R4-R7}
MOV RS, R4
MOV R9, R5
MOV R10,R6
MOV R11,R7
MSR PSP, RO
SUBS RO, RO, #32
POP— rLoMIiA RO!, {R4-R7}

MOVS
MVNS
BX

RO, #~0XFFFFFFFD
RO, RO
RO

NC STATE UNIVERSITY

Get PSP

; Adjust address

Store SP
Save R4..R7

Save R8..E11

Load SP

; Adjust address

Restore ER8..R11

Set PSP

; Adjust address

Restore R4..R7

Set EXC RETURN value
Exit from handler

Task States

NC STATE UNIVERSITY

Task State Behavior with Non-Premptive Scheduler & Timer Tick

= Tasks run to completion and then block until
scheduler restarts them

= Task States

= Ready

= Ready to run (released), but CPU is
running other code

= Running

= Executing on the CPU

= Only one exit: Run until end of task (completion)
= Interrupted/Exception Handler

= Task was preempted by exception or interrupt
= Done

= Task has completed and is waiting to be released
(triggered) by timer tick ISR

Scheduler starts A
when it is highest-
priority ready task

Running Interrupted

Interrupt returns
control to Task A

Timer tick or
another task/ISR
releases A

(requests a run) Task A root function

completes, returning
control to scheduler

NC STATE UNIVERSITY

Task State Behavior With Preemptive Scheduler

Scheduler starts
.) or resumes A when it is
- Sllght rule Change' highest-priority ready task

= Repeating tasks never complete, but
instead call a function to block until
needed again

= New State:

No task ready with
higher priority, so EIeY(=Tag¥[e] (Yo

resume
= Blocked: Let task wait for something Preempted by task
(event or time delay). Enables task to J \ with higher priority
yield CPU before end, and later resume Task uses Task root function
h OS service completes or calls
there. Unblocking which Exit/Terminate, returning
event occurs blocks control to scheduler

Blocked
Deleted

NC STATE UNIVERSITY

More Scheduler Rules

1. All tasks start in ready state

2. Scheduler picks the highest-priority ready task and starts it running on CPU

= Does this at every scheduling point
= When RTOS starts running (with osKernelStart)
= Timer tick, OS call,
= ISR
= Etcetera

= |f no tasks are ready, run idle task
3. If aready task X has higher priority than the running task Y, move task Y to the ready
state and run task X instead
= Task X preempts task Y
4. A running task may call a function which makes it block (e.g. wait for event)
= Scheduler moves that task to blocked state, then starts highest-priority ready task running (2.)
5. Scheduler moves task from blocked to ready when unblocking event happens

15

