NC STATE UNIVERSITY

Timer Peripherals

Timer Peripherals Available NC STATE UNIVERSITY

= |In KL25 MCU = Real-Time Clock

* PIT - Periodic Interrupt Timer = Driven by external 32.768 kHz crystal

= Can generate periodically generate interrupts or = Tracks elapsed time (seconds) in 32-bit register

trigger DMA (direct memory access) transfers = Can setalarm
« TPM -Timer/PWM Module = Can generate |Hz output signal and/or interrupt
= Connected to I/O pins, has input capture and * Can wake up system with interrupt
output compare support = Woatchdog Timer (WDT)
* Can generate PWM signals = Resets CPU if not refreshed before expiration
= Can generate interrupts and DMA requests = Covered in separate slide set
= LPTMR - Low-Power Timer
= Can operate as timer or counter in all power = |n Cortex-MO0+

modes (including low-leakage modes)

= Can wake up system with interrupt = SysTick — System Tick Timer

= Can trigger hardware = Part of CPU core’s peripherals

= Can generate periodic interrupt

Timer/Counter Peripheral Introduction NC STATE UNIVERSITY

W\ oes | eol 10\
Events Reload Value) ﬁo CDNFUW;
J U] \ oLy T
7ﬂ=—l {» -_(F_J\—L
or « Presettable | > PWM

»;

Clock Binary Counter

-======b [nterrupt

Current Count

= Common peripheral for microcontrollers = Main configurable options
= Based on presettable binary counter, * Current count value

enhanced with configurability * Count reload value
= Count direction: up or down

. = Counter’s clock source
= Two basic modes = Counter’s overflow/underflow action

= Counter mode: count pulses which = Generate interrupt
indicate events (e.g. odometer pulses) * Reload counter, resume counting
= Timer mode: clock source is periodic, so ;rogg:e hardware output signal
counter value is proportional to elapsed top”

time (e.g. stopwatch)

NC STATE UNIVERSITY

PERIODIC INTERRUPT TIMER

Periodic Interrupt Timer NC STATE UNIVERSITY

Read/write timer start value (TSV)
from PIT_LDVALn

= Generates periodic interrupts using a 32-bit

Load start value (32-bit) from LDVAL
Counter decrements with each clock pulse

Clock :
. s Interrupt = Fixed clock source for PIT - Bus Clock from
M””””””m Binary Counter Multipurpose Clock Generator - e.g.24 MHz

When timer value (CVAL) reaches zero
= Generates interrupt

Read current timer value (TVL)
from PIT_CVALnN = Reloads timer with start value

Periodic Interrupt Timer NC STATE UNIVERSITY

Code enables timer, which Code writes

loads counter with TSV and
: 700 to TSV
Code writes starts counting
1000 to TSV \
TSV l
7
d
TVL When TVL reaches zero, PIT interrupt
counts Hardware generates PIT generated, TVL
down interrupt request, reloads reloads with
TVL with 1000, 700, continues
continues counting counting
PIT

Interrupt

PIT Configuration NC STATE UNIVERSITY

= |: Enable clock gating! pIT

= SIMCGC6 PIT Peripheral
bus PIT

= 2:Module Control Register (PIT->MCR) registers
= MDIS - Module disable oA YELe | Timer

= (0: module enabled Interrupts

= |: module disabled (clock disabled)

= FRZ - Freeze - stops
timers in debug mode

1

Triggers

= 0:timers run in debug mode —
= |:timers are frozen (don’t run) in debug mode I

Peripheral

= Multiple channels within a PIT bus clock |
= KL25Z has two channels

= Can chain timers together to create 64-bit timer

Timer n

Control of Each Timer Channel n NC STATE UNIVERSITY

= CMSIS Interface: = |:timer n is clocked by underflow of timer n-|
= General PIT settings accessed as struct: * TIE:Timer interrupt enable
PIT->MCR, etc. = 0O:Timer will not generate interrupts
= Channels are accessed as an array of structs:) Izr:nte_;’_';gl?t will be requested on underflow (i.e.
PIT->CHANNEL[n].LDVAL, etc when TIF is set)

= TEN:Timer enable

= 0:Timer will not count

= PIT_LDVALn: Load value
(PIT->CHANNEL[n].LDVAL)

= |:Timer is enabled, will count

- PIT_CVALn Current value = PIT TFLGn:Timer ﬂags
(PIT->CHANNEL[n].CVAL) = TIF:Timer interrupt flag
= PIT_TCTRLn:Timer control = |:Timeout has occurred
(PIT->CHANNEL[n]. TCTRL)
= CHN: Chain

= 0:independent timer operation, uses own clock
source

Configuring the PIT

Enable clock to PIT module
SIM->SCGC6 |= SIM_SCGC6_PIT_MASK;

Enable module, freeze timers in debug mode
PIT->MCR &= ~PIT_MCR_MDIS_MASK;
PIT->MCR |= PIT_MCR_FRZ_MASK;

Initialize PITO to count down from starting_value
PIT->CHANNEL[O] .LDVAL = PIT_LDVAL_TSV(starting_value);

No chaining of timers
PIT->CHANNEL[O] .TCTRL &= ~PIT_TCTRL_CHN_MASK;

NC STATE UNIVERSITY

Calculating Load Value NC STATE UNIVERSITY

= Goal: generate an interrupt every T seconds
= LDV = round(T*f__ .- |)

= -] since the counter counts down to 0

= Round since LDV register is an integer, not a real number
= Rounding provides closest integer to desired value, resulting in minimum timing error
= Example: Interrupt every 137.41 ms
= LDV = 13741 ms *24 MHz - | = 3297839

= Example: Interrupt with a frequency of 91 Hz
= LDV = (1/91 Hz)*24 MHz - | = round (263735.2637-1) = 263734

Configuring the PIT and NVIC for Interrupts

= Configure PIT

= Let the PIT channel generate interrupt requests
PIT->CHANNEL[O] .TCTRL |= PIT_TCTRL_TIE_MASK;

= Configure NVIC
= Set PIT IRQ priority
NVIC_SetPriority(PIT_IRQn, 128); // 0, 64, 128 or 192
= Clear any pending IRQ from PIT
NVIC_ClearPendingIRQ(PIT_IRQn);
= Enable the PIT interrupt in the NVIC
NVIC_Enabl1eIRQ(PIT_IRQn);

= Make sure interrupts are not masked globally
__enable_1rqQ);

Interrupt Handler NC STATE UNIVERSITY

= One interrupt for entire PIT

= CMSIS ISR name: PIT _IRQHandler

= ISR activities
= Determine which channel triggered interrupt
1T (PIT->CHANNEL[Nn].TFLG & PIT_TFLG_TIF_MASK) {
= Clear interrupt request flag for channel by writing one to it
PIT->CHANNEL[O] .TFLG |= PIT_TFLG_TIF_MASK;
= Do the ISR’s work

Starting and Stopping the Timer Channel NC STATE UNIVERSITY

= Start the timer channel
PIT—>CHANNEL[O].TCTRL |= PIT_TCTRL_TEN_MASK;

= Stop the timer channel
PIT->CHANNEL[O].TCTRL &= ~PIT_TCTRL_TEN_MASK;

Example: Stopwatch NC STATE UNIVERSITY

= Measure time with 100 us resolution

= Display elapsed time, updating screen every 10 ms

= Controls
= Sl:toggle start/stop

= Use PIT

= Counter increment every 100 us

= Set to PIT Channel 0 to expire every 100 us

= Calculate load value LDVAL = round (100 us * 24 MHz -1) = 2399
= LCD Update every 10 ms

= Update LCD every nth PIT ISR

= n= 10 ms/100us = 100

= Don’t update LCD in ISR! Too slow.

* Instead set flag LCD_Update in ISR, poll it in main loop

NC STATE UNIVERSITY

TIMER/PWM MODULE (TPM)

TPM - Timer/PWM Module

CMOD
= Core: Module counter [owon |
no clock selected
. . (counter disable) O
= Two clock options - external or internal module clock o \é
= Prescaler to divide clock by | to 128 extemal clock——————| synchronizer o i prescaler
(1.2,4,8,16, 32, 64 or 128) “
; i
| 6-bit counter \ N
= Can count up or up/down I e S N S Y
= Can reload with set load value or wrap around Module counter timer overiow
(to FFFF or 0000)
. . Channel 0
] MSOB:MS0A
Multiple (6) independent channels MSOBMSOA qnmm
. 3 modes > CHOF interrupt
| | c 1
= Capture Mode: capture timer’s value when input channel 0 __gp e tore ‘é g}% output modes logic
. P e mode logic i i i - h 10
signal changes e oCimut compare. EPWM and CPYM modes) Foiput signal
= Qutput Compare: Change output signal when ;
timer reaches certain value PO
)) L MSNB:MSNA annel N
= PWM: Generate pulse-width-modulated signal. ELSNBELSNA T, chamel N
. . . . interrup
Width of pulse is proportional to specified value L e
= Each channel can generate interrupt, DMA channel N Lyl input capturs |——, output modes logic
. mode logic ChV > (generation of channel N outputs signals in —Hp channel N
request, hardware trigger on overflow e output compare, EPWM and CPWM modes) output signal

= One I/O pin per channel: TPM_CHn

Timer Configuration

no clock selected
(counter disable)

module clock

CMOD I

NC STATE UNIVERSITY

external clock

= Clock source

>

synchronizer

¢

1Module counter

O
O E
o prescaler
*(1,2,4, 8,16, 32, 64 or 128) \‘
TOIE R > timer overflow
») interrupt
I MOD TOF S P

= CMOD:selects internal or external clock

= Prescaler

= PS:divide selected clock by 1,2,4,8, 16, 32,64, 128

= Count Mode: direction

= CPWMS: count up (0) or up & down (1)

= Count Modulus: value to counts up to
= MOD: | 6-bit
= Timer overflows when counter goes past MOD value

= Up counting: 0, |, 2, ... MOD, 0/Overflow, 1,2, ...
MOD

= Up/down counting: 0, I, 2, ... MOD, MOD-I/Interrupt,
MOD-2,... 2, 1,0, 1,2,...

= DMA: Enable DMA transfer on overflow
= TOF: Flag indicating timer has overflowed

Basic Counter Mode NC STATE UNIVERSITY

CMOD
no clock selected
(counter disable) O
module clock O \'O
external clock | synchronizer O prescaler
*(1,2, 4,8, 16, 32, 64 or 128) 5‘

¢

1Module counter TOIE TN :
— 100 = > et
- L

= Count external events applied on input pin 2-0PS Prescaler Factor

= Set CMOD =01 to select external clock gg? ;

= Set PS = 000 (unless division needed 010 4

= Timer overflow flag TOF set to | upon receiving 011 8
MOD ** prescaler pulses 100 16
= Can generate interrupt if TOIE is set 101 32
110 64

111 128

Count Mode and Modulo - Counting Up NC STATE UNIVERSITY

MOD = O OO04
timer module countar 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2
1 1 | 1
TOF bit ! ; :
setTOF bit | st TOF bit sat.tDF it
1 | f .
1 “1
1
— : 3
2 _
(] —
O 1 '
vl—! |
pericd of timer module counter clock

1
e -
period of counting = (MOD + Ox0001) x pericd of imer module counter clock

Figure 31-79. Example of TPM Up Counting

= Counter increments with each clock tick = Frequency of overflows is timer clock

= When counter reaches MOD, frequency / (1 + MOD)
= set TOF bit (timer overflow)
= reset counter value to 0

Count Mode and Modulo - Counting Up and Down NC STATE UNIVERSITY

MOD = Ox0004
Timermodulecountar [Q| 4| 2|3 (4| 3|2(1|0o|1]|2|2|4|23|2|(1|0|1|2]|3|4

TOF bi |

period of imer module counter clock —»
period of counting = 2 x MOD x period of timer module countar clock

Figure 31-80. Example of Up-Down Counting

= Up-counting phase = Down-counting phase
= Counter increments with each clock tick = Counter decrements with each clock tick
= When counter reaches MOD, set TOF bit (timer * When counter reaches 0, set to up-count mode
overflow), set to down-count mode = Frequency of overflows is timer clock frequency /

(2 * MOD)

20

TPM Configuration (TPMx_CONF)

Bit]| 30 24 | 23 2 | 20 18 18 7 16

A i 0
TRGSEL
W

Reasot 0 0 0 0 0 0 0 1] 0

CROT
Cs00
CsOT

o
=
=
=]
=

m

Elit 15 14 13 12 1 10 | T &

R

DBGMODE
W

o| GTBEEN |= o
o DOZEEM | e o

0

=]

Reasat] 0 0 0 0 0

= TRGSEL - input trigger select

= CROT - counter reload on trigger

= CSOQO - counter stop on overflow

= CSOT - counter start on trigger

= GTBEEN - external global time base enable (rather than LPTPM counter)
= DBGMODE - let LPTPM counter increment during debug mode

= DOZEEN - pause LPTPM when in doze mode

21

TPM Status (TPMx_STATUS)

22

=]

TOF
=

CHEF
CHA4F &
CHAF
CH2F [rs
CH1F
CHOF

wic | wic | wic | wic | wic | wic

= TOF - Counter has overflowed

= CHxF - Channel event has occurred (event depends on mode)

NC STATE UNIVERSITY

Major Channel Modes

= |nput Capture Mode
= Capture timer’s value when input signal changes
= Rising edge, falling edge, both
= How long after | started the timer did the input change?

= Measure time delay

= Output Compare Mode
= Modify output signal when timer reaches specified value
= Set, clear, pulse, toggle (invert)
= Make a pulse of specified width
= Make a pulse after specified delay

= Pulse Width Modulation

= Make a series of pulses of specified width and frequency

23

NC STATE UNIVERSITY

Channel Configuration and Value NC STATE UNIVERSITY

= Configuration: TPMx_CnSC

7 6 5 4 3 2 1 0
CHF

CHIE | MSB | MSA | ELSBE
wic

0 0 0 0 0

= CHF - set when event occurs

= CHIE - enable channel to generate an interrupt
= MSB:MSA - mode select

= ELSB:ELSA - edge or level select
= DMA - enable DMA transfers

= Value:TPMx_CnV

= | 6-bit value for output compare or input capture

24

Input Capture Mode NC STATE UNIVERSITY

= Select mode with CPWMS = 0,

MDD = OO0
MSnB:MSnA = 00 Bl LT L LT L B L
= TPM_CHn I/O pin operates as edge- TOF bt |
sensitive input EJDF mi |t'|:x:

= ELSnB:ELSnA select rising (0l) or I
falling edge (10) or both (11) —

= When valid edge is detected on TPM_CHn... - D

. . nerod of Hmer module counder clock :
= Current value of counter is stored in CnV § ¥

" |nterr‘upt is enabled (if CHnIE - I) period of countng = (RSO0 + OxD00A b x perdod of dmer fpogqule courtar Ciock
= CHnF flag is set (after 3 clock delay)

v

CnV initialized value 3

10Q!

TPM_CHn

25

Wind Speed Indicator (Anemometer)

26

Rotational speed (and pulse frequency) is proportional
to wind velocity

Two measurement options:
= Frequency (best for high speeds)
= Width (best for low speeds)

Can solve for wind velocity v

. K+ fux
wind —
Tanemometer

How can we use the TPM for this?

= Use Input Capture Mode to measure period of input
signal

NC STATE UNIVERSITY

- Fleek

TPM Capture Mode for Anemometer NC STATE UNIVERSITY

= Configuration
= Set up TPM to count at given speed from internal clock
= Set up TPM channel for input capture on rising edge

= Operation: Repeat

= First TPM interrupt - on rising edge
= Reconfigure channel for input capture on falling edge
= Clear TPM counter, start it counting

= Second TPM interrupt - on falling edge
= Read capture value from CnV, save for later use in wind speed calculation
= Reconfigure channel for input capture on rising edge
= Clear TPM counter, start it counting

27

Creating PWM with Output Compare Mode IakMalSISIA
:ﬂi;ﬁlﬁ;untar 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2
E.EIIII'DF bit ; EET'?;_'DF kit E-Elt: OF bit
Compare _ . 4 F |
Value is 3 | —
Output Signal r] ‘ ‘ r
= Basic idea

= Set PWM output to | when counter starts (e.g. at 0)
= Clear PWM output to 0 when counter reaches channel’s specified compare value (e.g. 3)

= Resulting pulse width is proportional to channel’s compare value

28

Output Compare Mode NC STATE UNIVERSITY

Events
CNT 5 0 I 2 3 4 5 o0 I 2 3 0 0 1 Toggle
ChV 2 2 2 2 2 2 2 2 2 2 2 0 0 0 Clear
TPM CH 0 1 1 Set

—=n I 1 1 0 Pulse low

= Select mode with CPWMS =0, MSnA = |
. counter channel (n counter channel (n counter

o TPM_CHI’] /O pIin operates as output overflow mitch() overflow match() overflow
= When CNT matches CnV ... ot T ol T2l 2 slo 7 T3l a5 10T

= Output signal TPM_CHn is updated (n) output |_previousvaiie | |

= CHnF f|ag IS set CHnF bit | previous value |

= CHnl Interrupt is enabled (if CHnIE = 1) TOF bit

= Can select one of multiple output signal
actions on match

» = Toggle, clear set, pulse low, pulse high

Pulse-Width Modulation OGS IR

: o p .
= Allows a single digital signal to send more e Off = Low Leval

than two values (0, I) 10%
= Simple encoding: value is the fraction of time ﬂ‘ H H H

signal is a |
= Signal can easily be averaged to create an . g
analog voltage 1

50%

= PWM signal characteristics Ji ‘

= Modulation frequency — how many .
pulses occur per second (fixed)

= Period — |/(modulation frequency) 90%
= On-time — amount of time that each J M

pulse is on (asserted)

——
E—

= Duty-cycle — on-time/period
= Adjust on-time (hence duty cycle) to
represent the analog value

30

Uses of Pulse-Width Modulation NC STATE UNIVERSITY

= Digital communication is less sensitive to noise than analog methods
= PWM provides a digital encoding of an analog value
* Much less vulnerable to noise
= Digital power amplifiers are more efficient and less expensive than analog
power amplifiers
= Applications: motor speed control, light dimmer, switch-mode power conversion

= Load (motor, light, etc.) responds slowly, averages PVWM signal

31

Edge-Aligned PWM Mode

NC STATE UNIVERSITY

counter overflow counter overflow counter overflow
o |- pe riod P |-t - |
€ pulse .
width
Y 4
channel (n) output

«——l channel (n) mat::l{n

channel (n) m@wnel (n) match

= Edge-aligned - leading edges of signals from all PWM channels are aligned

= Uses count up mode
= Period = (MOD + 1) cycles
= Pulse width = (CnV) cycles
= MShB:MShA =01, CPWMS =0
= ELSnB:ELSnA = 10 - high-true pulses
= ELSnB:ELSnA = xI - low-true pulses

32

oY T

Chl T

S

Center-Alignhed PWM Mode

timer module counter =0

counter overflow _channel (n) match channel (n) match counter overflow
timer module counter = (timer n_mdule counting | (timer quule counting timer module counter =
MOD is down) is up) MOD
\J ¥ \j
1" T
channel (n) output
€— pulse width —»

b — 1.
< period

- \X (2 X DD —

= Center-aligned - centers of signals from all PWM channels are aligned

= Uses count up/down mode

= Period = 2*MOD cycles. 0x000| <= MOD <= 0x7FFFF -
= Pulse width = 2*CnV cycles -’—& ; L

= MSnB:MSnA = 10, CPWMS = | Ml T

= ELSnB:ELSnA = 10 - high-true pulses
= ELSnB:ELSnA = x| - low-true pulses

Servo Motor NC STATE UNIVERSITY

Actual
Position

Commanded
Position

Controller

= Components = Control system
= Motor = Moves motor to commanded position
= Gearbox = Uses position sensor for feedback
= Output shaft with crown and position sensor = Gearing from motor to output shaft
* Control system = Increases torque, reduces speed
* Inputs = Limited range of rotation (e.g. 90°), can’t do
= Power & Ground full rotation

= PWM control signal

34

Using PWM to Drive a Servo Motor NC STATE UNIVERSITY

= PWM signal tells servo desired shaft angle
= 20 ms period (50 Hz frequency)

%Pouer Motor Pouwer

Pulse-width

. Modul ated
<, Vin <analag) Micro- Output Serva

R< controller Motor

= | to 2 ms pulse width

= Position proportional to pulse width

= |.5 ms: centered (neutral) v v

= <|.5 ms: counter-clockwise RIGOL STOP (R furner e | F @ 3.89U

: v
= >|.5 ms:clockwise

Lmax(11="5 .63 +ilidill =1.&088m=s

MIEER 1.56 Time 5.008ms 042 .456ms

35

NC STATE UNIVERSITY

LOW POWERTIMER (LPTMR)

LPTMR Overview NC STATE UNIVERSITY

MCGIRCLK —*—\
\ PO — Prescaler/ 16-bit Counter

ERCLKIZK Glitch Filter CNR

OSCERCLK ——

LPO

RTC_CLKIN E—>

OSC32KCLK

SIM_SOPT1[OSC32KSEL] LPTMRx_PSR[PCS]

LPTMR Interrupt and

Comparator Hardware Trigger

= |6 bit up-counter which operates in all
power modes (stop, wait, etc.)

Compare Value
CMR

= Can count time or external pulses
= Glitch filter removes high-frequency noise = Registers

from pulses = Counter register LPTMRx_CNR
= Can generate interrupt when counter = Compare register LPTRMx_CMR
matches compare value = Prescale register LPTMRx_PSR

= Interrupt wakes MCU from any low power * Control Status register LPTMRx_CSR
mode

37

Prescale Register NC STATE UNIVERSITY

PRESCALE: divide by 2 to 65536

= Time counter mode: Divide input clock by
JPRESCALE+| J

6 5 4 3 2 1 0

PRESCALE PBYP PCS

: : : o o0 o o0 0 0 0
= Pulse counter mode: Is glitch filter which

recognizes input signal change after
2PRESCALE rising clock cycles

PBYP: Prescaler Bypass PCS Clock Source

= Q:use prescaler 00 MCGIRCLK — internal reference clock (not available
in LLS and VLLS modes)
01 LPO — 1 kHz clock (not available in VLLSO mode)

PCS: Prescaler Count Select 10 ERCLK32K (not available in VLLSO mode when using

. | ¢ ilable d d hi fi ¢ 32 kHz oscillator)
nputs avallable depend on chip contiguration, 11 OSCERCLK — external reference clock (not available

see KL25 SRM Chapter 3: Chip Configuration in VLLSO mode)

= |:bypass prescaler

38

Control Status Register

= TCF:Timer Compare Flag

= | if CNR matches CMR and increments

= TIE:Timer Interrupt Enable

= Set to | to enable interrupt when TCF ==

= TPS:Timer Pin Select for pulse counter mode
= Inputs available depend on chip configuration, see KL25 SRM Chapter 3: Chip Configuration

7 6 4 3 2 1 0
TCF
TIE TPS TPP | TFC | TMS | TEN
wic
0 0 0 0 0 0 0

NC STATE UNIVERSITY

LPTMR_CSRI[TPS]

Pulse counter input number

Chip input

00

CMPO output

01

LPTMR_ALT1 pin

10

0
1
2
3

LPTMR_ALT2 pin

11

LPTMR_ALTS pin

39

Control Status Register NC STATE UNIVERSITY

6 5 4 3 2 1 0

TCF
TIE TPS TPP | TFC | TMS | TEN

wic

0 0 0 0 0 0 0 0

TPP:Timer Pin Polarity

= 0O:input is active high, increments CNR on rising edge

= |:input is active low, increments CNR on falling edge

TFC:Timer Free-running Counter
= 0:Reset CNR whenever TCF is set (on match)
= |:Reset CNR on overflow (wrap around)

TMS: Timer Mode Select
= 0:Time counter

= |:Pulse counter
TEN:Timer Enable
= |:Enable LPTMR operation

40

	Slide 1: Timer Peripherals
	Slide 2: Timer Peripherals Available
	Slide 3: Timer/Counter Peripheral Introduction
	Slide 4: Periodic Interrupt Timer
	Slide 5: Periodic Interrupt Timer
	Slide 6: Periodic Interrupt Timer
	Slide 7: PIT Configuration
	Slide 8: Control of Each Timer Channel n
	Slide 9: Configuring the PIT
	Slide 10: Calculating Load Value
	Slide 11: Configuring the PIT and NVIC for Interrupts
	Slide 12: Interrupt Handler
	Slide 13: Starting and Stopping the Timer Channel
	Slide 14: Example: Stopwatch
	Slide 15: Timer/PWM Module (TPM)
	Slide 16: TPM - Timer/PWM Module
	Slide 17: Timer Configuration
	Slide 18: Basic Counter Mode
	Slide 19: Count Mode and Modulo - Counting Up
	Slide 20: Count Mode and Modulo - Counting Up and Down
	Slide 21: TPM Configuration (TPMx_CONF)
	Slide 22: TPM Status (TPMx_STATUS)
	Slide 23: Major Channel Modes
	Slide 24: Channel Configuration and Value
	Slide 25: Input Capture Mode
	Slide 26: Wind Speed Indicator (Anemometer)
	Slide 27: TPM Capture Mode for Anemometer
	Slide 28: Creating PWM with Output Compare Mode
	Slide 29: Output Compare Mode
	Slide 30: Pulse-Width Modulation
	Slide 31: Uses of Pulse-Width Modulation
	Slide 32: Edge-Aligned PWM Mode
	Slide 33: Center-Aligned PWM Mode
	Slide 34: Servo Motor
	Slide 35: Using PWM to Drive a Servo Motor
	Slide 36: Low Power Timer (LPTMR)
	Slide 37: LPTMR Overview
	Slide 38: Prescale Register
	Slide 39: Control Status Register
	Slide 40: Control Status Register

