NC STATE UNIVERSITY

Synchronization with
Semaphores

NC STATE UNIVERSITY

Event Flag Limitations
Switch Press Release Press Release Press | Release
ISR FlagSet FlagSet FlagSet
Flag 0 | | O 0 I I I I I 0 0
Thread | FlagWVait Running FlagWait Running

= What if we press the switch three times during the first flash sequence?
= We will only get two scans, not three
= We lose one event/trigger

= Flags only count up to 1, can’t track more pending events
= Also: No handshaking
= OKto set a flag which is already set.
= Does sender know receiver got notification?
= No, unless it checks with extra code....

= Also: No data included, just notification that the event occurred

2

NC STATE UNIVERSITY

Semaphore Basics

|

v

1. Semaphore not 2. Thread A releases semaphore, 3. When Thread B successfully acquires
raised yet (count == 0) count is incremented semaphore, count is decremented

= Semaphore: special 0OS-managed counter = osSemaphoreRelease

variable. = Increments count. Calling thread is ready to run.
= Access it only using special OS calls = osSemaphoreAcquire
= Value of semaphore counter indicates how = count > 0? Succeeds! OS decrements count and
many times it has been released without calling thread is ready to run.
being acquired = count == 07? Fails! OS puts calling thread in
= Can only acquire semaphore blocking state, waiting for semaphore count >0

if count>0

Task A

¢

A asks OS to release semaphore S
via SVC instruction

Task B

Interrupt System

Y

Hardware stacks partial context
(r0-r3,r12,LR,PC,xPSR) to A's stack

NC STATE UNIVERSITY

oS

Any task waiting on S?

es, task B

Release task B (move
from waiting to ready)

Save rest of A's context
(r4-r7) to A's stack

Return from interrupt
to task A

Pick highest-priority

7

Hardware unstacks partial context
(r0-r3,r12,LR,PC,xPSR) from A's stack

ready task B

restore part of B's context
(r4-r7) from B's stack

return from interrupt

to task B

A7

Hardware unstacks partial context
(r0-r3, r12, LR, PC, xPSR) from B's stack

B continues

O

NC STATE UNIVERSITY

A Signals B Using Semaphore

= Thread A releases the semaphore = Thread B tries to acquire semaphore

= Resulting OS actions = Resulting OS actions

= If any task is waiting for this semaphore, move = |f semaphore is free, then give it to B. Else put B
that task to ready state, give it the semaphore. into waiting/blocking state.

= Run highest-priority ready task. = Run highest-priority ready task.

NC STATE UNIVERSITY

Counting vs. Binary Semaphore
How tall is the flagpole?

= |f we need multiple pending
events to be recognized, then
use a counting semaphore

= Accumulates number of pending Rgleasling a semaphore
requests (often called tokens) raises its value by 1

: BinarY semaphore only goes up Acquiring a semaphore
to 1 (like event flag) lowers its value by 1

= Define using max_count
parameter in osSemaphoreNew
call

= Demo example: switch
USE_COUNTING_SEM between 0 RGB sem = RGB_sem =

and 1 osSemaphoreNew(1,0,NULL); osSemaphoreNew(5,0,NULL);

NC STATE UNIVERSITY

CMSIS-RTOS2 Semaphores

= Type: osSemaphoreld_t = osErrorParameter: parameter incorrect.

= osSemaphoreld_t osSemaphoreNew(" osStatus_t osSemaphoreAcquire(
uint32 t max count, uint32 t osSemaphoreld semaphore_id, uint32_t
initial_count, const osSemaphoreAttr_t timeout)
*attr) = Wait for semaphore to be signaled (if not

- already), then decrements count value
= Creates semaphore specified counts V)

= QOptional timeout value, measured in kernel
ticks

= To never timeout, use osWaitForever

= |nitializes it to initial_count

= osStatus_t osSemaphoreRelease(

osSemaphoreld semaphore_id) = To never wait, use 0
= Raises the semaphore, incrementing count = Result code indicates result:
value = 0sOK
= Result code indicates any error = osErrorTimeout: timed out, didn’t get semaphore
= 0sOK: token correctly released, count increased. = osErrorResource: didn’t wait, didn’t get semaphore

= osErrorResource: maximum token count reached.

NC STATE UNIVERSITY

RTX5 Demo Semaphores: Semaphore for LED RGB Sequence

init() {
= Requirement: Light LEDs in @

RGB sequence once when
button is pressed (leading

edge of press) IRIZICI)-IIZL?:ITer

RGB_sem = osSemaphoreNew(5,0,
NULL) ;

}

= Use semaphore RGB_sem to
indicate request for LED
sequence RGB_sem osSemaphoreRelease(RGB_sem);

= PORTD_IRQHandler releases
(gives) the semaphore once
each time button is pressed

= Thread RGB runs once each
time it can acquire (take) the
semaphore

PORTD_IRQHandler() {

}

Thread RGB Thread_RGB() {

osSemaphoreAcquire(RGB_sem,
oswWaitForever);

CMSIS-RTOS?2 Status and Error Codes

enum osStatus_t{ ...}

NC STATE UNIVERSITY

osOK function completed; no error or event occurred.
osErrorParameter |mandatory parameter missing, incorrect object.
osErrorResource resource not available

osErrorTimeout operation not completed within the timeout period
osErroriSR function cannot be called from interrupt service routines.
osErrorOS unspecified RTOS run-time error.

os_status reserved

prevent from enum down-size compiler optimization.

= A call to osSemaphoreRelease will fail if counter is at max_count
= Yes, we should check the return value from osSemaphoreRelease

NC STATE UNIVERSITY

RTX5 Demo Semaphores: Error Handling

= Notify of RGB_sem release error @

with another semaphore
error_sem SORTD
= Could also use event flag. Discuss. IRQHandler

= Thread_Error blocks on
error_sem. If acquired, thread error_sem RGB_sem
flashes red LED forever

= Enable by defining Thread_Error Thread RGB
USE_ERROR_HANDLING as non-

zero (e.g. 1)

NC STATE UNIVERSITY

Event Flags vs. Semaphores

Unlike event flags and thread event flags, can’t simultaneously wait on AND/OR
combinations of multiple semaphores

Note
= Semaphores and event flags can’t send data.
= They just indicate that the event occurred

= More on flags vs. semaphores
= http://info.quadros.com/blog/rtos-explained-understanding-event-flags/

= http://ecos.sourceware.org/docs-latest/ref/kernel-flags.html

= http://ecos.sourceware.org/docs-latest/ref/kernel-semaphores.html

http://info.quadros.com/blog/rtos-explained-understanding-event-flags/
http://info.quadros.com/blog/rtos-explained-understanding-event-flags/
http://info.quadros.com/blog/rtos-explained-understanding-event-flags/
http://info.quadros.com/blog/rtos-explained-understanding-event-flags/
http://info.quadros.com/blog/rtos-explained-understanding-event-flags/
http://info.quadros.com/blog/rtos-explained-understanding-event-flags/
http://info.quadros.com/blog/rtos-explained-understanding-event-flags/
http://info.quadros.com/blog/rtos-explained-understanding-event-flags/
http://info.quadros.com/blog/rtos-explained-understanding-event-flags/
http://info.quadros.com/blog/rtos-explained-understanding-event-flags/
http://ecos.sourceware.org/docs-latest/ref/kernel-flags.html
http://ecos.sourceware.org/docs-latest/ref/kernel-flags.html
http://ecos.sourceware.org/docs-latest/ref/kernel-flags.html
http://ecos.sourceware.org/docs-latest/ref/kernel-flags.html
http://ecos.sourceware.org/docs-latest/ref/kernel-flags.html
http://ecos.sourceware.org/docs-latest/ref/kernel-flags.html
http://ecos.sourceware.org/docs-latest/ref/kernel-semaphores.html
http://ecos.sourceware.org/docs-latest/ref/kernel-semaphores.html
http://ecos.sourceware.org/docs-latest/ref/kernel-semaphores.html
http://ecos.sourceware.org/docs-latest/ref/kernel-semaphores.html
http://ecos.sourceware.org/docs-latest/ref/kernel-semaphores.html
http://ecos.sourceware.org/docs-latest/ref/kernel-semaphores.html

	Synchronization with Semaphores_v1
	Synchronization with �Semaphores
	Event Flag Limitations
	Semaphore Basics
	Slide 4
	A Signals B Using Semaphore
	Counting vs. Binary Semaphore
	CMSIS-RTOS2 Semaphores
	RTX5 Demo Semaphores: Semaphore for LED RGB Sequence
	CMSIS-RTOS2 Status and Error Codes
	RTX5 Demo Semaphores: Error Handling
	Event Flags vs. Semaphores

