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 How does preemption 
improve responsiveness?

 How do we preempt and 
resume tasks?

 What states can a task 
be in, given a preemptive 
scheduler?

Overview

Better Modularity

Starter Program

Task-Based Program

Interrupts

Task Preemption

Shorter Tasks

Task Prioritization

Using Hardware
Peripherals

Removing Polling 
and Busy-Waiting

Less CPU Overhead Better Responsiveness
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 Two types of software processes:
 Tasks, threads: Arm CPU executes in thread mode

 Both terms used interchangeably here
 Interrupt/Exception handlers: Arm CPU executes in handler mode

 Many embedded systems use single address space
 All software processes can access the entire address space (unless restricted with privileges or other 

partitioning)
 Simple, inexpensive, but vulnerable

 More complex computer systems provide separate memory spaces
 Goal: Protect processes from each other. Process can access only its memory space (and no other)
 Example Implementation: memory address translation with virtual memory system
 Refining the terms

 A process contains one (main) or more threads
 All threads in a process can access its address space (and no other)

Tasks, Threads and Processes
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Improving Task A’s Responsiveness

 Note: independent tasks

 Non-prioritized

 Prioritized (A>B>C)

 Prioritized and Preemptive

From Task Release to Task Completion

B C A

Task A is released
(becomes ready to run)

B CA

B1 CA B2
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Response Time and Task Prioritization

ISRs

A

B

C

Preemptive 
Dynamic Scheduling

ISRs

Non-Preemptive 
Static Scheduling

A B

ISRs

A

B

C

Non-Preemptive 
Prioritized Scheduling

If B is 
longest
task

If C is 
longest
task

Each task depends on all 
other tasks and ISRs

Each task depends on higher 
priority tasks, the longest other 

task (regardless of priority) 
and ISRs

Each task depends on higher 
priority tasks and ISRs and 

nothing else

C
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How to Preempt and Resume Tasks
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Thread State Information

 Context: snapshot of the thread’s current execution state
 Context information is needed for active functions 

 Active function has started (activated) but has not finished 
(deactivated)

 Active functions include main() and any active subroutine 
calls or interrupt/exception handlers

 Each active function may have:
 Next instruction to execute (program ctr., instr. ptr.)
 Function arguments
 Local variables
 Doesn’t include variables shared with other threads (e.g.

globals), since used for communication
 Where to go after function ends (return address)

 Subroutine: Where do I go in the function that called me?
 Handler: Which do I go in the function was running when I 

started?

main IRQ_Handler_AIRQ_Handler_B

f10
Frame=12 bytes

asdf sdf
Frame=44 bytes

af fasd

main
Frame=8 bytes

f1
Frame=12 bytes

__i4tof4
Frame=20 bytes

__f4mul

__ltof
Frame=16 bytes

__f4ltor

IRQ_Handler_B

f1

IRQ_Handler_A
Frame=8 bytes

IA1
Frame=12 bytes

IA2 IA3



8 v2

Context Locations

 Context is in registers and memory
 Based on program, ISA (register set, instructions, 

addressing), compiler optimizations
 Program Call Stack 

 Holds stack frame/activation record for each active 
function

 Stack organized by nesting sequence of currently 
active functions and handlers

 May have two stacks
 One for thread’s function calls 
 One for interrupt/exception handlers

 Simple example here: one stack holds both calls 
and handlers

 If we save a thread’s context, can resume it later
 .. and share the processor among multiple threads

main IRQ_Handler_A

f10
Frame=12 bytes

asdf sdf
Frame=44 bytes

af fasd

main
Frame=8 bytes

f1
Frame=12 bytes

__i4tof4
Frame=20 bytes

__f4mul

__ltof
Frame=16 bytes

__f4ltor

IRQ_Handler_B
IRQ_Handler_B

f1

IRQ_Handler_A
Frame=8 bytes

IA1
Frame=12 bytes

IA2 IA3

CPU Registers

IA1

IRQ_Handler_A

sdf

f10

__ltof

__i4tof4

f1

main

Call Stack
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Managing Multiple Threads

 Each thread in a preemptive system needs its own 
call stack

 Must store the context of each non-running thread
 Stored on thread’s stack – we’ll see why soon

 Also need a thread control block (TCB) for each 
thread, stored in static data section (fixed locations)

 Kernel swaps information between CPU registers and 
thread’s context storage (e.g. on top of stack) to 
suspend or resume a thread

CPU Registers Memory

A stack

instructions

A context

B context

B stack

A TCB

B TCB
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Context Switching from Thread A to B

 Starts with exception handler
 Hardware pushes some of CPU context onto stack:  xPSR, PC, LR, R12, R3-R0
 Software saves future value of A’s SP into its TCB 

 Offset of 32 bytes for upcoming push

 Software pushes remaining CPU registers onto A’s stack: R4-R11
 Future value saved in TCB is now correct

 Scheduler decides what to run
 SW loads stack pointer with B’s saved stack pointer value and restore B’s 

context
 Software pops values from B’s stack into CPU registers R4-R11
 CPU exits handler by loading PC with EXC_RETURN, causing popping of R0-R3, 

R12, LR, PC, xPSR
 B resumes executing… 

 Because PC was loaded with B’s PC value

CPU Registers Memory

A stack

B stack

instructions

B context

xPSR, PC…

A TCB

B TCB

R4-R11

Restore Context
Scheduler

Save Context

HWSWSWHW
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Example: RTX5 Code to Save and Restore Context

 Discussion of using PendSV and 
SVCall exception handlers in OS

 Advanced topic, not covered here

 https://developer.arm.com/docume
ntation/107706/0100/System-
exceptions/Pended-SVC---
PendSV?lang=en

PUSH

POP

POP

PUSH
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Task States
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Task State Behavior with Non-Premptive Scheduler & Timer Tick

 Tasks run to completion and then block until 
scheduler restarts them

 Task States
 Ready

 Ready to run (released), but CPU is 
running other code

 Running
 Executing on the CPU
 Only one exit: Run until end of task (completion)

 Interrupted/Exception Handler
 Task was preempted by exception or interrupt

 Done
 Task has completed and is waiting to be released 

(triggered) by timer tick ISR

Ready

Done

Running Interrupted

Task A root function 
completes, returning
control to scheduler

Timer tick or 
another task/ISR 

releases A 
(requests a run)

Scheduler starts A 
when it is highest-
priority ready task

Interrupt returns 
control to Task A
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Task State Behavior With Preemptive Scheduler

 Slight rule change: 
 Repeating tasks never complete, but 

instead call a function to block until 
needed again

 New State:
 Blocked: Let task wait for something 

(event or time delay). Enables task to 
yield CPU before end, and later resume
there. 

Ready
Task uses 
OS service 

which
blocks

Unblocking 
event occurs

Scheduler starts 
or resumes A when it is 

highest-priority ready task

Preempted by task 
with higher priority

Deleted

No task ready with 
higher priority, so 

resume 

Running

Task root function 
completes or calls 

Exit/Terminate, returning
control to scheduler

Interrupted

Blocked
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More Scheduler Rules

1. All tasks start in ready state
2. Scheduler picks the highest-priority ready task and starts it running on CPU

 Does this at every scheduling point
 When RTOS starts running (with osKernelStart)
 Timer tick, OS call,
 ISR
 Et cetera

 If no tasks are ready, run idle task

3. If a ready task X has higher priority than the running task Y, move task Y to the ready 
state and run task X instead
 Task X preempts task Y

4. A running task may call a function which makes it block (e.g. wait for event)
 Scheduler moves that task to blocked state, then starts highest-priority ready task running (2.)

5. Scheduler moves task from blocked to ready when unblocking event happens


