21-22: RTOS Introduction,
Threads and Delays

v3

Big Picture on Task Scheduling and Operating System (part 1)

= Selecting and running tasks is main duty of operating system
= Again, task == thread here. Type of software process

= What else can OS do for us?

= Some features in scheduler make it easy to add new capabilities

= Task Preemption...

= Supporting task preemption and resumption requires saving and switching
task contexts

= Enables Cooperative Scheduling: Task can voluntarily yield CPU to
scheduler (“Run something else now. Later on, resume running me here.”).

= Run-to-completion behavior not required for tasks. Easier, since don’t need
to turn task code into finite state machine to share CPU with other tasks
sooner (for responsiveness) or for longer (for less time overhead)

= |SRs must still be RTC.

2 21-22 v3

NC STATE UNIVERSITY

Part 2: Provide Protected Shared Variables (and more)

/ /:,.\\\ ; //N‘ e
= OS can serve as centralized manager of variables, other 1A [T2\
resources for tasks to share LRI (\ n-('-)
e L
= Provide tasks with special shared resources (e.g. variables): - %‘ e
protected from race conditions. — ~-:%TI;-_W Q/\/J (
= Tasks access these shared resources only through specific OS OS2 /: Bl o
calls. Example for integer counter variable:
= Setvalue N \ i/)/
= Getvalue - N ~ /\h(/(%
= Increment ¥)|7 e y
= Decrement)
= OS protects critical sections by serializing access to a shared a N
variable and preventing unsafe preemption. /
= Don’t let task A access shared variable if task B has started accessing it ¥
but not finished yet. (‘/’f; W2 |
= Protection of critical section code implemented in OS so you don't] o '_]

have to do it

3 21-22 v3

Part 3:

Enhance Shared Counter Variable to Synchronize Task Execution

= Add a few rules on how process uses the counter. Semaphore example:
= Task A detects event, then signals event has happened by incrementing counter

= Task B loops: wait until counter > 0, then decrement counter and do processing in
response to event.

= Add an OS Call for counter variable used as semaphore
= Task B calls OS
= Wait until counter > @, then decrement counter and let me continue

= OS processing affects both variable and task state (and therefore task scheduling)

= If counter == 0, then make task wait: change task state from ready
to blocked. Do other tasks until counter > 0.

= Next, decrement counter and let task resume: change state from
blocked to ready.

= Now OS schedules tasks better while simplifying development
= Tweak rules for mutually exclusive execution of task code critical sections

= Extend concept, apply elsewhere: OS provides inter-process synchronization
and communication (IPC) primitives and useful data structures (e.g. message
gueues) to application processes

4 21-22 v3

N

%
5

/\/)ﬂ ﬂ/;;(f/’/:_:

f-ﬁ)/\

Precesl

,]\7((7//’//(N
| V

NC STATE UNIVERSITY

o})

..NA,.,J

NC STATE UNIVERSITY

RTOS: What and Why

Scheduler Threads Synchronization
&
Time Mgt. Memory Mgt. = Communication

= Real-Time Operating System
= An OS designed to operate with deterministic = Why else? RTOS or OS vs. bare-metal

(repeatable) timing = |Improve software modularity

= Typically uses preemptive task scheduling for better = Improve software reliability by isolating threads
FESPONSIVENESS = Simplify maintenance and upgrades

= Timing: Deterministic, predictable, bounded

= Leverage built-in OS/RTOS services

* Why use one? RTOS vs. OS5 = Interprocess communication and synchronization
= Easier to build a system with deterministic timing (safe data sharing)
= Developer can more easily manage the response = Time management
times of urgent processing through prioritization = |/O abstractions
= Don’t need to restructure code repeatedly or re- = Memory management
invent the wheel (hopefully correctly) = File system
= Cutting response time reduces processor & = GUI

memory speed requirements (and HW SS) = Networking support

5 21-22 v3

NC STATE UNIVERSITY

Keil RTX5 Introduction

= Open source real-time kernel from Keil = Supports multiple types of scheduling
(part of ARM) = Preemptive

= Names = Cooperative (non-preemptive)

= RTX = Real-Time Executive * Time slicing

= Starting with CMSIS version 6, RTX5 is also = Provides various services

called CMSIS-RTX = Thread Management

= Documentation online = Time Management

= https://www.keil.com/pack/doc/CMSIS/RTOS2/ = System Control

html/rtx5 impl.html = Thread Synchronization and Communication
* |ncluded with MDK, supports integrated
kernel debugging

Memory Management

= Configurable to minimize use of memory

6 21-22 v3

https://www.keil.com/pack/doc/CMSIS/RTOS2/html/rtx5_impl.html
https://www.keil.com/pack/doc/CMSIS/RTOS2/html/rtx5_impl.html
https://www.keil.com/pack/doc/CMSIS/RTOS2/html/rtx5_impl.html

NC STATE UNIVERSITY

CMSIS-RTOS2

= CMSIS = Cortex Microcontroller Software
Interface Standard

= Conventions and standards for software interfaces,
structure and names

Application Middleware

CMSIS-RTOS API v2

= Hardware Abstraction Layer: Software layer between
application program and hardware

= CMSIS-RTOS2:

= API which provides standardized interface to different

Real-time Kernel (3rd Party)

RTOSs
" RTX5, FreeRTOS, uc/0s, etc. CMSIS-RTOS2 API Structure
= Documentation: (from CMSIS documentation, ARM Ltd.)

= https://arm-software.github.io/CMSIS 6/latest/RTOS2/index.html
= Your source code must #include “cmsis_0s2.h”

7 21-22 v3

https://arm-software.github.io/CMSIS_6/latest/RTOS2/index.html
https://arm-software.github.io/CMSIS_6/latest/RTOS2/index.html
https://arm-software.github.io/CMSIS_6/latest/RTOS2/index.html
https://arm-software.github.io/CMSIS_6/latest/RTOS2/index.html
https://arm-software.github.io/CMSIS_6/latest/RTOS2/index.html

Using RTX5 in MDK

k4 Manage Run-Time Environment

Software Component Sel. Variant Version
‘ Board Support FROM-KL25Z 1.0.0
o @ CMsis
¥ CORE 2 5.0.2
¥ DSP [1.5.2
& RTOS (API) 1.00
=4 ETOS2 (API) 2.1.1
¥ Keil RTHS v Library v‘s.m
W LITIveEr
4 Compiler ARM Compiler 1.2.0
mevice
¥ Startup v 2.5.0
File System MDK-Pra <694

Description
MAP FRDM-KL25Z board support

Cortex Microcontroller Software Inteface Components

CMSI5-CORE for Cortex-h, SCOD0, 5C300, ARMwE-M

CPSIS-DSP Library for Cortex-b, SCO00, and SC300

CPSIS-RTOS APl for Cortex-M, SCO00, and SC300
CPSIS-FTOS AP for Cortex-b, SCO00, and SC300
CMS5I5-RTOSE RTHS for Cortex-M. SCO00, C300 and ARMvE-M (Library

Unified Device Drivers compliant to CMSIS-Driver Specifications
Compiler Extensions for ARM Compiler 5 and ARM Compiler 6
Startup, System Setup

Systern Startup for NXP MEL25Z4 Devices

File Access on various storage devices

= When creating a new project, select Run-Time
Environment Software Components

= CMSIS — Core

= CMSIS — RTOS2 (API) — Keil RTX5 (Library, not 2

Source)
= Device — Startup

NC STATE UNIVERSITY

Project (N |
=-“t¢ Project: RTX5-Blinky
g Target 1
E-F Source Group 1
| debug.c
] LEDs.c
J main.c
J threads.c
kSIS
*T RTX_CMO.lib (RTOS2:Keil RTX5)
5T rbelib.c (RTOS2:Keil RTXS)
_] RT¥X_Config.c (RTOS2:Keil RTXS5)
_] RTX_Config.h (RTOSZ:Keil RTX5)
EVICE
] startup_MKL2574.s (Startup)
] system_MKL2574.c (Startup)
] systemn_MKL2574.h (Startup)

= RTX_Config.c and .h are copied to your project (in
RTE\CMSIS) for your modification

use the RTOS

= #include “cmsis_0s2.h”

= Precompiled RTX code is located in RTX_CMO.lib

8 21-22 v3

Need to include header file in all source files which

NC STATE UNIVERSITY

Using Source Code Templates

Add Mew ltem to Group "Source Group 1' >

= Right-click on Source Group 1 ->
Add New ltem to Group...

Add template file(s) to th ject.
C Fie (o) mplate file(s) £ proje

Component Mame
C++Fie (cpp) =@ CMsis -
RTO52:Keil RTX5 CMSIS-RTOS2 'main’ function

= Select User Code Template, expand

Asm File (5)
FTOS52:Keil RTXS CMSI5-RTOS2 Events
C M S I S n O d e Header File (h) RTO52:Keil RTXS5 CMS5I5-RTOS2 Memery Pool
P . . RTOS2:Keil RTX5 CMSIS-RTOS2 Message CQueue
= Select CMSIS-RTOS2 ‘main’ function Text File () RTOS2:Keil RTXS | CMSIS-RTOS2 Mutex

g Image File (%) RTO52:Keil RTXS CMSIS-RTOS2 SVC User Table
= RTO52:Keil RTX5 CMSI5-RTOS2 Semaphore I

[EJ L= 1=, 195 Lo,

= Optional: change target location

. @ User Code Template RTOS2:Keil RTXS CMSIS-RTOS2 Thread
(at bottom) to a Source folder if RIOS2KeilFTXS | CMSIS-RTOS2 Timer -
p reS e nt Type: | User Code Template
= Click Add Name: <
Location: | C:\sersialex\DocumentsiTeachingESAY2017 Fall\Code \ESA-17VConcurrency \RTX 5-Elinky J

Add Close Help

9 21-22 v3

NC STATE UNIVERSITY

RTX5 Configuration

main.c |] startup_MEKL25Z4.s |] system_MKL25Z4.h | | RT¥_Config.c 5 X] startup MKL25Z4.5 ¥ X
““““““““““““““““““““““““““““““““““““““ n Hep | [Show Gid
26 *f
2 COption Value
28 D £i fnd
=8 Dz_f"‘.Ef RIX_CONEIG H_ - System Cenfiguration
25 #define RTX CONFIG H i
30 - -~ Global Dynamic Me... | 4096
31 | S <<< Use Configuration Wizard in Context Menu >33 —————————— Kernel Tick Frequen... | 1000
32 =--Round-Robin Threa... F
33 | // <h>System Configuration Round-Robin Ti. |5
34 | /S)
35 Event Recording
36 | /S <o»Global Dynamic |Hen'.nry size [bytes] <0-1073741824:8> I5R FIFO Queue 16 entries
37 | /S <i>» Defines the combined global dynamic memory size. Thread Configuration
38 f'l ©i> Default: 2096 Timer Configuration
39 H#ifndef 05 DYNAMIC MEM SIZE))
10 | % = ©S_DYNAMIC MEM SIZE 4096 Event Flags Configurati...
41 Mutex Configuration

o
(]
T
H

Semaphore Configurati...

43 | /S <Z?:=Z{ern?l Tick Frec_;'.lency_ [Hz] <1-1000000>) Memory Pool Configur...

44 | Jf <i> Defines base time unit for delays and timeouts. .

45 | // <i> Default: 1000 (lms tick) Message Queue Config...

46 |#ifndef O5_TICK FREQ

47 | #define 05 _TICK FREQ 1000

48 | #endif

S

22 ;’ﬁ <:?:>RDJnd—RDbl:‘1. Inread_sw:..tcnlng o Round-Robin Thread switching
. <i> Enables Round-Robin Thread switching. Endiie= Rasuvcl-Riokiun e siiching

52 []#ifndef 05 ROBIN ENABLE

53 | #define ©O5_ROBIN_ENABLE 1

o : i

m

wm
T
£

Text Editor 4 Configuration Wizard

Text Editor J§ Configuration Wizard [

= Modify RTX_Config.h

10 21-22 v3

NC STATE UNIVERSITY

System Configuration and Clock Tick

) o] RTX Configh] mainc] RW _Config.c =] rblib.c F X
|
OS needs d perIOdIC Interrupt Expand All | | Collapse Al | Help [+ Show Grid
= Supporting time delays and timeouts Qution Value
= Supporting time slicing (if used) 7 System Configuration | =
Global Dynamic Memory size [bytes] 4096
= Uses Sys'ﬂck timer on MCU Kernel Tick Frequency [Hz] 1000
E--Round-Robin Thread switching [
Round-Robin Timeout 3
. . . - F Recordi
= Configurable in RTX_Config.h AT —
= Kernel tick frequency determines timer clock settings =) Thread Configuration
. Ohbject specific Memory allocation [
= What frequency? Trade off overhead vs. response time Default Thread Stack size [bytes] 200
and accuracy Of delays Idle Thread Stack size[bytes] 200
Stack everrun checking v
Stack usage watermark [
Processor mode for Thread execution Privileged mode
= Each tick invokes thread manager Timer Configuration
. . . . Event Flags Configuration
= Highest-priority thread, performs scheduling and other Mutex Configuration —
System Work Semaphore Configuration
Mermneory Pool Configuration
Message Queue Configuration j
. . . . Kernel Tick Frequency [Hz]
= Disable (uncheck) Round-Robin thread switching for T e
. - . Default: 1000 (1ms tick)
true prioritized scheduling
11 21-22 v3
Text Editor }-. Configuration Wizard ."'[

NC STATE UNIVERSITY

Thread-Related Configuration

] RTX Config.h | | mainc] RT Config.c] rbelib.c 5T
Expand Al | | Collapse Al | Help W Show Grid
. Optien Value
“ Thread StaCk Slzes [=1-System Configuration =
Global Dynamic Memory size [bytes] 4096
el TickFrequency i) R
. . . E-Round-Rebin Thread switching [
= Support for monitoring stack size Round-Robin Timeout f
Event Recording
= Qverflow (overrun) detection ISR FIFO Queue 16 entries
=~ Thread Configuration
= Watermark |n|t|a||zat|0n Object specific Memaory allocation [
Default Thread Stack size [bytes] 200
Idle Thread Stack size [bytes] 200
Stack overrun checking v
= Processor mode when executing Stack usage watermark B
Processor mode for Thread execution Privileged mode
th reads Timer Configuration
Event Flags Configuration
Mutex Configuration e
Semaphore Configuration
Mernory Pool Configuration
Message CQueue Configuration ﬂ
Kernel Tick Frequency [Hz]
Defines base time unit for delays and timeouts.
Default; 1000 (1ms tick)
12 21-22 V3 WCDnﬁgllrﬂﬁﬂnWEﬂrdf

NC STATE UNIVERSITY

Debug Support e oS

Property Value
- Systemn
¥ Kernel ID RTX W5.2.1
- VIeW_>WatCh_>RTX RTOS ¥ Kernel 51.:ate osKernelRunning
= View->Periodic Window Update # Kemel Tick Frequency 1000
¥ Round Rebin Tick Count 0
¥ Found Robin Timeout 5
¥ Global Dynamic Memory Base: O 1FFFFO00, Size: 4096
= D€bug->05 5U,D,00I't->5y5tem Ond ¥ Stack Overrun Check Enabled
. 7 ¥ Stack Usage Waterrnark Disabled
Thread Viewer doesn’t seem to ® Detouht Thend Sk e |00
work with RTX5 # ISR FIFO Queue Size: 16, Used: 0
= Threads
=--id: (e200002B4, osRibddleThread | osThreadReady, osPriontyldle, Stack Used: 32%
¥ State osThreadReady
= Instead, try Event Recorder 9 Priority osPriorityldle
¥ Attributes osThreadDetached
Stack Used: 32% [Bd]
¥ Flags (rc00D0D0D0
[=-id: Ce200002F8, osRbcTimerThread | osThreadBlocked, osPriorityHigh, Stack Used: 52%
¥ State os I hreadBlocked
¥ Priority osPriorityHigh
W Attributes oshreadDetached
¥ Waiting Message Get, Timeout: osWaitForever
13 21-22 V3 Stack Lzed: 52% [104]

W Flags (ocQ0000000

BASIC THREAD CONCEPTS,
CREATION AND DELAYS

Basic Scheduler Operation

= Scheduler runs highest-priority ready thread

= What if no threads are ready?

= RTX Scheduler runs osRtxldleThread, which
contains infinite loop

= Source code in RTX_Config.c
= Can put MCU into sleep mode here to save power

= Low Power RTX extension provides os_suspend and
os_resume functions to sleep as long as possible

= QOther schedulers may keep looping, looking for
ready tasks (e.g. RTCS)

15 21-22 v3

= How does the scheduler know when a thread
should start or stop waiting?

= Athread or ISR calls an RTOS function which
indicates this: signaling an event, pending on a
message, etc.

= Scheduler spins in a loop waiting for something to
happen

= |If one thread is running and a higher-priority
thread unblocks, when is the thread switch?

= Preemptive RTOS: immediately

= Non-preemptive RTOS: when the lower-priority
thread blocks

NC STATE UNIVERSITY

NC STATE UNIVERSITY

Thread Structure and Creation

= “Root” function is entry point to thread void My_thread(void const * argument) {
= void pointer argument, void return type // do initialization
= |s “main” function for that type* of thread while (]_') ‘)li: hi
= * Can have multiple threads with same root // ‘(’jva-l th or somet . 1ng K
function, each proceeds independently and // do the processing wor
has its own thread-local variables }
}

= Structure of root function

= Usually function body contains infinite loop, executed one iteration at a time

= Each time the loop is executed, should* yield the processor to let lower priority threads execute
= Wait for time delay or next event

= * Depends on requirements and system design
= Can also create/destory threads dynamically
= Create thread before each run

= Destroy thread by letting root function complete, or by making OS call to delete or terminate it

= Takes more time, so less responsive, more compute cycles used.
= Not used in this class

16 21-22 v3

CMSIS-RTOS2 Basic Thread Management

https://www.keil.com/pack/doc/CMSIS/RTOS2/html/group_ CMSIS__ RTOS__ ThreadMgmt.html

= Define a thread identifier variable osThreadId_t tid_Blinky; // Thread ID
. void Thread Blinky(void * argument) {
= Define thread root function for (53) {
Control RGB_LEDs(1,1,0);
)) osDelay(500);
= Start-Up Code in main Control_RGB_LEDs(@,1,1);
= Call osKernellnitialize() from main() osDelay(500);
= Call osThreadNew() to create g:gzglzgggs%ws(l’@’ 1)
additional threads. Each call returns the Y ’
}
thread ID number. }
= Thread root function (entry point) int main (void) {

osKernelInitialize();

= Argument)) : .
tid Blinky = osThreadNew(Thread Blinky, arg, attrib);

= Attributes if (!tid_Blinky)
= Call osKernelStart() to start Error_handling code();
multitasking else
osKernelStart();

NC STATE UNIVERSITY

Triggering Threads

Thread has both working and waiting

Time T, Event X

\
Wait - Wait Wait

= What should the thread wait for? = Time-triggered: thread triggered based on time ticks
= Very useful, saw how to do this with RTCS example

= Can make thread wait/block until condition is satisfied,

= Event-triggered: thread runs when eventY happens
then make thread ready again

= Use an OS-provided synchronization primitive (event,

semaphore, queue) to signal the event has occurred * Wait for num_ticks to happen: osDelay(num_ticks)

= Wait until tick number abs_tick happens:
osDelayUntil(abs_tick)

= Use hardware timer (SysTick) to generate periodic
interrupt requests (events...)

= More details provided later

= OS uses SysTick handler to update time-related information
in scheduler

Example Program

L

R 28

n ticks

nticks | (s~hreein~ ~ nticks :
Wait :
| Rt EERTURE
A
void Thread_RGB(..) { void Thread_Read_Switches(..) {
while (1) { while (1) {
Contro1_RGB_LEDs(1,O,O);eéf—lMﬁﬁi 1f switch 1 pressed..
osbelay(n); — Watf do something
control_RGB_LEDs(0,1,0); uféﬁk 1f switch 2 pressed..
osDelay(n); Watt do something
Contro1_RGB_LEDs(0,0,1);lﬂ/(k osDelay(n);
osbDelay(n); W ° }
} ‘ }

19

21-22 v3

Wait

Delaying a Thread

Timer | |
Tick
My
Thread
HiPri
Thread Blocked
|dle
Thread Ready (preempted
void MyThread (..) {
= Delay for at least n OS ticks by calling osDelay(n) while (1) {
= Blocks thread until n OS ticks have occurred // wWork
= Then thread is marked as ready to run Bg—some—work() ;
: . . : wailt
= Thread might not start running immediately after becoming ready osDelay(2)

= Higher-priority proceses (threads, ISRs) may run or already be running }

20 21-22 v3

Timer
actual blocked time . actual blocked time actual blocked time
Thread Blocked (delay) : Ready Blocked (delay) Ready Blocked (delay)
~ actual delay a actual delay ' actual delay
HiPri
|dle
Ready (preempted Ready (preempted Ready (preempted
Thread y (P P y (P P y (p p

21

Time sampling effects! Call to osDelay or
osDelayUntil not synchronous with phase
of timer events (overflows)

= Summary: Two parts

becoming ready

Example: n =2

Block until two ticks occur.

Minimum delay is >1 tick but <=2 ticks,
depends on phase relation

resumes running

Then thread is marked as ready to run

21-22 v3

From delay function call to thread

Based on timer phase and period
From thread becoming ready to when it

to time delay: void MyThread (.) {

while (1) {
// work
Do_Some_Work();
// Wait
osDelay(2);
}
}

Based on which other processing is
scheduled before this thread resumes

Example Program Execution with Preemption: Zoom In

[Threadl RGBJ [[[[[[[i | [[
Thread Read Switches l l 1 I 1 1l 1 1 0 I
|dle Task Running Running
Scheduler T Running Running Running Idle
4 . g _{
- \
] | ok
Thread_Read_Switches E) Blocked on
_ — Blocked on Delay1 |[Ready Ready f_\ [i Delay1
Delay?2 T — ela 0’(5\)2'\7
endas
Thread_RGB Blocked on Delay2 @eady Blocked on Delay?2
= Thread_Read_Switches runs after Delayl expires = When Thread_RGB blocks (waiting for next Delay2),
= When Delay2 expires, scheduler sees Thread_RGB is higher ~ scheduler resumes running Thread_Read_Switches
priority than Thread Read_Switches, so swaps them ' = Thread_Read_Switches runs until it blocks (waiting for

Delay1)

22 21-22 v3

Example Program Execution with Preemption: Extreme Zoom

¢ ¢ e Q¢
2\ <\ \C \C
\- 0 '5'.‘ c,',‘
Tick Timer HW Ctnm\
Tick Timer ISR
OS Activities
. ‘\ N
OS Context Switch 1 O°
Delay | Delay ends—> (unused) b.c’%
Thread_Read_Switches Blocked on Delay| iReady Ready Blocked on
Delay |
Delay2 Del d g
y elay ends— (unused) A C e}’&\
Thread RGB Blocked on Delay?2 Read OSO Blocked on Delay2
Idle Task Running Ready Running

1. Timer Tick Interrupt

2. Timer Tick Interrupt

3. Timer Tick Interrupt

23

21-22 v3

4. Thread RGB calls osDelay
5. Timer Tick Interrupt

6. Thread Read_Switches calls osDelay

osDelayUntil Example
https://arm-software.github.io/CMSIS_5/RTOS2/html/group__ CMSIS___ RTOS__ Wait.html

#include "cmsis_os2.h"

void Thread_1 (void *arg) {// Thread function
uint32_t tick;
tick = osKernelGetTickCount(); // retrieve the number of system ticks
for (;;) {

tick += 1000u; // delay 1000 ticks periodically
osDelayuntil(tick);
// ...
}
}
= Allows creation of periodic delays which don’t = Delay until a specific tick
accumUIate error from delayed thread runs m Each t|ck is numbered’ SO can get number of

current tick with osKernelGetTickCount()

24

NC STATE UNIVERSITY

	Slide 1: 21-22: RTOS Introduction, Threads and Delays
	Slide 2: Big Picture on Task Scheduling and Operating System (part 1)
	Slide 3: Part 2: Provide Protected Shared Variables (and more)
	Slide 4: Part 3: Enhance Shared Counter Variable to Synchronize Task Execution
	Slide 5: RTOS: What and Why
	Slide 6: Keil RTX5 Introduction
	Slide 7: CMSIS-RTOS2
	Slide 8: Using RTX5 in MDK
	Slide 9: Using Source Code Templates
	Slide 10: RTX5 Configuration
	Slide 11: System Configuration and Clock Tick
	Slide 12: Thread-Related Configuration
	Slide 13: Debug Support
	Slide 14: Basic thread Concepts, Creation and Delays
	Slide 15: Basic Scheduler Operation
	Slide 16: Thread Structure and Creation
	Slide 17: CMSIS-RTOS2 Basic Thread Management
	Slide 18: Triggering Threads
	Slide 19: Example Program
	Slide 20: Delaying a Thread
	Slide 21: Actual Time from Delay Call to Thread Ready?
	Slide 22: Example Program Execution with Preemption: Zoom In
	Slide 23: Example Program Execution with Preemption: Extreme Zoom
	Slide 24: osDelayUntil Example

