
1

Timer Peripherals

2

Timer Peripherals Available

▪ In KL25 MCU

▪ PIT - Periodic Interrupt Timer

▪ Can generate periodically generate interrupts or

trigger DMA (direct memory access) transfers

▪ TPM - Timer/PWM Module

▪ Connected to I/O pins, has input capture and

output compare support

▪ Can generate PWM signals

▪ Can generate interrupts and DMA requests

▪ LPTMR - Low-Power Timer

▪ Can operate as timer or counter in all power

modes (including low-leakage modes)

▪ Can wake up system with interrupt

▪ Can trigger hardware

▪ Real-Time Clock

▪ Driven by external 32.768 kHz crystal

▪ Tracks elapsed time (seconds) in 32-bit register

▪ Can set alarm

▪ Can generate 1Hz output signal and/or interrupt

▪ Can wake up system with interrupt

▪ Watchdog Timer (WDT)

▪ Resets CPU if not refreshed before expiration

▪ Covered in separate slide set

▪ In Cortex-M0+

▪ SysTick – System Tick Timer

▪ Part of CPU core’s peripherals

▪ Can generate periodic interrupt

3

Timer/Counter Peripheral Introduction

▪ Common peripheral for microcontrollers

▪ Based on presettable binary counter,

enhanced with configurability

▪ Two basic modes
▪ Counter mode: count pulses which

indicate events (e.g. odometer pulses)

▪ Timer mode: clock source is periodic, so

counter value is proportional to elapsed

time (e.g. stopwatch)

▪ Main configurable options
▪ Current count value

▪ Count reload value

▪ Count direction: up or down

▪ Counter’s clock source

▪ Counter’s overflow/underflow action
▪ Generate interrupt

▪ Reload counter, resume counting

▪ Toggle hardware output signal

▪ Stop!

Events

Clock

Current Count

Reload Value

Presettable

Binary Counter
÷2 or RS PWM

Interrupt

Reload

or

4

PERIODIC INTERRUPT TIMER

5

Periodic Interrupt Timer

▪ Generates periodic interrupts using a 32-bit

counter

▪ Load start value (32-bit) from LDVAL

▪ Counter decrements with each clock pulse
▪ Fixed clock source for PIT - Bus Clock from

Multipurpose Clock Generator - e.g. 24 MHz

▪ When timer value (CVAL) reaches zero
▪ Generates interrupt

▪ Reloads timer with start value

Clock

Read current timer value (TVL)

from PIT_CVALn

Presettable

Binary Counter
Interrupt

Reload

Start Value

Read/write timer start value (TSV)

from PIT_LDVALn

6

Periodic Interrupt Timer

Code writes

1000 to TSV

Code enables timer, which

loads counter with TSV and

starts counting

TVL

counts

down

When TVL reaches zero,

Hardware generates PIT

interrupt request, reloads

TVL with 1000,

continues counting

Code writes

700 to TSV

PIT interrupt

generated, TVL

reloads with

700, continues

counting

PIT

Interrupt

TSV

PIT interrupt

generated, TVL

reloads with

700, continues

counting

PIT interrupt

generated, TVL

reloads with

700, continues

counting

7

PIT Configuration

▪ 1: Enable clock gating!

▪ SIMCGC6 PIT

▪ 2: Module Control Register (PIT->MCR)

▪ MDIS - Module disable

▪ 0: module enabled

▪ 1: module disabled (clock disabled)

▪ FRZ - Freeze - stops

timers in debug mode

▪ 0: timers run in debug mode

▪ 1: timers are frozen (don’t run) in debug mode

▪ Multiple channels within a PIT

▪ KL25Z has two channels

▪ Can chain timers together to create 64-bit timer

8

Control of Each Timer Channel n

▪ CMSIS Interface:

▪ General PIT settings accessed as struct:

PIT->MCR, etc.

▪ Channels are accessed as an array of structs:

PIT->CHANNEL[n].LDVAL, etc

▪ PIT_LDVALn: Load value

(PIT->CHANNEL[n].LDVAL)

▪ PIT_CVALn: Current value

(PIT->CHANNEL[n].CVAL)

▪ PIT_TCTRLn: Timer control

(PIT->CHANNEL[n].TCTRL)

▪ CHN: Chain

▪ 0: independent timer operation, uses own clock

source

▪ 1: timer n is clocked by underflow of timer n-1

▪ TIE: Timer interrupt enable

▪ 0: Timer will not generate interrupts

▪ 1: Interrupt will be requested on underflow (i.e.

when TIF is set)

▪ TEN: Timer enable

▪ 0: Timer will not count

▪ 1: Timer is enabled, will count

▪ PIT_TFLGn: Timer flags

▪ TIF: Timer interrupt flag

▪ 1: Timeout has occurred

9

Configuring the PIT

▪ Enable clock to PIT module

SIM->SCGC6 |= SIM_SCGC6_PIT_MASK;

▪ Enable module, freeze timers in debug mode

PIT->MCR &= ~PIT_MCR_MDIS_MASK;

PIT->MCR |= PIT_MCR_FRZ_MASK;

▪ Initialize PIT0 to count down from starting_value

PIT->CHANNEL[0].LDVAL = PIT_LDVAL_TSV(starting_value);

▪ No chaining of timers

PIT->CHANNEL[0].TCTRL &= ~PIT_TCTRL_CHN_MASK;

10

Calculating Load Value

▪ Goal: generate an interrupt every T seconds

▪ LDV = round(T*fcount - 1)

▪ -1 since the counter counts down to 0

▪ Round since LDV register is an integer, not a real number

▪ Rounding provides closest integer to desired value, resulting in minimum timing error

▪ Example: Interrupt every 137.41 ms

▪ LDV = 137.41 ms * 24 MHz - 1 = 3297839

▪ Example: Interrupt with a frequency of 91 Hz

▪ LDV = (1/91 Hz)*24 MHz - 1 = round (263735.2637-1) = 263734

11

Configuring the PIT and NVIC for Interrupts

▪ Configure PIT

▪ Let the PIT channel generate interrupt requests

PIT->CHANNEL[0].TCTRL |= PIT_TCTRL_TIE_MASK;

▪ Configure NVIC

▪ Set PIT IRQ priority

NVIC_SetPriority(PIT_IRQn, 128); // 0, 64, 128 or 192

▪ Clear any pending IRQ from PIT

NVIC_ClearPendingIRQ(PIT_IRQn);

▪ Enable the PIT interrupt in the NVIC

NVIC_EnableIRQ(PIT_IRQn);

▪ Make sure interrupts are not masked globally

__enable_irq();

12

Interrupt Handler

▪ One interrupt for entire PIT

▪ CMSIS ISR name: PIT_IRQHandler

▪ ISR activities

▪ Determine which channel triggered interrupt

if (PIT->CHANNEL[n].TFLG & PIT_TFLG_TIF_MASK) {

▪ Clear interrupt request flag for channel by writing one to it

PIT->CHANNEL[0].TFLG |= PIT_TFLG_TIF_MASK;

▪ Do the ISR’s work

13

Starting and Stopping the Timer Channel

▪ Start the timer channel

PIT->CHANNEL[0].TCTRL |= PIT_TCTRL_TEN_MASK;

▪ Stop the timer channel

PIT->CHANNEL[0].TCTRL &= ~PIT_TCTRL_TEN_MASK;

14

Example: Stopwatch

▪ Measure time with 100 us resolution

▪ Display elapsed time, updating screen every 10 ms

▪ Controls

▪ S1: toggle start/stop

▪ Use PIT

▪ Counter increment every 100 us

▪ Set to PIT Channel 0 to expire every 100 us

▪ Calculate load value LDVAL = round (100 us * 24 MHz -1) = 2399

▪ LCD Update every 10 ms

▪ Update LCD every nth PIT ISR

▪ n = 10 ms/100us = 100

▪ Don’t update LCD in ISR! Too slow.

▪ Instead set flag LCD_Update in ISR, poll it in main loop

15

TIMER/PWM MODULE (TPM)

16

TPM - Timer/PWM Module
▪ Core: Module counter

▪ Two clock options - external or internal

▪ Prescaler to divide clock by 1 to 128

▪ 16-bit counter

▪ Can count up or up/down

▪ Can reload with set load value or wrap around

(to FFFF or 0000)

▪ Multiple (6) independent channels

▪ 3 modes

▪ Capture Mode: capture timer’s value when input

signal changes

▪ Output Compare: Change output signal when

timer reaches certain value

▪ PWM: Generate pulse-width-modulated signal.

Width of pulse is proportional to specified value.

▪ Each channel can generate interrupt, DMA

request, hardware trigger on overflow

▪ One I/O pin per channel: TPM_CHn

17

Timer Configuration

▪ Clock source

▪ CMOD: selects internal or external clock

▪ Prescaler

▪ PS: divide selected clock by 1, 2, 4, 8, 16, 32,64, 128

▪ Count Mode: direction

▪ CPWMS: count up (0) or up & down (1)

▪ Count Modulus: value to counts up to

▪ MOD: 16-bit

▪ Timer overflows when counter goes past MOD value

▪ Up counting: 0, 1, 2, … MOD, 0/Overflow, 1, 2, …

MOD

▪ Up/down counting: 0, 1, 2, … MOD, MOD-1/Interrupt,

MOD-2, … 2, 1, 0, 1, 2, …

▪ DMA: Enable DMA transfer on overflow

▪ TOF: Flag indicating timer has overflowed

18

Basic Counter Mode

▪ Count external events applied on input pin

▪ Set CMOD = 01 to select external clock

▪ Set PS = 000 (unless division needed

▪ Timer overflow flag TOF set to 1 upon receiving

MOD * prescaler pulses

▪ Can generate interrupt if TOIE is set

2-0 PS Prescaler Factor

000 1

001 2

010 4

011 8

100 16

101 32

110 64

111 128

19

Count Mode and Modulo - Counting Up

▪ Counter increments with each clock tick

▪ When counter reaches MOD,

▪ set TOF bit (timer overflow)

▪ reset counter value to 0

▪ Frequency of overflows is timer clock

frequency / (1 + MOD)

20

Count Mode and Modulo - Counting Up and Down

▪ Up-counting phase

▪ Counter increments with each clock tick

▪ When counter reaches MOD, set TOF bit (timer

overflow), set to down-count mode

▪ Down-counting phase

▪ Counter decrements with each clock tick

▪ When counter reaches 0, set to up-count mode

▪ Frequency of overflows is timer clock frequency /

(2 * MOD)

21

TPM Configuration (TPMx_CONF)

▪ TRGSEL - input trigger select

▪ CROT - counter reload on trigger

▪ CSOO - counter stop on overflow

▪ CSOT - counter start on trigger

▪ GTBEEN - external global time base enable (rather than LPTPM counter)

▪ DBGMODE - let LPTPM counter increment during debug mode

▪ DOZEEN - pause LPTPM when in doze mode

22

TPM Status (TPMx_STATUS)

▪ TOF - Counter has overflowed

▪ CHxF - Channel event has occurred (event depends on mode)

23

Major Channel Modes

▪ Input Capture Mode

▪ Capture timer’s value when input signal changes

▪ Rising edge, falling edge, both

▪ How long after I started the timer did the input change?

▪ Measure time delay

▪ Output Compare Mode

▪ Modify output signal when timer reaches specified value

▪ Set, clear, pulse, toggle (invert)

▪ Make a pulse of specified width

▪ Make a pulse after specified delay

▪ Pulse Width Modulation

▪ Make a series of pulses of specified width and frequency

24

Channel Configuration and Value
▪ Configuration: TPMx_CnSC

▪ CHF - set when event occurs

▪ CHIE - enable channel to generate an interrupt

▪ MSB:MSA - mode select

▪ ELSB:ELSA - edge or level select

▪ DMA - enable DMA transfers

▪ Value: TPMx_CnV

▪ 16-bit value for output compare or input capture

25

Input Capture Mode

▪ Select mode with CPWMS = 0,

MSnB:MSnA = 00

▪ TPM_CHn I/O pin operates as edge-

sensitive input

▪ ELSnB:ELSnA select rising (01) or

falling edge (10) or both (11)

▪ When valid edge is detected on TPM_CHn…

▪ Current value of counter is stored in CnV

▪ Interrupt is enabled (if CHnIE = 1)

▪ CHnF flag is set (after 3 clock delay) TPM_CHn

CnV initialized value 3

26

Wind Speed Indicator (Anemometer)
▪ Rotational speed (and pulse frequency) is proportional

to wind velocity

▪ Two measurement options:

▪ Frequency (best for high speeds)

▪ Width (best for low speeds)

▪ Can solve for wind velocity v

▪ How can we use the TPM for this?

▪ Use Input Capture Mode to measure period of input

signal

𝑣𝑤𝑖𝑛𝑑 =
𝐾 ∗ 𝑓𝑐𝑙𝑘

𝑇𝑎𝑛𝑒𝑚𝑜𝑚𝑒𝑡𝑒𝑟

27

TPM Capture Mode for Anemometer

▪ Configuration

▪ Set up TPM to count at given speed from internal clock

▪ Set up TPM channel for input capture on rising edge

▪ Operation: Repeat

▪ First TPM interrupt - on rising edge

▪ Reconfigure channel for input capture on falling edge

▪ Clear TPM counter, start it counting

▪ Second TPM interrupt - on falling edge

▪ Read capture value from CnV, save for later use in wind speed calculation

▪ Reconfigure channel for input capture on rising edge

▪ Clear TPM counter, start it counting

28

Creating PWM with Output Compare Mode

▪ Basic idea

▪ Set PWM output to 1 when counter starts (e.g. at 0)

▪ Clear PWM output to 0 when counter reaches channel’s specified compare value (e.g. 3)

▪ Resulting pulse width is proportional to channel’s compare value

Compare
Value is 3

Output Signal

29

Output Compare Mode

MSnB ELSnB ELSnA Output Action

0 0 1 Toggle

0 0 0 Clear

0 1 1 Set

1 1 0 Pulse low

1 x 1 Pulse high

Events

CNT 5 0 1 2 3 4 5 0 1 2 3

CnV 2 2 2 2 2 2 2 2 2 2 2

TPM_CHn

CHnF 0 0 0 1 1 1 1 1 1 1 1

▪ Select mode with CPWMS = 0, MSnA = 1

▪ TPM_CHn I/O pin operates as output

▪ When CNT matches CnV …

▪ Output signal TPM_CHn is updated

▪ CHnF flag is set

▪ CHnI Interrupt is enabled (if CHnIE = 1)

▪ Can select one of multiple output signal

actions on match

▪ Toggle, clear, set, pulse low, pulse high

30

Pulse-Width Modulation

▪ Allows a single digital signal to send more
than two values (0, 1)

▪ Simple encoding: value is the fraction of time
signal is a 1

▪ Signal can easily be averaged to create an
analog voltage

▪ PWM signal characteristics

▪ Modulation frequency – how many
pulses occur per second (fixed)

▪ Period – 1/(modulation frequency)

▪ On-time – amount of time that each
pulse is on (asserted)

▪ Duty-cycle – on-time/period

▪ Adjust on-time (hence duty cycle) to
represent the analog value

31

Uses of Pulse-Width Modulation

▪ Digital communication is less sensitive to noise than analog methods

▪ PWM provides a digital encoding of an analog value

▪ Much less vulnerable to noise

▪ Digital power amplifiers are more efficient and less expensive than analog

power amplifiers

▪ Applications: motor speed control, light dimmer, switch-mode power conversion

▪ Load (motor, light, etc.) responds slowly, averages PWM signal

32

Edge-Aligned PWM Mode

▪ Edge-aligned - leading edges of signals from all PWM channels are aligned

▪ Uses count up mode

▪ Period = (MOD + 1) cycles

▪ Pulse width = (CnV) cycles

▪ MSnB:MSnA = 01, CPWMS = 0

▪ ELSnB:ELSnA = 10 - high-true pulses

▪ ELSnB:ELSnA = x1 - low-true pulses

33

Center-Aligned PWM Mode

▪ Center-aligned - centers of signals from all PWM channels are aligned

▪ Uses count up/down mode

▪ Period = 2*MOD cycles. 0x0001 <= MOD <= 0x7FFFF

▪ Pulse width = 2*CnV cycles

▪ MSnB:MSnA = 10, CPWMS = 1

▪ ELSnB:ELSnA = 10 - high-true pulses

▪ ELSnB:ELSnA = x1 - low-true pulses

34

Servo Motor

▪ Components

▪ Motor

▪ Gearbox

▪ Output shaft with crown and position sensor

▪ Control system

▪ Inputs

▪ Power & Ground

▪ PWM control signal

▪ Control system

▪ Moves motor to commanded position

▪ Uses position sensor for feedback

▪ Gearing from motor to output shaft

▪ Increases torque, reduces speed

▪ Limited range of rotation (e.g. 90⁰), can’t do

full rotation

Controller Motor

Gearbox

Pos. Sensor

Arms/Crown

Commanded
Position

Actual
Position

35

Using PWM to Drive a Servo Motor

▪ PWM signal tells servo desired shaft angle

▪ 20 ms period (50 Hz frequency)

▪ 1 to 2 ms pulse width

▪ Position proportional to pulse width

▪ 1.5 ms: centered (neutral)

▪ <1.5 ms: counter-clockwise

▪ >1.5 ms: clockwise

36

LOW POWER TIMER (LPTMR)

37

LPTMR Overview

▪ 16 bit up-counter which operates in all

power modes (stop, wait, etc.)

▪ Can count time or external pulses

▪ Glitch filter removes high-frequency noise

from pulses

▪ Can generate interrupt when counter

matches compare value

▪ Interrupt wakes MCU from any low power

mode

▪ Registers

▪ Counter register LPTMRx_CNR

▪ Compare register LPTRMx_CMR

▪ Prescale register LPTMRx_PSR

▪ Control Status register LPTMRx_CSR

Prescaler/
Glitch Filter

16-bit Counter
CNR

Compare Value
CMR

Comparator
LPTMR Interrupt and

Hardware Trigger

38

Prescale Register

▪ PRESCALE: divide by 2 to 65536

▪ Time counter mode: Divide input clock by

2PRESCALE+1

▪ Pulse counter mode: Is glitch filter which

recognizes input signal change after

2PRESCALE rising clock cycles

▪ PBYP: Prescaler Bypass

▪ 0: use prescaler

▪ 1: bypass prescaler

▪ PCS: Prescaler Count Select

▪ Inputs available depend on chip configuration,

see KL25 SRM Chapter 3: Chip Configuration

PCS Clock Source
00 MCGIRCLK — internal reference clock (not available

in LLS and VLLS modes)
01 LPO — 1 kHz clock (not available in VLLS0 mode)

10 ERCLK32K (not available in VLLS0 mode when using
32 kHz oscillator)

11 OSCERCLK — external reference clock (not available
in VLLS0 mode)

39

Control Status Register

▪ TCF: Timer Compare Flag
▪ 1 if CNR matches CMR and increments

▪ TIE: Timer Interrupt Enable
▪ Set to 1 to enable interrupt when TCF == 1

▪ TPS: Timer Pin Select for pulse counter mode
▪ Inputs available depend on chip configuration, see KL25 SRM Chapter 3: Chip Configuration

40

Control Status Register

▪ TPP: Timer Pin Polarity
▪ 0: input is active high, increments CNR on rising edge

▪ 1: input is active low, increments CNR on falling edge

▪ TFC: Timer Free-running Counter
▪ 0: Reset CNR whenever TCF is set (on match)

▪ 1: Reset CNR on overflow (wrap around)

▪ TMS: Timer Mode Select

▪ 0: Time counter

▪ 1: Pulse counter

▪ TEN: Timer Enable

▪ 1: Enable LPTMR operation

	Slide 1: Timer Peripherals
	Slide 2: Timer Peripherals Available
	Slide 3: Timer/Counter Peripheral Introduction
	Slide 4: Periodic Interrupt Timer
	Slide 5: Periodic Interrupt Timer
	Slide 6: Periodic Interrupt Timer
	Slide 7: PIT Configuration
	Slide 8: Control of Each Timer Channel n
	Slide 9: Configuring the PIT
	Slide 10: Calculating Load Value
	Slide 11: Configuring the PIT and NVIC for Interrupts
	Slide 12: Interrupt Handler
	Slide 13: Starting and Stopping the Timer Channel
	Slide 14: Example: Stopwatch
	Slide 15: Timer/PWM Module (TPM)
	Slide 16: TPM - Timer/PWM Module
	Slide 17: Timer Configuration
	Slide 18: Basic Counter Mode
	Slide 19: Count Mode and Modulo - Counting Up
	Slide 20: Count Mode and Modulo - Counting Up and Down
	Slide 21: TPM Configuration (TPMx_CONF)
	Slide 22: TPM Status (TPMx_STATUS)
	Slide 23: Major Channel Modes
	Slide 24: Channel Configuration and Value
	Slide 25: Input Capture Mode
	Slide 26: Wind Speed Indicator (Anemometer)
	Slide 27: TPM Capture Mode for Anemometer
	Slide 28: Creating PWM with Output Compare Mode
	Slide 29: Output Compare Mode
	Slide 30: Pulse-Width Modulation
	Slide 31: Uses of Pulse-Width Modulation
	Slide 32: Edge-Aligned PWM Mode
	Slide 33: Center-Aligned PWM Mode
	Slide 34: Servo Motor
	Slide 35: Using PWM to Drive a Servo Motor
	Slide 36: Low Power Timer (LPTMR)
	Slide 37: LPTMR Overview
	Slide 38: Prescale Register
	Slide 39: Control Status Register
	Slide 40: Control Status Register

