
1

Using the RTOS for the
Expansion Shield Code

rev. 1/3/2024

To Do

• Currently this file is only a skeleton for

how the expansion shield code uses the

RTOS. Need to consider overlap with the

Architecture Design and Expansion

Shield slides before filling out.

• Add text notes per slide

• Convert hand drawings

2

▪ How does RTOS help us implement the
Expansion Shield architecture?
▪ Threads and ISRs

▪ Shared data and resources

▪ Communication and synchronization

▪ Code on Github: Tools/TestCode/Shield_Base_v14

▪ Steps
▪ Start up program and RTOS

▪ Threads and periodic execution

▪ Triggering threads with Event Flags

▪ Triggering threads with Semaphores

▪ Message Queues and Data Buffering

▪ Restricting threads with Mutexes

▪ ADC Server

Overview

IS
R

s

D
e
la

y
s

E
v
e
n

t
F

la
g
s

S
e
m

a
p

h
o

re
s

M
e
ss

a
g
e

Q
u

e
u

e
s

M
u

te
x
e
s

Sound Generation x x x x

Read Touchscreen x (x) x

Read

Accelerometer

x

Update Screen x x

(CC LED Driver) (x) (x) (x)

3

Big Picture: Threads and ISRs So Far

Brightness

(Duty Cycle)

Backlight

Buck Converter

Audio Signal

Brightness

LCD

Commands

and Data

White LED

Speaker

Current Feedback

(Analog Voltage)

Enable/Mute

Accelerometer

Touchscreen

Drive LED at

Specified

Current - TBD

Gen.

Waves

Create

Notes

DMA

ISR

Read

TS

Update

Screen

Read

Accel

4

Voice_mutex

Shield Software and Hardware Architecture

TPM

DMA

ISR

DMA DAC

Refill

Sound

Buffer

Sound

Manager

EV_REFILL_

REMAINING_SB

EV_REFILL_

ENTIRE_SB

Read

Touchscreen

Speaker

Voice

SoundBuffer

Read

Accelerometer
Update

Screen

Create initial arch diagram and then iteratively refine

with more detail.

Redraw diagram with less detail.

Decide on format/syntax of visual language.

Actors: Threads, ISRs, peripherals.

Interactions: Triggering, mutual exclusion, delays

5

▪ Start up program and RTOS

▪ Threads and periodic execution

▪ Triggering threads with Event Flags

▪ Triggering threads with Semaphores

▪ Message Queues and Data Buffering

▪ Restricting threads with Mutexes

▪ ADC Server

Roadmap

6

▪ main() function
▪ Initializes system

▪ Tests some peripherals

▪ Initializes RTOS

▪ Creates RTOS objects (threads, etc.)

▪ Starts RTOS running (never returns)

Start-Up

7

▪ Start up program and RTOS

▪ Threads and periodic execution

▪ Triggering threads with Event Flags

▪ Triggering threads with Semaphores

▪ Message Queues and Data Buffering

▪ Restricting threads with Mutexes

▪ ADC Server

Roadmap

8

▪ Must create at least one thread before
starting RTOS

▪ System has multiple threads and other
RTOS objects
▪ Convenient to make a function to group

together their creation

▪ threads.c:Create_OS_Objects()

▪ Tell OS about thread by calling osThreadNew
with thread’s root function and attributes

▪ Should check return value for each OS call to
detect, handle errors

Threads: Telling RTOS about the Threads

9

▪ Root functions
▪ Structured as initialization + infinite loop

▪ Wait, then work

▪ Debug signals
▪ Indicate on logic analyzer when thread has

started work but hasn’t finished it

▪ Waiting for work vs. “working”

▪ Periodic thread execution
▪ Implemented with osDelay

▪ Should really use osDelayUntil for better timing
consistency – eliminates accumulation of most
timing error

Threads: Structure and Behavior

10

▪ RTX_Config.c:osRtxIdleThread() runs when
nothing else is ready
▪ Infinite loop

▪ Have added code to toggle a digital output bit to
indicate on logic analyzer (LA) when idle thread is
running

▪ Examine timing behavior with LA
▪ Keep in mind that sampling effects may distort

the displayed signal

▪ Aliasing. Some signal transitions may not be
shown.

▪ Do not have infinite zoom. Non-vertical signal
transition or gray rectangle indicate zoomed in
too far. Retrigger with shorter time base.

Threads: Idle Thread

11

▪ Start up program and RTOS

▪ Threads and periodic execution

▪ Triggering threads with Event Flags

▪ Triggering threads with Semaphores

▪ Message Queues and Data Buffering

▪ Restricting threads with Mutexes

▪ ADC Server

Roadmap

12

Triggering Threads with Event Flags

▪ Audio generation requires sound buffer to be filled with samples…

▪ When DMA reaches end of buffer, fill entire buffer

▪ When a new note is activated, fill unplayed portion of buffer

▪ What data to write?

▪ When DMA reaches end of buffer, create new samples

▪ When a new note is activated, update existing samples by adding waveform from new note

▪ Note: not implemented in code yet

TPM

DMA

ISR

DMA DAC

Refill Sound Buffer!

Speaker

SoundBuffer
Update Sound Buffer!

Voice

Information

Thread_

Refill_Sound

Buffer

Thread_

Sound_

Manager

13

Event-Related Code

▪ Generate event – set event flag
▪ DMA0_IRQHandler

▪ Thread_Sound_Manager

▪ Await event, then do requested work
▪ Thread_Refill_Soundbuffer

14

Confirm and Evaluate System Behavior and Timing

▪ Does it really work?

▪ How fast is it?

▪ Is there anything unexpected?

▪ Monitor the analog output too
▪ Use mixed-signal display mode

▪ Add spectrogram

15

▪ Start up program and RTOS

▪ Threads and periodic execution

▪ Triggering threads with Event Flags

▪ Triggering threads with Semaphores

▪ Message Queues and Data Buffering

▪ Restricting threads with Mutexes

▪ ADC Server

Roadmap

16

▪ Start up program and RTOS

▪ Threads and periodic execution

▪ Triggering threads with Event Flags

▪ Triggering threads with Semaphores

▪ Message Queues and Data Buffering

▪ Restricting threads with Mutexes

▪ ADC Server

Roadmap

17

▪ Start up program and RTOS

▪ Threads and periodic execution

▪ Triggering threads with Event Flags

▪ Triggering threads with Semaphores

▪ Message Queues and Data Buffering

▪ Restricting threads with Mutexes

▪ ADC Server

Roadmap

18

▪ Start up program and RTOS

▪ Threads and periodic execution

▪ Triggering threads with Event Flags

▪ Triggering threads with Semaphores

▪ Message Queues and Data Buffering

▪ Restricting threads with Mutexes

▪ ADC Server

Roadmap

19

OLD SLIDES

20

Voice_mutex

TPM

DMA

ISR

DMA DAC

Refill

Sound

Buffer

Sound

Manager

EV_REFILL_

REMAINING_SB

EV_REFILL_

ENTIRE_SB

Speaker

Voice

SoundBuffer

21

Sequencing Interactions When two actors interact, is

sequencing needed?

22

▪ asdf

Interactions (2)

How will parts interact to

synchronize resource use and

activity and sharing data?

to Software to Hardware

From Software • Shared variables, mutexes, event flags,

semaphores, message queues, etc.

• Software must write to control

register fields

From Hardware • Software reads status register fields

(polling)

• Request interrupt service (event-driven)

• Control signals between peripherals.

Inputs: start A/D conversion trigger,

count input, start DMA trigger, etc.

Outputs: counter overflow,

comparator output, timer match

signal, A/D conversion complete,

DMA transfer complete, etc.

23

Hardware/Software Interactions

Data Flow

LED Driver

Circuit

Current Feedback Signal

Control

SignalADC

TPM

PIT

main

ADC0_

IRQHandler

PIT_

IRQHandler

Hardware Trigger Signal

g_set_current

g_duty_cycle

g_enable_flash
Current

Debug

Signal
DAC

▪ What’s in the yellow boxes?

Embedded System Architectures © 2020 A.G. Dean

24

Hardware/Software Interactions

Data Flow

LED Driver

Circuit

Current Feedback Signal

Control

SignalADC

TPM

PIT

main

ADC0_

IRQHandler

PIT_

IRQHandler

Hardware Trigger Signal

g_set_current

g_duty_cycle

g_enable_flash
Current

Debug

Signal
DAC

▪ What’s in the yellow boxes?

Embedded System Architectures © 2020 A.G. Dean

25

Evaluating Audio Software and Hardware Options

DAC

Sound

Sample

Generator

Speaker

26

Refine: Accelerometer

▪ How do we trigger the code to run?

▪ Send message to read multiple acceleration bytes

▪ How do we talk to the I2C peripheral?

▪ Examine documentation (KL25Z Ref. Man. Chapter 38)

▪ Byte-oriented protocol. Software must run per byte.

▪ Send start condition, send address byte, wait for ack,
send data byte, wait for ack, etc. …. send stop condition

▪ Does I2C code have any internal delays?

▪ Yes – limited by I2C bus speed

▪ How to implement these delays?

▪ Try to reclaim that idle time? How much is there?

I2C_TRAN; /*set to transmit mode */

I2C_M_START; /*send start */

I2C0->D = dev; /*send dev address */

I2C_WAIT; /*wait for completion */

I2C0->D = address; /*send read address */

I2C_WAIT; /*wait for completion */

I2C_M_RSTART; /*repeated start */

I2C0->D = (dev|0x1); /*send dev address (read) */

I2C_WAIT; /*wait for completion */

I2C_REC; /*set to recieve mode */

ACK; /*send ACK after read */

data = I2C0->D; /*dummy read */

I2C_WAIT; /*wait for completion */

data = I2C0->D; /*read data */

ACK; /*send ACK after read */

data = I2C0->D; /*dummy read */

I2C_WAIT; /*wait for completion */

data = I2C0->D; /*read data */

Start ACK

NACK

Stop

Device
Address

Register
Address

Data
1

Repeated
Start

Device
Address

Data
2

Data
3

Data
4

Data
5

Data
6

ACK

Accelerometer

X, Y, Z Accelerations

(I2C messages)

Read

Accel.
I2C

Peripheral

27

Refine: Accelerometer

I2C_M_STOP;

/*send stop */

data = I2C0->D;

/*read data */

i2c_start()

I2C_TRAN; /*set to transmit mode */

I2C_M_START; /*send start */

i2c_read_setup(dev, address)

I2C0->D = dev; /*send dev address (write)*/

I2C0->D = address; /*send read address */

i2c_wait(); /*wait for completion */

I2C_M_RSTART; /*repeated start */

I2C0->D = (dev|0x1); /*send dev address (read)*/

i2c_wait(); /*wait for completion */

I2C_REC; /*set to receive mode */

i2c_repeated_read(isLastRead)
data = I2C0->D; /*dummy read starts rx (if not

 already receiving) */

I2C_WAIT; /*wait for completion */

data = I2C0->D; /*read data, start next rx */

i2c_wait()

while ((I2C0->S&I2C_S_IICIF_MASK)==0);

I2C0->S |= I2C_S_IICIC_MASK;

read_full_xyz())

i2c_repeated_read(isLastRead)
data = I2C0->D; /*dummy read starts rx (if not

 already receiving) */

I2C_WAIT; /*wait for completion */

data = I2C0->D; /*read data, start next rx */

28

Refine: Accelerometer

Start

ACK

NACK
Stop

Data
1

Repeated
Start

Device
Address

Register
Address

Device
Address

Data
2

Data
3

Data
4

Data
5

Data
6

ACK

I2C_M_STOP;

/*send stop */

data = I2C0->D;

/*read data */

i2c_start()

I2C_TRAN; /*set to transmit mode */

I2C_M_START; /*send start */

i2c_read_setup(dev, address)

I2C0->D = dev; /*send dev address (write)*/

I2C_WAIT; /*wait for completion */

I2C0->D = address; /*send read address */

I2C_WAIT; /*wait for completion */

I2C_M_RSTART; /*repeated start */

I2C0->D = (dev|0x1); /*send dev address (read)*/

I2C_WAIT; /*wait for completion */

I2C_REC; /*set to receive mode */

i2c_repeated_read(isLastRead)

ACK; /*send ACK after read */

data = I2C0->D; /*dummy read */

I2C_WAIT; /*wait for completion */

data = I2C0->D; /*read data */

i2c_wait()

while ((I2C0->S & I2C_S_IICIF_MASK)==0)

 ;

I2C0->S |= I2C_S_IICIC_MASK;

read_full_xyz())

Start

ACK

Data
1

Repeated
Start

Device
Address

Register
Address

Device
Address

Data
2

ACK

29

I
2
C
_
T
R
A
N
;

/
*
s
e
t

t
o

t
r
a
n
s
m
i
t

m
o
d
e

*
/

I
2
C
_
M
_
S
T
A
R
T
;

/
*
s
e
n
d

s
t
a
r
t

*
/

I
2
C
0
-
>
D

=

d
e
v
;

/
*
s
e
n
d

d
e
v

a
d
d
r
e
s
s

*
/

I
2
C
_
W
A
I
T
;

/
*
w
a
i
t

f
o
r

c
o
m
p
l
e
t
i
o
n

*
/

I
2
C
0
-
>
D

=

a
d
d
r
e
s
s
;

/
*
s
e
n
d

r
e
a
d

a
d
d
r
e
s
s

*
/

I
2
C
_
W
A
I
T
;

/
*
w
a
i
t

f
o
r

c
o
m
p
l
e
t
i
o
n

*
/

I
2
C
_
M
_
R
S
T
A
R
T
;

/
*
r
e
p
e
a
t
e
d

s
t
a
r
t

*
/

I
2
C
0
-
>
D

=

(
d
e
v
|
0
x
1
)
;

/
*
s
e
n
d

d
e
v

a
d
d
r
e
s
s

(
r
e
a
d
)

*
/

I
2
C
_
W
A
I
T
;

/
*
w
a
i
t

f
o
r

c
o
m
p
l
e
t
i
o
n

*
/

I
2
C
_
R
E
C
;

/
*
s
e
t

t
o

r
e
c
i
e
v
e

m
o
d
e

*
/

N
A
C
K
;

/
*
s
e
t

N
A
C
K

a
f
t
e
r

r
e
a
d

*
/

d
a
t
a

=

I
2
C
0
-
>
D
;

/
*
d
u
m
m
y

r
e
a
d

*
/

I
2
C
_
W
A
I
T
;

/
*
w
a
i
t

f
o
r

c
o
m
p
l
e
t
i
o
n

*
/

I
2
C
_
M
_
S
T
O
P
;

/
*
s
e
n
d

s
t
o
p
 *
/

d
a
t
a

=

I
2
C
0
-
>
D
;

/
*
r
e
a
d

d
a
t
a
 *
/

I2C Code Close-Up

30

Refine: Accelerometer (with callgraph)

NACKDevice
Address

Register
Address

Device
Address Data 1 Data 2 Data 3 Data 4 Data 5 Data 6

Start ACK Stop
Repeated

Start ACK

A
C
K
;

/
*
A
C
K

a
f
t
e
r

r
e
a
d

*
/

d
a
t
a

=

I
2
C
0
-
>
D
;

/
*
d
u
m
m
y

r
e
a
d

*
/

I
2
C
_
W
A
I
T
;

/
*
w
a
i
t

f
o
r

c
o
m
p
l
e
t
i
o
n

*
/

I
2
C
_
T
R
A
N
;

/
*
s
e
t

t
o

t
r
a
n
s
m
i
t

m
o
d
e

*
/

I
2
C
_
M
_
S
T
A
R
T
;

/
*
s
e
n
d

s
t
a
r
t

*
/

I
2
C
0
-
>
D

=

a
d
d
r
e
s
s
;

/
*
s
e
n
d

r
e
a
d

a
d
d
r
e
s
s

*
/

I
2
C
_
W
A
I
T
;

/
*
w
a
i
t

f
o
r

c
o
m
p
l
e
t
i
o
n

*
/

I
2
C
_
M
_
R
S
T
A
R
T
;

/
*
r
e
p
e
a
t
e
d

s
t
a
r
t

*
/

I
2
C
0
-
>
D

=

(
d
e
v
|
0
x
1
)
;

/
*
s
e
n
d

d
e
v

a
d
d
r
e
s
s

(
r
e
a
d
)

*
/

I
2
C
_
W
A
I
T
;

/
*
w
a
i
t

f
o
r

c
o
m
p
l
e
t
i
o
n

*
/

I
2
C
_
R
E
C
;

/
*
s
e
t

t
o

r
e
c
e
i
v
e

m
o
d
e

*
/

I
2
C
_
M
_
S
T
O
P
;

/
*
s
e
n
d

s
t
o
p

*
/

d
a
t
a

=

I
2
C
0
-
>
D
;

/
*
r
e
a
d

d
a
t
a

*
/

i2c_start() i2c_read_setup(dev, address) i2c_repeated_read(
isLastRead)

I
2
C
0
-
>
D

=

d
e
v
;

/
*
s
e
n
d

d
e
v

a
d
d
r
e
s
s

*
/

I
2
C
_
W
A
I
T
;

/
*
w
a
i
t

f
o
r

c
o
m
p
l
e
t
i
o
n

*
/

I
2
C
_
M
_
S
T
O
P
;

/
*
s
e
n
d

s
t
o
p

*
/

d
a
t
a

=

I
2
C
0
-
>
D
;

/
*
r
e
a
d

d
a
t
a

*
/

31

Refine: Accelerometer (with callgraph)

NACKDevice
Address

Register
Address

Device
Address Data 1 Data 2 Data 3 Data 4 Data 5 Data 6

Start ACK Stop
Repeated

Start ACK

32

Refine: Accelerometer

Accelerometer

X, Y, Z Accelerations

(I2C messages)

Read

Accelerometer
I2C

Peripheral

33

Refine: Accelerometer

▪ How do we trigger the code to run?

▪ Send message to read multiple acceleration bytes

▪ How do we talk to the I2C peripheral?

▪ Examine documentation (KL25Z Ref. Man. Chapter 38)

▪ Byte-oriented protocol. Software must run per byte.

▪ Send start condition, send address byte, wait for ack,
send data byte, wait for ack, etc. …. send stop condition

▪ Does I2C code have any internal delays?

▪ Yes – limited by I2C bus speed

▪ How to implement these delays?

▪ Try to reclaim that idle time? How much is there?

I2C_TRAN; /*set to transmit mode */

I2C_M_START; /*send start */

I2C0->D = dev; /*send dev address */

I2C_WAIT; /*wait for completion */

I2C0->D = address; /*send read address */

I2C_WAIT; /*wait for completion */

I2C_M_RSTART; /*repeated start */

I2C0->D = (dev|0x1); /*send dev address (read) */

I2C_WAIT; /*wait for completion */

I2C_REC; /*set to recieve mode */

NACK; /*set NACK after read */

data = I2C0->D; /*dummy read */

I2C_WAIT; /*wait for completion */

I2C_M_STOP; /*send stop */

data = I2C0->D; /*read data */

Start ACK

NACK

Stop

Device
Address

Register
Address

Data
1

Repeated
Start

Device
Address

Data
2

Data
3

Data
4

Data
5

Data
6

ACK

Accelerometer

X, Y, Z Accelerations

(I2C messages)

Read

Accel.
I2C

Peripheral

34

	Using the RTOS for the Expansion Shield Code_v1
	Using the RTOS for the�Expansion Shield Code
	Overview
	Big Picture: Threads and ISRs So Far
	Shield Software and Hardware Architecture
	Roadmap
	Start-Up
	Roadmap
	Threads: Telling RTOS about the Threads
	Threads: Structure and Behavior
	Threads: Idle Thread
	Roadmap
	Triggering Threads with Event Flags
	Event-Related Code
	Confirm and Evaluate System Behavior and Timing
	Roadmap
	Roadmap
	Roadmap
	Roadmap
	OLD Slides
	Slide 20
	Sequencing Interactions
	Interactions (2)
	Hardware/Software Interactions
	Hardware/Software Interactions
	Evaluating Audio Software and Hardware Options
	Refine: Accelerometer
	Refine: Accelerometer
	Refine: Accelerometer
	I2C Code Close-Up
	Refine: Accelerometer (with callgraph)
	Refine: Accelerometer (with callgraph)
	Refine: Accelerometer
	Refine: Accelerometer
	Slide 34

