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Overview

▪ Serial communications
▪ Concepts 

▪ Tools

▪ Software: polling, interrupts and buffering

▪ UART communications
▪ Concepts

▪ KL25 I2C peripheral

▪ SPI communications
▪ Concepts

▪ KL25 SPI peripheral

▪ I2C communications
▪ Concepts

▪ KL25 I2C peripheral
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Evolution of Communications for ES

▪ Go serial instead of parallel
▪ Why? Fewer signals -> smaller PCBs, ICs, connectors… 

(but lower throughput)

▪ How? 
▪ Timing reference: clock vs. no clock

▪ Message framing: start and stop

▪ Error control: detection, correction, retry

▪ Flow control

▪ Go half-duplex
▪ Why? Fewer signals -> smaller (but lower throughput)
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Evolution of Communications for ES

▪ Share bus (“medium”) instead of using 
dedicated links

▪ Why? Smaller, share data more easily (but 
lower throughput)

▪ How? 
▪ Use access control to arbitrate access (MAC)

▪ Collisions: Detection, prevention, avoidance, 
arbitration

▪ Addressing to support multiple devices

▪ In-message addressing vs. chip select lines

▪ Addressing methods: per device, message type
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Why Communicate Serially?

▪ Although native word size for CPU is 32 bits, sending all of a 
word’s bits simultaneously has disadvantages:
▪ Cost and weight: larger IC package, more wires, larger connectors

▪ Mechanical reliability: more wires => more connector contacts to 
fail

▪ Timing complexity: some bits may arrive later than others due to 
variations in capacitance and resistance across conductors

▪ Circuit complexity and power: may not want to have 16 different 
transmitters + receivers in the system

▪ Communicating serially reduces number of signals needed

80 pins

14 mm/side

196 sq. mm

32 pins

5 mm/side

25 sq. mm

20 pins

1.94 mm/side

3.76 sq. mm

Shrinking Packages 

for NXP MCUs
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Example System

▪ Dedicated point-to-point connections
▪ Parallel data lines, read and write lines between MCU and each peripheral

▪ Fast, allows simultaneous transfers

▪ Requires many connections, PCB area, scales badly
▪ Need 4*(8+2) = 40 pins on MCU to communicate!
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Parallel Buses

▪ All devices use buses to share data, read and write signals

▪ MCU uses individual select lines to address each peripheral

▪ MCU requires fewer pins for data, but still one per data bit
▪ Need 4 + (8+2) = 14 pins on MCU to communicate

▪ MCU can communicate with only one peripheral at a time
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Synchronous Serial Data Transmission

▪ Use shift registers and a clock signal to convert between serial and parallel formats

▪ Synchronous: an explicit clock signal is sent along with the data signal

Clk

D Q

D3

D Q

D2

D Q

D1

D Q

D0

Serial 

Data Out

Parallel Data In

Clk

D Q

D3

D Q

D2

D Q

D1

D Q

D0

Serial 

Data In

Parallel Data Out

Transmitting Device Receiving Device

Clock

Serial Data

Data Sampling Time at Receiver



9
ARM University Program

Copyright © ARM Ltd 2013

Synchronous Full-Duplex Serial Data Bus

▪ Now can use two serial data lines - one for reading, one for writing.
▪ Allows simultaneous send and receive full-duplex communication

▪ Need 4 + 3 = 7 pins on MCU to communicate

MCU
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Synchronous Half-Duplex Serial Data Bus

• Share the serial data line 
• Need 4 + 2 = 6 pins on MCU to communicate

• Doesn’t allow simultaneous send and receive - is half-duplex 
communication
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Asynchronous Serial Communication

▪ Eliminate the clock line!
▪ Transmitter and receiver must generate clock locally
▪ States: Idle, Message
▪ Transmitter must add start bit (always same value) to indicate transition from Idle to 

message
▪ Receiver detects leading edge of start bit, then uses it as a timing reference for sampling 

data line to extract each data bit N at time Tbit*(N+1.5)
▪ Stop bit is also used to detect some timing errors
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Serial Communication Specifics

▪ Data frame fields
▪ Start bit (one bit)
▪ Data (LSB or MSB first, and size – 

7, 8, 9 bits)
▪ Optional parity bit is used to make total 

number of ones in data even or odd
▪ Stop bit (one or two bits) 

▪ All devices must use the same communications parameters 
▪ E.g. communication speed (300 baud, 600, 1200, 2400, 9600, 14400, 19200, etc.)

▪ Sophisticated network protocols have more information in each data frame
▪ Medium access control – when multiple nodes are on bus, they must arbitrate for permission to 

transmit
▪ Addressing information – for which node is this message intended?
▪ Larger data payload
▪ Stronger error detection or error correction information
▪ Request for immediate response (“in-frame”)

Message

Data

bits
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Error Detection

▪ Can send additional information to verify data was received correctly

▪ Need to specify which parity to expect: even, odd or none.

▪ Parity bit is set so that total number of “1” bits in data and parity is even (for even 
parity) or odd (for odd parity)
▪ 01110111 has 6 “1” bits, so parity bit will be 1 for odd parity, 0 for even parity

▪ 01100111 has 5 “1” bits, so parity bit will be 0 for odd parity, 1 for even parity

▪ Single parity bit detects if 1, 3, 5, 7 or 9 bits are corrupted, but doesn’t detect an even 
number of corrupted bits

▪ Stronger error detection codes (e.g. Cyclic Redundancy Check) exist and use multiple 
bits (e.g. 8, 16), and can detect many more corruptions. 
▪ Used for CAN, USB, Ethernet, Bluetooth, etc.
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Tools for Serial Communications Development

▪ Tedious and slow to debug 
serial protocols with just an 
oscilloscope

▪ Instead use a logic analyzer to 
decode bus traffic

▪ Worth its weight in gold!
▪ Analog Discovery and Waveforms

▪ Saelae 8-Channel Logic Analyzer 

▪ Build your own: with Logic Sniffer 
or related open-source project

Start ACK ACK StopACKDev. Address Reg. Address Data
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SOFTWARE ARCHITECTURE FOR 
HANDLING ASYNCHRONOUS 
COMMUNICATION
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Software Structure

▪ Communication is asynchronous to program
▪ Don’t know what code the program will be executing …

▪ when the next item arrives

▪ when current outgoing item completes transmission

▪ when an error occurs

▪ Need to synchronize between program and serial communication interface somehow

▪ Options
▪ Polling

▪ Wait until data is available

▪ Simple but inefficient of processor time

▪ Interrupt

▪ CPU interrupts program when data is available

▪ Efficient, but more complex
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Serial Communications and Interrupts

▪ Want to provide multiple threads of 
control in the program
▪ Main program (and subroutines it calls)

▪ ISR(s)

▪ Transmit ISR activity – executes when serial 
interface is ready to send another character

▪ Receive ISR activity – executes when serial 
interface receives a character

▪ Error ISR(s) activity – execute if an error 
occurs

▪ Need a way of buffering information 
between threads
▪ Solution: circular queue with head and tail 

pointers

▪ One for tx, one for rx

Serial 
Interface

ISR:Tx ISR:Rx

get_stringsend_string

Main Program or
other threads



18
ARM University Program

Copyright © ARM Ltd 2013

Enabling and Connecting Interrupts to ISRs

▪ ARM Cortex-M0+ provides one 
IRQ for all of a communication 
interface’s events

▪ Within ISR (IRQ Handler), need to 
determine what triggered the 
interrupt, and then service it

void UART2_IRQHandler() {
 if (transmitter ready) {
  if (more data to send) {
   get next byte
   send it out transmitter
  }
 }
 if (received data) {
  get byte from receiver
  save it
 }
 if (error occurred) {
  handle error
 }
  
}
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Code to Implement Queues

▪ Enqueue at tail: tail_ptr points to next free entry

▪ Dequeue from head: head_ptr points to item to remove

▪ #define the queue size to make it easy to change

▪ One queue per direction
▪ ISR unloads tx_q for transmit

▪ ISR loads rx_q for receive

▪ Other threads (e.g. main) load tx_q and unload rx_q

▪ Need to wrap pointer at end of buffer to make it circular, 
▪ Use % (modulus, remainder) operator if queue size is not power of two

▪ Use & (bitwise and) if queue size is a power of two

▪ Queue is empty if size == 0

▪ Queue is full if size == Q_SIZE

write data 

to tail
read data 

from head

older 

data

newer 

data

Serial
Interface

ISR:Tx ISR:Rx

get_stringsend_string
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Defining the Queues

#define Q_SIZE (32)

typedef struct {

  unsigned char Data[Q_SIZE];

  unsigned int Head; // points to oldest data element

  unsigned int Tail; // points to next free space 

  unsigned int Size; // quantity of elements in queue

} Q_T;

Q_T tx_q, rx_q;
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Initialization and Status Inquiries

void Q_Init(Q_T * q) {

  unsigned int i;

  for (i=0; i<Q_SIZE; i++)  

    q->Data[i] = 0;  // to simplify our lives when debugging

  q->Head = 0;

  q->Tail = 0;

  q->Size = 0;

}

int Q_Empty(Q_T * q) {

  return q->Size == 0;

}

int Q_Full(Q_T * q) {

  return q->Size == Q_SIZE;

}



22
ARM University Program

Copyright © ARM Ltd 2013

Enqueue and Dequeue

int Q_Enqueue(Q_T * q, unsigned char d) {
  // What if queue is full?
  if (!Q_Full(q)) {
    q->Data[q->Tail++] = d;
    q->Tail %= Q_SIZE;
    q->Size++;
    return 1; // success
  } else 
    return 0; // failure
}
unsigned char Q_Dequeue(Q_T * q) {
  // Must check to see if queue is empty before dequeueing
  unsigned char t=0;
  if (!Q_Empty(q)) {
    t = q->Data[q->Head];
    q->Data[q->Head++] = 0; // to simplify debugging
    q->Head %= Q_SIZE;
    q->Size--;
  }
  return t;
}
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Using the Queues

▪ Sending data:

 if (!Queue_Full(…)) {

 Queue_Enqueue(…, c)

}

▪ Receiving data:

 if (!Queue_Empty(…)) {

 c=Queue_Dequeue(…)

}
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SOFTWARE DESIGNS – PARSING 
MESSAGES
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Decoding Messages

▪ Two types of messages

▪ Actual binary data sent
▪ Detect start of message

▪ Identify message type

▪ Optional: Confirm integrity with CRC

▪ Based on this message type, copy binary data from message fields into variables

▪ May need to use pointers and casting to get code to translate formats correctly and safely

▪ ASCII text characters representing data sent
▪ Detect start of message

▪ Identify message type

▪ Optional: Confirm integrity with CRC

▪ Based on this message type, translate (parse) the data from the ASCII message format into a 
binary format

▪ Copy the binary data into variables
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Example UART Application

▪ Many subsystems connect with the rest 
of the system using asynchronous 
serial communications

▪ Lassen iQ GPS receiver module from Trimble
▪ Two full-duplex asynch. serial connections

▪ Three protocols supported

▪ Support higher speeds through reconfiguration
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Example Binary Serial Data: TSIP

switch (id) {
case 0x84: 
 lat = *((double *) (&msg[0]));
 lon = *((double *) (&msg[8]));
 alt = *((double *) (&msg[16]));
 clb = *((double *) (&msg[24]));
 tof = *((float  *) (&msg[32]));
 break;
case 0x4A: …

default:
 break;
}
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Example ASCII Serial Data: NMEA-0183
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State Machine for Parsing NMEA-0183

Start
Talker +

Sentence
Type

Sentence
Body

Checksum
1

Checksum
2

$
Append char to buf.

Any char. except *, \r or \n
Append char to buf.
Inc. counter

*, \r or \n, 
non-text, or
counter>6

buf==$SDDBT, $VWVHW, 
or $YXXDR
Enqueue all chars. from buf

Any char. except *
Enqueue char

*
Enqueue char

Any char.
Save as checksum1

/r or /n

Any char.
Save as checksum2
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Parsing
switch (parser_state) {
case TALKER_SENTENCE_TYPE:
 switch (msg[i]) {
  ‘*’:
  ‘\r’:
  ‘\n’:
   parser_state = START;
   break;
  default:
   if (Is_Not_Character(msg[i]) || n>6) {
    parser_state = START;
   } else {
    buf[n++] = msg[i];
   } 
  break;
 }
 if ((n==6) & … ){
  parser_state = SENTENCE_BODY;
 } 
 break;
case SENTENCE_BODY:
 break;
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KL25Z AND FREEDOM SPECIFICS
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Freedom KL25Z Serial I/O

UART

SPI

I2C
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KL25Z Clock Gating for Serial Comm.

▪ Set corresponding bit(s) in SIM_SCGC4 Register
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ASYNCHRONOUS SERIAL (UART) 
COMMUNICATIONS
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Transmitter Basics

▪ If no data to send, keep sending 1 (stop bit) – idle line
▪ When there is a data word to send

▪ Send a 0 (start bit) to indicate the start of a word
▪ Send each data bit in the word (use a shift register for the transmit buffer)
▪ Send a 1 (stop bit) to indicate the end of the word 
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Receiver Basics

▪ Wait for a falling edge (beginning of a Start bit)
▪ Then wait ½ bit time 
▪ Do the following for as many data bits in the word
▪ Wait 1 bit time
▪ Read the data bit and shift it into a receive buffer (shift register)

▪ Wait 1 bit time
▪ Read the bit
▪ if 1 (Stop bit), then OK
▪ if 0, there’s a problem!
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For this to work…

▪ Transmitter and receiver must agree on several things (protocol)
▪ Order of data bits

▪ Number of data bits

▪ What a start bit is (1 or 0) 

▪ What a stop bit is (1 or 0)

▪ How long a bit lasts

▪ Transmitter and receiver clocks must be reasonably close in frequency, since the only timing 
reference is the start of the start bit
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KL25 UARTs

▪ UART: Universal (configurable) Asynchronous Receiver/Transmitter

▪ UART0
▪ Low Power

▪ Can oversample from 4x to 32x

▪ Is used by debugger MCU on Freedom KL25Z, so not available

▪ UART1, UART2
▪ More basic, fewer features, easier to program
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UART Transmitter



40
ARM University Program

Copyright © ARM Ltd 2013

UART Receiver
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Input Data Oversampling

▪ When receiving, UART oversamples incoming data line 
▪ Extra samples allow voting, improving noise immunity

▪ Better synchronization to incoming data, improving noise immunity

▪ UART0 provides configurable oversampling from 4x to 32x
▪ Put desired oversampling factor minus one into UART0 Control Register 4, OSR bits.

▪ UART1, UART2 have fixed 16x oversampling
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Baud Rate Generator

▪ Need to divide module clock frequency down to desired baud rate * oversampling 
factor

▪ Example
▪ 24 MHz -> 4800 baud with 16x oversampling

▪ Division factor = 24E6/(4800*16) = 312.5. Must round to closest integer value ( 312 or 313), will 
have a slight frequency error.
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Using the UART

▪ When can we transmit?
▪ Transmit buffer must be empty

▪ Can poll UARTx->S1 TDRE flag

▪ Or we can use an interrupt, in which case we 
will need to queue up data

▪ Put data to be sent into UARTx_D 
(UARTx->D)

▪ When can we receive a byte?
▪ Receive buffer must be full

▪ Can poll UARTx->S1 RDRF flag

▪ Or we can use an interrupt, and again we will 
need to queue the data

▪ Get data from UARTx_D (UARTx->D)
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UART Control Register 1 (UART0_C1)

▪ LOOPS: Enables loopback/single-pin (TX/RX) mode

▪ DOZEEN: Doze enable – disable UART in sleep mode

▪ RSRC: Selects between loopback and single-pin mode

▪ M: Select 9-bit data mode (instead of 8-bit data)

▪ WAKE: Wakeup method

▪ ILT: Idle line type

▪ PE: Parity enabled with 1

▪ PT: Odd parity with 1, even parity with 0
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UART Control Register 2 (UART0_C2)

▪ Interrupt Enables
▪ TIE: Interrupt when Transmit Data Register is empty

▪ TCIE: Interrupt when transmission completes

▪ RIE: Interrupt when receiver has data ready

▪ Module Enables
▪ TE: Transmitter enable

▪ RE: Receiver enable

▪ Other
▪ RWU: Put receiver in standby mode, will wake up when condition occurs

▪ SBK: Send a break character (all zeroes) 
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UART Status Register 1 (UART_S1)

▪ TDRE: Transmit data register empty, can write more data to data register

▪ TC: Transmission complete.

▪ RDRF: Receiver data register full, can read data from data register

▪ IDLE: UART receive line has been idle for one full character time

▪ OR: Receive overrun. Received data has overwritten previous data in receive buffer

▪ NF: Noise flag. Receiver data bit samples don’t agree.

▪ FE: Framing error. Received 0 for a stop bit, expected 1.

▪ PF: Parity error. Incorrect parity received.
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UART Status Register 2 (UARTx_S2)

▪ LBDIF: LIN break detect interrupt flag

▪ RXEDGIF: Active edge on receive pin detected

▪ MSBF: Send MSB first. Should be 0 for RS232

▪ RXINV: Invert received signals (data, start, stop, etc.)

▪ RWUID: Set idle bit upon wakeup?

▪ BRK13: Set break character to 13 bits long (not 10)

▪ LBKDE: LIN break character time.

▪ RAF: Receiver is actively receiving data (not idle line)
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Software for Polled Serial Comm.
void Init_UART2(uint32_t baud_rate) {
 uint32_t divisor;
 // enable clock to UART and Port A
 SIM->SCGC4 |= SIM_SCGC4_UART2_MASK;
 SIM->SCGC5 |= SIM_SCGC5_PORTE_MASK;

 // connect UART to pins for PTE22, PTE23
 PORTE->PCR[22] = PORT_PCR_MUX(4);
 PORTE->PCR[23] = PORT_PCR_MUX(4);
 // ensure tx and rx are disabled before configuration
 UART2->C2 &=  ~(UARTLP_C2_TE_MASK | UARTLP_C2_RE_MASK);

 // Set baud rate to 4800 baud
 divisor = BUS_CLOCK/(baud_rate*16);
 UART2->BDH = UART_BDH_SBR(divisor>>8);
 UART2->BDL = UART_BDL_SBR(divisor);

 // No parity, 8 bits, two stop bits, other settings;
 UART2->C1 = UART2->S2 = UART2->C3 = 0;

 // Enable transmitter and receiver
 UART2->C2 = UART_C2_TE_MASK | UART_C2_RE_MASK; 
}
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Polled Serial Transmitter Code

void UART2_Transmit_Poll(uint8_t data) {

 // wait until transmit data register is empty

 while (!(UART2->S1 & UART_S1_TDRE_MASK))

  ;

 UART2->D = data;

} 

void main(void) {

 char c; 

 // Initialization goes here

 while (1) {

  for (c='a'; c<='z'; c++) {

   UART2_Transmit_Poll(c);

}
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Polled Serial Receiver Code with Echo

uint8_t UART2_Receive_Poll(void) {

 // wait until receive data register is full

 while (!(UART2->S1 & UART_S1_RDRF_MASK))

  ;

 return UART2->D;

} 

void main(void) {

 char c; 

 // Initialization goes here

 while (1) {

  c = UART2_Receive_Poll();

  UART2_Transmit_Poll(c);

}
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Software for Interrupt-Driven Serial Comm.

▪ Use interrupts

▪ First, initialize peripheral to generate interrupts

▪ Second, create single ISR with three sections corresponding to cause of interrupt

▪ Transmitter

▪ Receiver 

▪ Error
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Peripheral Initialization

void Init_UART2(uint32_t baud_rate) {

 …

 NVIC_SetPriority(UART2_IRQn, 2); 

 NVIC_ClearPendingIRQ(UART2_IRQn); 

 NVIC_EnableIRQ(UART2_IRQn);

 UART2->C2 |= UART_C2_TIE_MASK | 

    UART_C2_RIE_MASK;

 UART2->C2 |= UART_C2_RIE_MASK;

 Q_Init(&TxQ);

 Q_Init(&RxQ);

}
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Interrupt Handler: Transmitter

void UART2_IRQHandler(void) {

 NVIC_ClearPendingIRQ(UART2_IRQn);

 if (UART2->S1 & UART_S1_TDRE_MASK) {

  // can send another character

  if (!Q_Empty(&TxQ)) {

   UART2->D = Q_Dequeue(&TxQ);

  } else {

   // queue is empty so disable tx

   UART2->C2 &= ~UART_C2_TIE_MASK;

  }

 }

 … 
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Interrupt Handler: Receiver

void UART2_IRQHandler(void) {

 …

 if (UART2->S1 & UART_S1_RDRF_MASK) {

  // received a character

  if (!Q_Full(&RxQ)) {

   Q_Enqueue(&RxQ, UART2->D);

  } else {

   // error - queue full.

   while (1)

    ;

  }

 }
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Interrupt Handler: Error Cases

void UART2_IRQHandler(void) {

 … 

 if (UART2->S1 & (UART_S1_OR_MASK |

    UART_S1_NF_MASK | 

    UART_S1_FE_MASK | 

    UART_S1_PF_MASK)) {

   // handle the error

   // clear the flag

  }

}
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Example UART Application

▪ Many subsystems connect with the 
rest of the system using 
asynchronous serial 
communications

▪ Lassen iQ GPS receiver module from 
Trimble

▪ Two full-duplex asynch. serial 
connections

▪ Three protocols supported

▪ Support higher speeds through 
reconfiguration
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USB to UART Interface

▪ PCs haven’t had external asynchronous serial 
interfaces for a while, so how do we 
communicate with a UART?

▪ USB to UART interface

▪ USB connection to PC

▪ Logic level (0-3.3V) to microcontroller’s UART (not 
RS232 voltage levels)

▪ USB01A USB to serial adaptor
▪ http://www.pololu.com/catalog/product/391 

▪ Can also supply 5 V, 3.3 V from USB 

http://www.pololu.com/catalog/product/391
http://www.pololu.com/catalog/product/391
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Building on Asynchronous Comm.
▪ Asynchronous communication is useful but runs into some problems when 

applying it to some applications

▪ Problem #1

▪ Logic-level signals (0 to 1.65 V, 1.65 V to 3.3 V) are sensitive to noise and signal 
degradation

▪ Problem #2

▪ Point-to-point topology does not support a large number of nodes well

▪ Need a dedicated wire to send information from one device to another

▪ Need a UART channel for each device the MCU needs to talk to

▪ Single transmitter, single receiver per data wire
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Solution to Noise: Higher Voltages

▪ Use higher voltages to improve noise margin: 
+3 to +15 V, -3 to -15 V

▪ Example IC (Maxim MAX3232) uses charge 
pumps to generate higher voltages from 3.3V 
supply rail
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Solution to Noise: Differential Signaling

▪ Use differential signaling 
▪ Send two signals: Buffered data (A), buffered 

complement of data (B)

▪ Receiver compares the two signals to determine if data is 
a one (A > B) or a zero (B > A)

Data into Transmitter

Data out of 

Transmitter, on bus

Data out of Receiver
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Solutions to Poor Scaling
▪ Approaches

▪ Allow one transmitter to drive multiple receivers (multi-drop)

▪ Connect all transmitters and all receivers to same data line (multi-point 
network). Need to add a medium access control technique so all nodes can 
share the wire

▪ Example Protocols
▪ RS-232: higher voltages, point-to-point

▪ RS-422: higher voltages, differential data transmission, multi-drop

▪ RS-485: higher voltages, multi-point
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Example Protocols
▪ RS-232: higher voltages, point-to-point

▪ RS-422: higher voltages, differential data transmission, multi-drop

▪ RS-485: higher voltages, multi-point
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SPI COMMUNICATIONS
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Hardware Architecture

▪ All chips share bus signals

▪ Clock SCK

▪ Data lines MOSI (master out, slave in) and MISO (master in, slave out)

▪ Each peripheral has its own chip select line (CS)

▪ Master (MCU) asserts the CS line of only the peripheral it’s communicating with

MCU

Peripheral
DOut

Select

DInClk

Peripheral
DOut

Select

DIn

Peripheral
DOut

Select

DIn

Peripheral
DOut

Select

DIn
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Serial Data Transmission

▪ Use shift registers and a clock signal to convert between serial and parallel formats

▪ Synchronous: an explicit clock signal is along with the data signal

Clk

D Q

D3

D Q

D2

D Q

D1

D Q

D0

Serial 

Data Out

Parallel Data In

Clk

D Q

D3

D Q

D2

D Q

D1

D Q

D0

Serial 

Data In

Parallel Data Out

Transmitting Device Receiving Device

Clock

Serial Data

Data Sampling Time at Receiver
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SPI Signal Connection Overview

▪ SPI Communication consists of a series of data swaps between the 
Master and the Slave
▪ As the master shifts out its transmit byte, it is also shifting in the received byte 

from the Slave
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SPI Control Register 1 (SPIx_C1)

▪ SPIE: SPI interrupt enable for receive buffer full and mode fault

▪ SPE: SPI system enable

▪ SPTIE: SPI interrupt enable for transmit buffer empty

▪ MSTR: select master mode

▪ CPOL: Clock polarity

▪ CPHA: Clock phase

▪ SSOE: Slave select output enable
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Clock and Phase Settings: CPHA = 1
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Clock and Phase Settings: CPHA = 0
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SPI Control Register 2 (SPIx_C2)

▪ SPMIE: SPI interrupt enable for receive data match

▪ SPLPIE: SPI interrupt enable for wake from low-power mode

▪ TXDMAE: Transmit DMA enable

▪ MODFEN: Master mode-fault function enable

▪ BIDIROE

▪ RDDMAE: Receive DMA enable

▪ SPISWAI: Stop SPI in wait mode

▪ SPC0: Single wire (bidirectional) mode
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SPI Baud Rate Register (SPIx_BR)

▪ SPPR: SPI baud rate prescale divisor: divides by n+1

▪ SPR: SPI baud rate divisor: divides by 2n+1

▪ fSPI = fbus_clock/((SPPR+1)*2SPR+1)
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Normal and Bidirectional Modes
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SPI Example: Secure Digital Card Access
▪ SD cards have two 

communication modes

▪ Native 4-bit

▪ Legacy SPI 1-bit

▪ SPI mode 0

▪ CPHA=0

▪ CPOL=0

▪ VDD from 2.7 to 3.6 V

▪ CS: Chip Select (active low)

▪ Source – FatFS FAT File System 
Module: 

▪ http://elm-chan.org/docs/mmc/mmc_e.html 

▪ http://elm-chan.org/fsw/ff/00index_e.html

http://elm-chan.org/docs/mmc/mmc_e.html
http://elm-chan.org/docs/mmc/mmc_e.html
http://elm-chan.org/docs/mmc/mmc_e.html
http://elm-chan.org/docs/mmc/mmc_e.html
http://elm-chan.org/fsw/ff/00index_e.html
http://elm-chan.org/fsw/ff/00index_e.html
http://elm-chan.org/fsw/ff/00index_e.html
http://elm-chan.org/fsw/ff/00index_e.html
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SPI Commands for SD Card

▪ Host sends a six-byte command packet to card

▪ Index, argument, CRC

▪ Host reads bytes from card until card signals it is ready

▪ Card returns 

▪ 0xff while busy

▪ 0x00 when ready without errors

▪ 0x01-0x7f when error has occurred
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SD Card Transactions

▪ Single Block Read

▪ Multiple Block Read

▪ Single Block Write

▪ Multipe Block Write
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I2C COMMUNICATIONS
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I2C Bus Overview
▪ “Inter-Integrated Circuit” bus

▪ Multiple devices connected by a shared serial 
bus

▪ Bus is typically controlled by master device, 
slaves respond when addressed

▪ I2C bus has two signal lines
▪ SCL: Serial clock
▪ SDA: Serial data

▪ Full details available in “The I2C-bus 
Specification” 
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I2C Bus Connections

▪ Resistors pull up lines to VDD

▪ Open-drain transistors pull lines down to ground

▪ Master generates SCL clock signal 

▪ Can range up to 400 kHz, 1 MHz, or more
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I2C Message Format

▪ Message-oriented data transfer with four 
parts

1. Start condition
2. Slave Address transmission
▪ Address
▪ Command (read or write)
▪ Acknowledgement by receiver

3. Data fields
▪ Data byte
▪ Acknowledgement by receiver

4. Stop condition

▪ Message is made of
▪ Signals: Start, Stop, Repeated Start

▪ Bytes

▪ Acknowledgement bits



80
ARM University Program

Copyright © ARM Ltd 2013

Master Writing Data to Slave
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Master Reading Data from Slave
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I2C Addressing: Devices and Registers

▪ Slave device addressing
▪ Each slave device has a seven-bit address

▪ Can support up to 27=128 different devices on same 
bus

▪ Different types of device have different default 
addresses

▪ Sometimes can select a secondary default address by 
tying a device pin to a different logic level

▪ Register addressing
▪ I2C devices may have multiple control, status, data 

registers and even data memory internally – how do 
we get at it?

▪ Use the first byte of data as a register address

▪ Example: First seven registers of MMA8451 I2C 
accelerometer

0x32

0x16

0x66

0x20

Master
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I2C with Register Addressing

▪ Master drives communication
▪ Sends start condition, address of slave, read/write command

▪ Listens for acknowledgement from slave

▪ Sends register address (byte)

▪  Listens for acknowledgement from slave
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KL25Z I2C Controller
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Setting the I2C Baud Rate

▪ I2Cx_F: Frequency Divider register
▪ MULT: specified multiplier mul = 2MULT 

▪ valid values: 1, 2,4

▪ ICR: Clock Rate

▪ I2C baud rate = fbus/ (2MULT * ICR) 
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I2C Control Register 1 – I2Cx_C1

▪ IICEN - enable I2C module

▪ IICIE - enable I2C interrupt

▪ MST - select master mode
▪ 0➔1 generates Start condition

▪ 1➔0 generates Stop condition

▪ TX – Select 1 for master transmit and 0 for 
master receive

▪ TXAK – Transmit Acknowledge enable

▪ RSTA – Repeat Start

▪ WUEN – Wakeup enable

▪ DMAEN – Enable DMA 
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I2C Status Register – I2Cx_S

▪ TCF – Transfer Complete flag set after 
transferring byte and acknowledge bit

▪ IAAS – Addressed as a Slave

▪ BUSY – bus busy

▪ ARBL – arbitration lost

▪ RAM – Range address match

▪ SRW – when slave, indicates transmission 
direction (0: slave receive, 1: slave 
transmit)

▪ IICIF: Interrupt pending flag

▪ RXAK: 0: acknowledge signal received
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I2C Data Register – I2Cx_D

▪ 8-bit data register

▪ Master transmit mode
▪ Writing to I2Cx_D starts a data transfer

▪ Master receive mode
▪ Reading from I2Cx_D starts reception of next byte



89
ARM University Program

Copyright © ARM Ltd 2013

Macros for Polled Communications
#define I2C_M_START I2C0->C1 |= I2C_C1_MST_MASK

#define I2C_M_STOP  I2C0->C1 &= ~I2C_C1_MST_MASK

#define I2C_M_RSTART I2C0->C1 |= I2C_C1_RSTA_MASK

#define I2C_TRAN I2C0->C1 |= I2C_C1_TX_MASK

#define I2C_REC I2C0->C1 &= ~I2C_C1_TX_MASK

#define BUSY_ACK while(I2C0->S & 0x01)

#define TRANS_COMP while(!(I2C0->S & 0x80))

#define I2C_WAIT while((I2C0->S & I2C_S_IICIF_MASK)==0){} \                                 

   I2C0->S |= I2C_S_IICIF_MASK;

 

#define NACK I2C0->C1 |= I2C_C1_TXAK_MASK

#define ACK         I2C0->C1 &= ~I2C_C1_TXAK_MASK
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Writing a Single Byte to a Device
I2C_TRAN;   /*set to transmit mode */

I2C_M_START;  /*send start */

I2C0->D = dev;   /*send dev address */

I2C_WAIT;   /*wait for ack */

 

I2C0->D = address; /*send write address */

I2C_WAIT;

  

I2C0->D = data;  /*send data */

I2C_WAIT;

I2C_M_STOP;
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Reading a Single Byte from a Device
I2C_TRAN; /*set to transmit mode */

I2C_M_START; /*send start */

I2C0->D = dev; /*send dev address */

I2C_WAIT; /*wait for completion */

I2C0->D = address; /*send read address */

I2C_WAIT; /*wait for completion */

I2C_M_RSTART; /*repeated start */

I2C0->D = (dev|0x1); /*send dev address (read) */

I2C_WAIT; /*wait for completion */

I2C_REC; /*set to recieve mode */

NACK; /*set NACK after read */

data = I2C0->D; /*dummy read */

I2C_WAIT; /*wait for completion */

I2C_M_STOP; /*send stop */

data = I2C0->D; /*read data */
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Reading Multiple Bytes from a Device: Set Up

I2C_TRAN;   /*set to transmit mode */

I2C_M_START;  /*send start */

I2C0->D = dev;   /*send dev address */

I2C_WAIT;   /*wait for ack */

I2C0->D =  address; /*send read address */

I2C_WAIT;   /*wait for completion */

I2C_M_RSTART;  /*repeated start */

I2C0->D = (dev|0x1); /*send dev address (read) */

I2C_WAIT;   /*wait for completion */

I2C_REC;   /*set to receive mode */
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Reading Multiple Bytes from a Device: Data
// For each byte

if(isLastRead) {

 NACK;  /*set NACK after read */

} else {

 ACK;  /*ACK after read */

}

data = I2C0->D; /*dummy read */

I2C_WAIT;  /*wait for completion */

if(isLastRead) {

 I2C_M_STOP; /*send stop */

}

data = I2C0->D; /*read real data */
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Interrupt-Driven I2C Communications

▪ Example flowchart from KL25Z Reference Manual 
chapter on I2C peripheral

▪ One ISR handles all possible cases
▪ Is MCU is in master or slave mode?

▪ Arbitration lost (in multi-master bus)?

▪ Transmit or receive?

▪ More data to send?

▪ Acknowledge received?

▪ etc.
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Example I2C Peripheral: 3-Axis Accelerometer

▪ Freescale MMA8451, included in Freedom KL25Z board
▪ Freedom KL26Z board has 3-axis accelerometer and 3-axis magnetometer (compass) 

▪ Can measure acceleration in x/y/z directions up to ±2g, ± 4g, ± 8g

▪ Can compute rotation about x/y axes (pitch, roll)

▪ I2C addresses are 0x3A (read) and 0x3B (write)
▪ 011101r (r=1 for read, r=0 for write)
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MMA8451 on Freedom KL25Z
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Main Registers of Interest in MMA8451

▪ Acceleration Data

▪ Signed (two’s complement)  data

▪ 14 or 8 bits per channel (left aligned)

▪ X-axis: 0x01, 0x02

▪ Y-axis: 0x03, 0x04

▪ Z-axis: 0x05, 0x06

▪ Resolution is about 1/4096 g per LSB (in +/- 2 g 
mode)

▪ Who Am I?

▪ Used to identify which device this is (IC-specific)

▪ Device ID - 0x1A
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Control Register 1 (0x2A)

▪ ACTIVE: set to 1 to put in active (not standby) mode

▪ FREAD: set to 1 to fast read just 8 MSBs of XYZ data 

▪ LNOISE: low noise mode

▪ DR2-0: select output data rate from 1.56 Hz to 800 
Hz

▪ ASLP_RATE1-0: Select Sleep mode rate from 1.56 to 
50 Hz

DR

2

DR1 DR0 Output Data 

Rate

0 0 0 800 Hz

0 0 1 400

0 1 0 200

0 1 1 100

1 0 0 50

1 0 1 12.5

1 1 0 6.25

1 1 1 1.56
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Registers for Additional Features

▪ FIFO configuration

▪ Interrupt control and status

▪ Dynamic range

▪ High-pass filter configuration

▪ Portrait/Landscape detection settings

▪ Freefall detection settings

▪ Sleep control registers

▪ Offset per axis 

▪ Transient event detection settings

▪ Tap (pulse) detection settings
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Demonstration: Configure the Accelerometer

▪ Source code in mma8451.c

▪ Basic approach
▪ Read byte from the WHOAMI register, verify it matches expected value for 

MMA8451

▪ Delay…

▪ Set to active, 14-bit mode, 100 Hz sampling rate

if(i2c_read_byte(MMA_ADDR, REG_WHOAMI) == WHOAMI) {
 Delay(10);
 //set active, 14 bit data and 100 Hz ODR (0x19)
 i2c_write_byte(MMA_ADDR, REG_CTRL1, 0x01);
 return 1;
}
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Demonstration: Read the Accelerations
▪ Send I2C Start condition

▪ Send read addresses (device and 
register)

▪ Read first five bytes of data into 
data[i]

▪ Read last byte of data into data[i] 
(also sends stop condition)

▪ Append bytes to form 16-bit words 
(int16_t)

▪ Divide by four to adjust for scaling

i2c_start();
i2c_read_setup(MMA_ADDR , REG_XHI);
 
for( i=0;i<5;i++) {
 data[i] = 
  i2c_repeated_read(1);
}
data[i] = i2c_repeated_read(0);

for ( i=0; i<3; i++ ) {
temp[i] = (int16_t) 

((data[2*i]<<8) | 
data[2*i+1]);

}

 
// Right-justify, is 14 bits
acc_X = temp[0]/4;
acc_Y = temp[1]/4;
acc_Z = temp[2]/4;
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PROTOCOL COMPARISON
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Factors to Consider
▪ How fast can the data get through?

▪ Depends on raw bit rate, protocol overhead in packet

▪ How many hardware signals do we need?
▪ May need clock line, chip select lines, etc.

▪ How do we connect multiple devices (topology)?
▪ Dedicated link and hardware per device - point-to-point

▪ One bus for master transmit/slave receive, one bus for slave transmit/master 
receive

▪ All transmitters and receivers connected to same bus – multi-point

▪ How do we address a target device?
▪ Discrete hardware signal (chip select line)

▪ Address embedded in packet, decoded internally by receiver

▪ How do these factors change as we add more devices?
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Protocol Trade-Offs
Protocol Speed Signals Req. for 

Bidirectional 

Communication 

with N devices

Device 

Addressing

Topology

UART 

(Point to 

Point)

Fast – Tens of Mbit/s 2*N (TxD, RxD) None Point-to-point full 

duplex

UART 

(Multi-

drop)

Fast – Tens of Mbit/s 2 (TxD, RxD) Added by user in 

software

Multi-drop

SPI Fast – Tens of Mbit/s 3+N for SCLK, MOSI, 

MISO, and one SS per 

device

Hardware chip 

select signal per 

device

Multi-point full-

duplex, multi-drop 

half-duplex buses

I2C Moderate – 100 

kbit/s, 400 kbit/s, 1 

Mbit/s, 3.4 Mbit/s. 

Packet overhead.

2: SCL, SDA In packet Multi-point half-

duplex bus
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