
1 21-22 v3

21-22: RTOS Introduction,
Threads and Delays

v3

2 21-22 v3

Big Picture on Task Scheduling and Operating System (part 1)

▪ Selecting and running tasks is main duty of operating system

▪ Again, task == thread here. Type of software process

▪ What else can OS do for us?

▪ Some features in scheduler make it easy to add new capabilities

▪ Task Preemption…

▪ Supporting task preemption and resumption requires saving and switching
task contexts

▪ Enables Cooperative Scheduling: Task can voluntarily yield CPU to
scheduler (“Run something else now. Later on, resume running me here.”).

▪ Run-to-completion behavior not required for tasks. Easier, since don’t need
to turn task code into finite state machine to share CPU with other tasks
sooner (for responsiveness) or for longer (for less time overhead)

▪ ISRs must still be RTC.

3 21-22 v3

Part 2: Provide Protected Shared Variables (and more)

▪ OS can serve as centralized manager of variables, other
resources for tasks to share

▪ Provide tasks with special shared resources (e.g. variables):
protected from race conditions.

▪ Tasks access these shared resources only through specific OS
calls. Example for integer counter variable:

▪ Set value

▪ Get value

▪ Increment

▪ Decrement

▪ OS protects critical sections by serializing access to a shared
variable and preventing unsafe preemption.

▪ Don’t let task A access shared variable if task B has started accessing it
but not finished yet.

▪ Protection of critical section code implemented in OS so you don’t
have to do it

4 21-22 v3

Part 3:
Enhance Shared Counter Variable to Synchronize Task Execution
▪ Add a few rules on how process uses the counter. Semaphore example:

▪ Task A detects event, then signals event has happened by incrementing counter

▪ Task B loops: wait until counter > 0, then decrement counter and do processing in
response to event.

▪ Add an OS Call for counter variable used as semaphore

▪ Task B calls OS

▪ Wait until counter > 0, then decrement counter and let me continue

▪ OS processing affects both variable and task state (and therefore task scheduling)

▪ If counter == 0, then make task wait: change task state from ready
to blocked. Do other tasks until counter > 0.

▪ Next, decrement counter and let task resume: change state from
blocked to ready.

▪ Now OS schedules tasks better while simplifying development

▪ Tweak rules for mutually exclusive execution of task code critical sections

▪ Extend concept, apply elsewhere: OS provides inter-process synchronization
and communication (IPC) primitives and useful data structures (e.g. message
queues) to application processes

5 21-22 v3

RTOS: What and Why

▪ Real-Time Operating System

▪ An OS designed to operate with deterministic
(repeatable) timing

▪ Typically uses preemptive task scheduling for better
responsiveness

▪ Timing: Deterministic, predictable, bounded

▪ Why use one? RTOS vs. OS

▪ Easier to build a system with deterministic timing

▪ Developer can more easily manage the response
times of urgent processing through prioritization

▪ Don’t need to restructure code repeatedly or re-
invent the wheel (hopefully correctly)

▪ Cutting response time reduces processor &
memory speed requirements (and HW $$)

▪ Why else? RTOS or OS vs. bare-metal

▪ Improve software modularity

▪ Improve software reliability by isolating threads

▪ Simplify maintenance and upgrades

▪ Leverage built-in OS/RTOS services

▪ Interprocess communication and synchronization
(safe data sharing)

▪ Time management

▪ I/O abstractions

▪ Memory management

▪ File system

▪ GUI

▪ Networking support

RTOS
Scheduler Threads Synchronization

&

CommunicationTime Mgt. Memory Mgt.

…

…

… … … …

6 21-22 v3

Keil RTX5 Introduction

▪ Open source real-time kernel from Keil
(part of ARM)

▪ Names
▪ RTX = Real-Time Executive

▪ Starting with CMSIS version 6, RTX5 is also
called CMSIS-RTX

▪ Documentation online
▪ https://www.keil.com/pack/doc/CMSIS/RTOS2/

html/rtx5_impl.html

▪ Included with MDK, supports integrated
kernel debugging

▪ Configurable to minimize use of memory

▪ Supports multiple types of scheduling
▪ Preemptive

▪ Cooperative (non-preemptive)

▪ Time slicing

▪ Provides various services
▪ Thread Management

▪ Time Management

▪ System Control

▪ Thread Synchronization and Communication

▪ Memory Management

https://www.keil.com/pack/doc/CMSIS/RTOS2/html/rtx5_impl.html
https://www.keil.com/pack/doc/CMSIS/RTOS2/html/rtx5_impl.html
https://www.keil.com/pack/doc/CMSIS/RTOS2/html/rtx5_impl.html

7 21-22 v3

CMSIS-RTOS2

▪ CMSIS = Cortex Microcontroller Software
Interface Standard
▪ Conventions and standards for software interfaces,

structure and names

▪ Hardware Abstraction Layer: Software layer between
application program and hardware

▪ CMSIS-RTOS2:
▪ API which provides standardized interface to different

RTOSs

▪ RTX5, FreeRTOS, µC/OS, etc.

▪ Documentation:

▪ https://arm-software.github.io/CMSIS_6/latest/RTOS2/index.html

▪ Your source code must #include “cmsis_os2.h”

CMSIS-RTOS2 API Structure

(from CMSIS documentation, ARM Ltd.)

https://arm-software.github.io/CMSIS_6/latest/RTOS2/index.html
https://arm-software.github.io/CMSIS_6/latest/RTOS2/index.html
https://arm-software.github.io/CMSIS_6/latest/RTOS2/index.html
https://arm-software.github.io/CMSIS_6/latest/RTOS2/index.html
https://arm-software.github.io/CMSIS_6/latest/RTOS2/index.html

8 21-22 v3

Using RTX5 in MDK

▪ When creating a new project, select Run-Time
Environment Software Components

▪ CMSIS → Core

▪ CMSIS → RTOS2 (API) → Keil RTX5 (Library, not
Source)

▪ Device → Startup

▪ Precompiled RTX code is located in RTX_CM0.lib

▪ RTX_Config.c and .h are copied to your project (in
RTE\CMSIS) for your modification

▪ Need to include header file in all source files which
use the RTOS

▪ #include “cmsis_os2.h”

9 21-22 v3

Using Source Code Templates

▪ Right-click on Source Group 1 ->
Add New Item to Group…

▪ Select User Code Template, expand
CMSIS node

▪ Select CMSIS-RTOS2 ‘main’ function

▪ Optional: change target location
(at bottom) to a Source folder if
present

▪ Click Add

10 21-22 v3

RTX5 Configuration

▪ Modify RTX_Config.h

11 21-22 v3

System Configuration and Clock Tick

▪ OS needs a periodic interrupt

▪ Supporting time delays and timeouts

▪ Supporting time slicing (if used)

▪ Uses SysTick timer on MCU

▪ Configurable in RTX_Config.h

▪ Kernel tick frequency determines timer clock settings

▪ What frequency? Trade off overhead vs. response time
and accuracy of delays

▪ Each tick invokes thread manager

▪ Highest-priority thread, performs scheduling and other
system work

▪ Disable (uncheck) Round-Robin thread switching for
true prioritized scheduling

12 21-22 v3

Thread-Related Configuration

▪ Thread stack sizes

▪ Support for monitoring stack size
▪ Overflow (overrun) detection

▪ Watermark initialization

▪ Processor mode when executing
threads

13 21-22 v3

Debug Support

▪ View->Watch->RTX RTOS

▪ View->Periodic Window Update

▪ Debug->OS Support->System and
Thread Viewer doesn’t seem to
work with RTX5

▪ Instead, try Event Recorder

14 21-22 v3

BASIC THREAD CONCEPTS,
CREATION AND DELAYS

15 21-22 v3

Basic Scheduler Operation

▪ Scheduler runs highest-priority ready thread

▪ What if no threads are ready?
▪ RTX Scheduler runs osRtxIdleThread, which

contains infinite loop
▪ Source code in RTX_Config.c

▪ Can put MCU into sleep mode here to save power

▪ Low Power RTX extension provides os_suspend and
os_resume functions to sleep as long as possible

▪ Other schedulers may keep looping, looking for
ready tasks (e.g. RTCS)

▪ How does the scheduler know when a thread
should start or stop waiting?

▪ A thread or ISR calls an RTOS function which
indicates this: signaling an event, pending on a
message, etc.

▪ Scheduler spins in a loop waiting for something to
happen

▪ If one thread is running and a higher-priority
thread unblocks, when is the thread switch?

▪ Preemptive RTOS: immediately

▪ Non-preemptive RTOS: when the lower-priority
thread blocks

16 21-22 v3

Thread Structure and Creation

▪ “Root” function is entry point to thread

▪ void pointer argument, void return type

▪ Is “main” function for that type* of thread

▪ * Can have multiple threads with same root
function, each proceeds independently and
has its own thread-local variables

▪ Structure of root function

▪ Usually function body contains infinite loop, executed one iteration at a time

▪ Each time the loop is executed, should* yield the processor to let lower priority threads execute

▪ Wait for time delay or next event

▪ * Depends on requirements and system design

▪ Can also create/destory threads dynamically

▪ Create thread before each run

▪ Destroy thread by letting root function complete, or by making OS call to delete or terminate it

▪ Takes more time, so less responsive, more compute cycles used.

▪ Not used in this class

void My_thread(void const * argument) {
 // do initialization
 while (1) {
 // wait for something
 // do the processing work
 }
}

17

▪ Define a thread identifier variable

▪ Define thread root function

▪ Start-Up Code in main

▪ Call osKernelInitialize() from main()

▪ Call osThreadNew() to create

additional threads. Each call returns the

thread ID number.

▪ Thread root function (entry point)

▪ Argument

▪ Attributes

▪ Call osKernelStart() to start

multitasking

CMSIS-RTOS2 Basic Thread Management
https://www.keil.com/pack/doc/CMSIS/RTOS2/html/group__CMSIS__RTOS__ThreadMgmt.html

osThreadId_t tid_Blinky; // Thread ID
…
void Thread_Blinky(void * argument) {
 for (;;) {
 Control_RGB_LEDs(1,1,0);
 osDelay(500);
 Control_RGB_LEDs(0,1,1);
 osDelay(500);
 Control_RGB_LEDs(1,0,1);
 osDelay(500);
 }
}
int main (void) {
 osKernelInitialize();
 tid_Blinky = osThreadNew(Thread_Blinky, arg, attrib);
 if (!tid_Blinky)
 Error_handling_code();
 else
 osKernelStart();
}

18

▪ What should the thread wait for?

▪ Event-triggered: thread runs when event Y happens

▪ Use an OS-provided synchronization primitive (event,

semaphore, queue) to signal the event has occurred

▪ More details provided later

▪ Time-triggered: thread triggered based on time ticks

▪ Very useful, saw how to do this with RTCS example

▪ Can make thread wait/block until condition is satisfied,

then make thread ready again

▪ Wait for num_ticks to happen: osDelay(num_ticks)

▪ Wait until tick number abs_tick happens:

osDelayUntil(abs_tick)

▪ Use hardware timer (SysTick) to generate periodic

interrupt requests (events…)

▪ OS uses SysTick handler to update time-related information

in scheduler

Triggering Threads
Thread has both working and waiting

Wait Work Wait Work Wait

Event XTime T1

19 21-22 v3

Example Program

void Thread_RGB(…) {
 while (1) {
 Control_RGB_LEDs(1,0,0);
 osDelay(n);
 Control_RGB_LEDs(0,1,0);
 osDelay(n);
 Control_RGB_LEDs(0,0,1);
 osDelay(n);
 }
}

Work

(running)

Wait

(blocked)
Ready Work Wait Rdy Work Wait

n ticks n ticks n ticks

void Thread_Read_Switches(…) {
 while (1) {
 if switch 1 pressed…
 do something
 if switch 2 pressed…
 do something
 osDelay(n);
 }
}

20 21-22 v3

▪ Delay for at least n OS ticks by calling osDelay(n)

▪ Blocks thread until n OS ticks have occurred

▪ Then thread is marked as ready to run

▪ Thread might not start running immediately after becoming ready

▪ Higher-priority proceses (threads, ISRs) may run or already be running

Delaying a Thread

void MyThread (…) {
 while (1) {
 // Work
 Do_Some_Work();
 // Wait
 osDelay(2);
 }
}

Running (work) Blocked (delay) Ready
Running

(work)
Blocked (delay) Ready Running (work) Blocked (delay)

Timer

Tick

My

Thread

actual delay

actual blocked timeactual blocked time actual blocked time

actual delay

HiPri

Thread
Blocked Running (work) Blocked Running (work) Blocked

Idle

Thread Ready (preempted)
Running

(idle

loop)
Ready (preempted) Running (idle loop) Ready (preempted) Running (idle loop)

actual delay

o
sD

e
la

y(
2
)

o
sD

e
la

y(
2
)

o
sD

e
la

y(
2
)

21 21-22 v3

▪ Time sampling effects! Call to osDelay or
osDelayUntil not synchronous with phase
of timer events (overflows)

▪ Example: n = 2

▪ Block until two ticks occur.

▪ Minimum delay is >1 tick but <=2 ticks,
depends on phase relation

▪ Then thread is marked as ready to run

▪ Summary: Two parts to time delay:

▪ From delay function call to thread
becoming ready

▪ Based on timer phase and period

▪ From thread becoming ready to when it
resumes running

▪ Based on which other processing is
scheduled before this thread resumes

Actual Time from Delay Call to Thread Ready?

void MyThread (…) {
 while (1) {
 // Work
 Do_Some_Work();
 // Wait
 osDelay(2);
 }
}

Running (work) Blocked (delay) Ready
Running

(work)
Blocked (delay) Ready Running (work) Blocked (delay)

Timer

Tick

My

Thread

actual delay

actual blocked timeactual blocked time actual blocked time

actual delay

HiPri

Thread
Blocked Running (work) Blocked Running (work) Blocked

Idle

Thread Ready (preempted)
Running

(idle

loop)
Ready (preempted) Running (idle loop) Ready (preempted) Running (idle loop)

actual delay

o
sD

e
la

y(
2
)

o
sD

e
la

y(
2
)

o
sD

e
la

y(
2
)

22 21-22 v3

Example Program Execution with Preemption: Zoom In

▪ Thread_Read_Switches runs after Delay1 expires

▪ When Delay2 expires, scheduler sees Thread_RGB is higher
priority than Thread_Read_Switches, so swaps them

▪ When Thread_RGB blocks (waiting for next Delay2),
scheduler resumes running Thread_Read_Switches

▪ Thread_Read_Switches runs until it blocks (waiting for
Delay1)

Idle Task Running Running

Scheduler Running Running Running Idle

Delay1 Delay

ends

Thread_Read_Switches Blocked on Delay1 Ready Running Ready Running
Blocked on

Delay1

Delay2 Delay

ends

Thread_RGB Blocked on Delay2 Ready Running Blocked on Delay2

Thread_RGB

Thread_Read_Switches

23 21-22 v3

Example Program Execution with Preemption: Extreme Zoom

1. Timer Tick Interrupt

2. Timer Tick Interrupt

3. Timer Tick Interrupt

4. Thread_RGB calls osDelay

5. Timer Tick Interrupt

6. Thread_Read_Switches calls osDelay

Tick Timer HW Ctr. Value

Tick Timer ISR

OS Activities

OS Context Switch

Delay1 Delay ends→ (unused)

Thread_Read_Switches Blocked on Delay1 Ready Running Ready Run ning
Blocked on

Delay1

Delay2 Delay ends→ (unused)

Thread_RGB Blocked on Delay2 Ready Running Blocked on Delay2

Idle Task Running Ready Running

24

▪ Allows creation of periodic delays which don’t

accumulate error from delayed thread runs

▪ Delay until a specific tick

▪ Each tick is numbered, so can get number of

current tick with osKernelGetTickCount()

osDelayUntil Example
https://arm-software.github.io/CMSIS_5/RTOS2/html/group__CMSIS__RTOS__Wait.html

#include "cmsis_os2.h"
void Thread_1 (void *arg) {// Thread function
 uint32_t tick;
 tick = osKernelGetTickCount(); // retrieve the number of system ticks
 for (;;) {
 tick += 1000U; // delay 1000 ticks periodically
 osDelayUntil(tick);
 // ...
 }
}

	Slide 1: 21-22: RTOS Introduction, Threads and Delays
	Slide 2: Big Picture on Task Scheduling and Operating System (part 1)
	Slide 3: Part 2: Provide Protected Shared Variables (and more)
	Slide 4: Part 3: Enhance Shared Counter Variable to Synchronize Task Execution
	Slide 5: RTOS: What and Why
	Slide 6: Keil RTX5 Introduction
	Slide 7: CMSIS-RTOS2
	Slide 8: Using RTX5 in MDK
	Slide 9: Using Source Code Templates
	Slide 10: RTX5 Configuration
	Slide 11: System Configuration and Clock Tick
	Slide 12: Thread-Related Configuration
	Slide 13: Debug Support
	Slide 14: Basic thread Concepts, Creation and Delays
	Slide 15: Basic Scheduler Operation
	Slide 16: Thread Structure and Creation
	Slide 17: CMSIS-RTOS2 Basic Thread Management
	Slide 18: Triggering Threads
	Slide 19: Example Program
	Slide 20: Delaying a Thread
	Slide 21: Actual Time from Delay Call to Thread Ready?
	Slide 22: Example Program Execution with Preemption: Zoom In
	Slide 23: Example Program Execution with Preemption: Extreme Zoom
	Slide 24: osDelayUntil Example

