NC STATE UNIVERSITY

Serial Communications



NC STATE UNIVERSITY

Overview

= Serial communications
= Concepts
= Tools
= Software: polling, interrupts and buffering
UART communications
= Concepts
= KL25 12C peripheral
SPI communications
= Concepts
= KL25 SPI peripheral
12C communications

= Concepts
= KL25 12C peripheral



NC STATE UNIVERSITY

Evolution of Communications for ES

= Go serial instead of parallel
= Why? Fewer signals -> smaller PCBs, ICs, connectors...
(but lower throughput)
= How?
= Timing reference: clock vs. no clock

= Message framing: start and stop
= Error control: detection, correction, retry

= Flow control

= Go half-duplex
= Why? Fewer signals -> smaller (but lower throughput)



NC STATE UNIVERSITY

Evolution of Communications for ES

= Share bus (“medium”) instead of using

dedicated links M cu \ T
= Why? Smaller, share data more easily (but D 1= ['['7 ]
lower throughput) | -
= How?
= Use access control to arbitrate access (MAC) z : = *
= Collisions: Detection, prevention, avoidance, }7[@{' D &’ﬁ( \%r
arbitration ' p— —

= Addressing to support multiple devices
= In-message addressing vs. chip select lines
= Addressing methods: per device, message type



NC STATE UNIVERSITY

Shrinking Packages
for NXP MCUs

Why Communicate Serially?

= Although native word size for CPU is 32 bits, sending all of a
word’s bits simultaneously has disadvantages:
= Cost and weight: larger IC package, more wires, larger connectors
= Mechanical reliability: more wires => more connector contacts to

80 pins

" £ 14 mm/side =
al 196 sg. mm
= Timing complexity: some bits may arrive later than others due to

variations in capacitance and resistance across conductors

= Circuit complexity and power: may not want to have 16 different

transmitters + receivers in the system 32 pins
5 mm/side
25 sg. mm
= Communicating serially reduces number of signals needed
20 pins

. 1.94 mm/side
3.76 sq. mm

; gy




NC STATE UNIVERSITY

Example System

Peripheral
Wr Rd Data

Rd Wr

Peripheral

eleq

MCU

Data

|[eJayduad

IM PH

Data Rd Wr
Peripheral

= Dedicated point-to-point connections
= Parallel data lines, read and write lines between MCU and each peripheral

= Fast, allows simultaneous transfers

= Requires many connections, PCB area, scales badly
= Need 4*(8+2) = 40 pins on MCU to communicate!



Parallel Buses

NC STATE UNIVERSITY

MCU

Peripheral

Wr Rd

Select

Data

Peripheral

Wr Rd

Select

Data

Select

Peripheral

Wr Rd

Data

Peripheral

Wr Rd

Select

Data

|

|

|

All devices use buses to share data, read and write signals
MCU uses individual select lines to address each peripheral

MCU requires fewer pins for data, but still one per data bit
= Need 4 + (8+2) = 14 pins on MCU to communicate

MCU can communicate with only one peripheral at a time



NC STATE UNIVERSITY

Synchronous Serial Data Transmission
\

( Parallel Data V ﬂ‘w 3 j d
‘ “ saria\ Seria - - S
: jﬂm (G = Ees —==kar
ﬁ; -2 7
& - - - 2';) ) ‘ —E
D3 Yy D2 \/ D1 !V DO
~ Parallel Data Out

Transmitting Device Receiving Device

Clock
Serial Data__ X' )7 X D6 X D5 X D4 X D3 X D2 X D1 X DO

N4 Y Y \

~

Data Sampling Time at Receiver i

= Use shift registers and a clock signal to convert between serial and parallel formats
= Synchronous: an explicit clock signal is sent along with the data signal



NC STATE UNIVERSITY

Synchronous Full-Duplex Serial Data Bus

) } i |

Select Select Select Select
Peripheral Peripheral Peripheral Peripheral
Clk DIn DOut Din DOut Din DOut Din DOut
MU 1 11 11 ) T
T . .

= Now can use two serial data lines - one for reading, one for writing.
= Allows simultaneous send and receive full-duplex communication
= Need 4 + 3 =7 pins on MCU to communicate



Synchronous Half-Duplex Serial Data Bus

NC STATE UNIVERSITY

v

i

l

l

MCU

Select

Peripheral
Data

Clk

Select

Peripheral

Clk

Data

Select

Peripheral

Clk

Data

Select

Peripheral
Clk Data

i

A

i

i

/

/

(

il

 Share the serial data line

Need 4 + 2 = 6 pins on MCU to communicate

—

* Doesn’t allow simultaneous send and receive - is half-duplex

communication




Asynchronous Serial Communication

_ "Emw@"‘g —

Parity Stop
bit gbit

N B\;s:‘.-i_

Data Sampling

I ‘
\'

¢! g g g g
T o N ®x O 3
o o o o o

. . \| | i -
Time at Receiver 3 o T
D ™ s % s
N LW A O
N I S S S

3

Eliminate the clock line!
Transmitter and receiver must generate clock locally

States: Idle, Message

Transmitter must add start bit (always same value) to indicate transition from Idle to
message /

Receiver detects leading edge of start bit, then uses it as a timing reference for sampling
data line to extract each data bit N at time T, *(N+1.5)

n Stop bit is also used to detect some timing errors



NC STATE UNIVERSITY

Serial Communication Specifics

- Start Data Parity  Stop

= Data frame fields %
;bl’[

= Start bit (one bit) eeenye

= Data (LSB or MSB first, and size — SP:
7, 8, 9 bits) ; w el Ve Lieadan
= QOptional parity bit is used to make total ' Message |

number of ones in data even or odd
= Stop bit (one or two bits)

= All devices must use the same communications parameters
= E.g. communication speed (300 baud, 600, 1200, 2400, 9600, 14400, 19200, etc.)

= Sophisticated network protocols have more information in each data frame
= Medium access control — when multiple nodes are on bus, they must arbitrate for permission to
transmit
= Addressing information — for which node is this message intended?
= Larger data payload
= Stronger error detection or error correction information
= Request for immediate response (“in-frame”)



NC STATE UNIVERSITY

Error Detection

= Can send additional information to verify data was received correctly
= Need to specify which parity to expect: even, odd or none.

= Parity bit is set so that total number of “1” bits in data and parity is even (for even
parity) or odd (for odd parity)
= 01110111 has 6 “1” bits, so parity bit will be 1 for odd parity, O for even parity
= 01100111 has 5 “1” bits, so parity bit will be 0 for odd parity, 1 for even parity

= Single parity bit detectsif 1, 3, 5, 7 or 9 bits are corrupted, but doesn’t detect an even
number of corrupted bits
= Stronger error detection codes (e.g. Cyclic Redundancy Check) exist and use multiple
bits (e.g. 8, 16), and can detect many more corruptions.
= Used for CAN, USB, Ethernet, Bluetooth, etc.



NC STATE UNIVERSITY

Tools for Serial Communications Development

= Tedious and slow to debug

serial protocols with just an
oscilloscope

= |nstead use a logic analyzer to

decode bus traffic

= Worth its weight in gold!

= Analog Discovery and Waveforms
= Saelae 8-Channel Logic Analyzer

= Build your own: with Logic Sniffer
or related open-source project

Start Dev. Address ACK Reg. Address ACK Data ACK Stop
_J_. - =] - & - Tv L
Name 10 T| Ready |200q' gamples at 1%'5 MHz | 2016—‘}1—25 ll:lﬁ:Sl.q’?B il - 4
-1¢ TH hiowr lacidhza |ackho1 lackston |-
=S < I L A o O A R LT
5CL o1l
X —1.64us‘ 14. 76 us 31.16 us 47.56 us £3.96 us
Q Saleae Logic 1.1.15 - [Connected] - [ MHz, 1 M Samples] - o

[1MSamples | [3MHz  ¥| Start




NC STATE UNIVERSITY

SOFTWARE ARCHITECTURE FOR
HANDLING ASYNCHRONOUS
COMMUNICATION



NC STATE UNIVERSITY

Software Structure

= Communication is asynchronous to program
= Don’t know what code the program will be executing ...
= when the next item arrives
= when current outgoing item completes transmission
= when an error occurs
= Need to synchronize between program and serial communication interface somehow
= Options
= Polling
= Wait until data is available
= Simple but inefficient of processor time
= |nterrupt

= CPU interrupts program when data is available
= Efficient, but more complex



NC STATE UNIVERSITY

Serial Communications and Interrupts

. : : Main Program or
Want to provide multiple threads of other threads

control in the program

= Main program (and subroutines it calls) : :
= ISR(s) send_string get_string

= Transmit ISR activity — executes when serial
interface is ready to send another character

= Receive ISR activity — executes when serial
interface receives a character

= Error ISR(s) activity — execute if an error

occurs
= Need a way of buffering information
between threads Serial
= Solution: circular queue with head and tail Interface
pointers

= One for tx, one for rx



NC STATE UNIVERSITY

Enabling and Connecting Interrupts to ISRs

void UART2_IRQHandler() {

= ARM Cortex-MO+ provides one if (transmitter ready) {
IRQ for all of a communication if (more data to send) {
interface’s events get next byte

send 1t out transmitter

= Within ISR (IRQ Handler), need to }
determine what triggered the

. . 1f (received data) {
interrupt, and then service it get byte from receiver

save it

}

if (error occurred) {
handle error

}



NC STATE UNIVERSITY

Code to Implement Queues

Older newer
= Enqueue at tail: tail_ptr points to next free entry data data
—
= Dequeue from head: head ptr points to item to remove
= #define the queue size to make it easy to change T

= One queue per direction

write data
= ISR unloads tx_q for transmit read data

from head to tail
= |SR loads rx_q for receive

= Other threads (e.g. main) load tx_g and unload rx_q
= Need to wrap pointer at end of buffer to make it circular, @ @
= Use % (modulus, remainder) operator if queue size is not power of two

! I

= Use & (bitwise and) if queue size is a power of two
= Queue is empty if size ==
= Queue is full if size == Q_SIZE




Defining the Queues

#define Q_SIZE (32)

typedef struct {
unsigned char Data[Q_SIZE];
unsigned int Head; // points to oldest data element
unsigned int Tail; // points to next free space
unsigned int Size; // quantity of elements in queue

20

NC STATE UNIVERSITY



NC STATE UNIVERSITY

Initialization and Status Inquiries

void Q_Init(Q_T * q) {
unsigned int 1;
for (i=0; 1<Q_SIZE; i++)
g->Datal[i] = 0; // to simplify our lives when debugging
g->Head = O0;
q->Tail = 0;
g->Size = 0;

}

int Q_Empty(Q.T * q) {
return g->Size == 0;

}

int Q_Full(Q_T * q) {
return q->Size == Q_SIZE;
}

2!



Enqueue and Dequeue

int Q_Enqueue(Q_T * g, unsigned char d) {
// What if queue 1is full?
it (1QFull(q)) {
g->Datal[g->Tail++] = d;
g->Tail %= Q_SIZE;
g->Size++;
return 1; // success
} else

return 0; // failure
}

unsigned char Q_Dequeue(Q_T * q) {

// Must check to see if queue is empty before dequeueing
unsigned char t=0;

it (!Q_Empty(q)) {
t = g->Datal[q->Head];
g->Data[q->Head++] = 0; // to simplify debugging
g->Head %= Q_SIZE;
q->Size--;
}

return t;

NC STATE UNIVERSITY



Using the Queues

= Sending data:

if (!Queue_Full(.)) {
Queue_Enqueue(.., C€)

}

= Receiving data:

1f (!'Queue_Empty(.)) {
c=Queue_pDequeue(..)

}

23

NC STATE UNIVERSITY



NC STATE UNIVERSITY

SOFTWARE DESIGNS - PARSING
MESSAGES



NC STATE UNIVERSITY

Decoding Messages

= Two types of messages
= Actual binary data sent

Detect start of message

Identify message type

Optional: Confirm integrity with CRC

Based on this message type, copy binary data from message fields into variables

= May need to use pointers and casting to get code to translate formats correctly and safely

= ASCII text characters representing data sent

25

Detect start of message
Identify message type
Optional: Confirm integrity with CRC

Based on this message type, translate (parse) the data from the ASCII message format into a
binary format

Copy the binary data into variables



Example UART Application

= Many subsystems connect with the rest

of the system using asynchronous
serial communications

Table 3.1 Default Protocols and Port Configurations
Port | Input Default Setup Output | Default Setup
Protocol Language

1 TSIP Baud Rate: 9600 | TSIP Baud Rate: 9600
Data Bits: 8 Data Bits: 8
Parity: Odd Party: Odd
Stop Bits: 1 Stop Bits: 1
Mo Flow Control No Flow Control

2 RTCM Baud Rate: 4800 | NMEA Baud Rate: 4800
Data Bits: 8 Data Bits: 8
Panty: None Parity: None
Stop Bits: 1 Stop Bits: 1
Mo Flow Control Mo Flow Control

26

NC STATE UNIVERSITY

= Lassen iQ GPS receiver module from Trimble
= Two full-duplex asynch. serial connections
= Three protocols supported
= Support higher speeds through reconfiguration



Example Binary Serial Data: TSIP

Table A.52 Report Packet 0x84 Data Formats

27

TSIP packet structure 1s the same for both commands and reports. The
packet format 15

<DLE> <ids> <data string bytes> <DLE> <ETX>
Where:
+ <DLE> 1s the byte 0x10
+ <ETX> 1s the byte 0x03

+ =1d> 15 a packet identifier byte. which can have anv value excepting
<ETX> and <DLE=.

switch (id) {

case 0x84:
Tat = *((double *) (&msg[0]));
Ton = *((double *) (&msg[8]));
alt = *((double *) (&msg[16]));
clb = *((double *) (&msg[24]));
tof = *((float *) (&msg[32]));
break;

case 0Ox4A:

default:
break;
}

NC STATE UNIVERSITY

Byte Item Type Units
0-7 |atitude Double radians; + for north,
- for south
a-15 longitude Double radians; + for east,
- for west

16-23 altitude Double meters
24-31 clock bias Double meters
32-35 time-of-fix Single seconds

Output ID | Packet Description

Oxd 1 GPS time

Oxd2 single-precision XYZ position

Oxd3 velocity fix (XYZ ECEF)

Oxd5 software version information

OxdG health of Receiver

Oxd 7 signal level for all satellites

Oxd A single-precision LLA position

Ox4B machine code/status

Ox4D oscillator offset

OxdE response to set GPS time

055 /O options

056 velocity fix (ENU)




NC STATE UNIVERSITY

Example ASCII Serial Data: NMEA-0183

GPRMC, hh .8s,A,1111.11,a, VY, a,
SIDMSG,Dl1,D2,D3,D4,.......,Dn*CS[CR] [LF] $ mmss.ss a,yyyyy.vy,a

..-L$ 23

The “$” signifies the start of a message.

X.X,X.X,XXXXXX,X.X,a,1*hh<CR><LF>

Table E.8

ID The talker identification is a two letter mnemonic RMC - Recommended Minimum Specific GPS / Transit Data
) . . M P t
which describes the source of the navigation essage Farameters
information. The GP identification signifies a GPS Field # Description
SOUICE. _ _ o _ 1 UTC of Position Fix (when UTC offset has been decoded by
MSG The message 1dentification 15 a three letter mnemonic the receiver).
which describes the message content and the number 5 Status: A = Valid, V = navigation receiver warning
and order of the data fields.
o 34 Latitude, N (North) or S (South).
Commas serve as delimiters for the data fields.
: ) 5,6 Longitude, E (East) or W (West).
Dn Each message contains multiple data fields (Dn)
which are delimited by commas 7 Speed over the ground (SOG) in knots
e The asterisk serves as a checksum delimiter. 8 Track made good in degrees true.
CS The checksum field contains two ASCII characters 9 Date: dd/mm/yy
which indicate the hexadecimal value of the 10,11 Magnetic variation in degrees, E = East / W= West
checksum. 12 Position System Mode Indicator; A=Autonomous,
[CR][LF] The carnage return [CR] and line feed [LF] D=Differential, E=Estimated (Dead Reckoning), M=Manual
combination terminate the message. Input, S=Simulation Mode, N=Data Not Valid
hh Checksum (Mandatory for RMC)

28




State Machine for Parsing NMEA-0183

29

Talker + Inc. counter

Sentence
Type

ppend char to buf.

*\r or \n,
non-text, or
counter>6

or $YXXDR

Ir or In

Sentence
Body

Enqueue char

Enqueue char

Any char.
Save as checksum1

Any char.
Save as checksum?2

buf==$SDDBT, $VWVHW,

Any char. except *

NC STATE UNIVERSITY

Any char. except *, \r or \n
Append char to buf.

Enqueue all chars. from buf



NC STATE UNIVERSITY

Parsing
switch (parser_state) {
case TALKER_SENTENCE_TYPE:
switch (msg[i1]) {

‘Ar’ :
‘An’ :
parser_state = START;
break;
default:
1f (Is_Not_Character(msg[i]) || n>6) {
parser_state = START;
} else {
buf[n++] = msg[i];
}
break;

}
if ((n==6) & .. ){

parser_state = SENTENCE_BODY;
}

break;

case SENTENCE_BODY:
break;

30



NC STATE UNIVERSITY

KL25Z AND FREEDOM SPECIFICS



Freedom KL25Z Serial I/0O

N PTA2 -4 3~ PTCO
s PTD4 -6 5~ PTC3 mm
PTA12 - 8 / - PTC4 mm
I PTA4 - 10 9-PTCS mm
PTAS - 12 11-PTC6 mm
mmPTC8 - 14 13 - PTC10 mm

mmPTCO - 16

PTA13 - 2 EX 1 - PTC12
mmm PTD5 -4 CX 23 - PTC13
= PTDO-6 s-mcw
mmm pTD2 - 8 CKCM7 - PTC17
mpTD3 - 10 N0 - PTAT6 =
mm P01 - 12 CKJH1 - PTAT7 mm
GND - 14 EXX13 - PTE31
VREFH - 16 L35 - NC
mamm PTE1 - 18
mm PTEO - 20

o 19 ~ PTD7 mmmm

32

PTE30 - 1 X }112 - PTC1 mm
PTE20 - 9 X .10 - PTC2 mmm
m PTE23 - 7KK )8 - PTB3 mm
mm PTE22 -5
= PTE21 -3
= PTE20 - 1

PTES - 15
mm PTE4 - 13
I PTE3 - 11
N PTE2-9
mm PTB11 -7
mm PTB10 -5

PTBO -3

PTB8 - 1

UART
SPI
12C

NC STATE UNIVERSITY



KL25Z Clock Gating for Serial Comm.

33

NC STATE UNIVERSITY

Bn_ 31 30 29 28 _ 27 26 25 24 ‘ 23 22 _ 21 20 _ 19 18 17 16
R 1 0 0 o 0
|_
SPI1 | SPIO CMP | @
w
o
Reset 1 1 1 1 0 0 0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8 ‘ 7 6 5 4 3 2 1 0
R 1 0
12C1 | 12C0

W

Reset

= Set corresponding bit(s) in SIM_SCGC4 Register




NC STATE UNIVERSITY

ASYNCHRONOUS SERIAL (UART)
COMMUNICATIONS



NC STATE UNIVERSITY

Transmitter Basics

EStart Data Parity Stop
. bit it bit~ bit

Data Sampling
Time at Receiver

=
3
D
N
®
o

= |f no data to send, keep sending 1 (stop bit) —idle line

= When there is a data word to send
= Send a O (start bit) to indicate the start of a word
= Send each data bit in the word (use a shift register for the transmit buffer)
= Send a 1 (stop bit) to indicate the end of the word

35



NC STATE UNIVERSITY

Receiver Basics

EStart Data Parity Stop
. bit it bit -~ ibit

Data Sampling
Time at Receiver

0487 8wl |
Gz
66
Sh1
66"
69"
G2:"1
681
G'6."1
G041

= Wait for a falling edge (beginning of a Start bit)
= Then wait % bit time
= Do the following for as many data bits in the word
= Wait 1 bit time
= Read the data bit and shift it into a receive buffer (shift register)
= Wait 1 bit time
= Read the bit
= if 1 (Stop bit), then OK
= if 0, there’s a problem!

34



NC STATE UNIVERSITY

For this to work...

= Transmitter and receiver must agree on several things (protocol)

37

Order of data bits
Number of data bits
What a start bit is (1 or 0)
What a stop bit is (1 or 0)
How long a bit lasts

= Transmitter and receiver clocks must be reasonably close in frequency, since the only timing
reference is the start of the start bit



NC STATE UNIVERSITY

KL25 UARTSs

= UART: Universal (configurable) Asynchronous Receiver/Transmitter

= UARTO

= Low Power
= Can oversample from 4x to 32x
= |s used by debugger MCU on Freedom KL25Z, so not available

= UART1, UART2

= More basic, fewer features, easier to program

38



NC STATE UNIVERSITY

UART Transmitter

Internal Bus

(Wite-Crnly)
LOOPS

UART_D — Tx Buffer

Loop To Receive

II,—"' 11-BIT Transmit Shift Register Control Data In

=
g 3 }
To TxD Pin
1 @ Baud | |H|8|7]8|5]4|8|2]1]0]L D‘
Rate Clock o A A
SHIFT DIRECTION j}ﬁ
y \ i Iy TXINV
o —
< il —_
[ o — &
s 2 g =
- w @ —
* E & = =
|—’. 2 5 o 2
PE ; I o
Parlty_ e = [a1]
Generation S
> UART Controls TxD
R -
' Transmit Control o ;?] IZDic
TXDIR | TxD Direction g
BRK13 1
Y
TDRE [
TIE [
_ Tx Interrupt
T1C Request
TCIE




NC STATE UNIVERSITY

UART Receiver

< INTERNAL BUS >
SBR12:0 ' DATA BUFFER
4>
BAUD BAUDRATE
CLOCK ™| GENERATOR > a VARIABLE 12-BIT RECEIVE e - M
Y = SHIFT REGISTER < <« M0
w o
RE ™  RECEWVE [* ) < [BKDE
- CONTROL > HEEEEN u ~ | MSBF
RAF 7 <—{ RXINV
1 SHIFT DIRECTION i>
RxD =
LOOPS = RECEIVER ) i
RSRC —* SOURCE : r
CONTROL o N ¥
o PL%F(!;E’ WAKEUP
From Transmitter PT - LOGIC
—_—=
Y
L -
\ >
RxD F DMA Requests
»| ACTIVE EDGE » |RQ/DMA | -
DETECT LOGIC IRQ Requests

49



Input Data Oversampling

4!

A

[ —

L

S

/

~

NC STATE UNIVERSITY

B

\

N

= When receiving, UART oversamples incoming data line
= Extra samples allow voting, improving noise immunity

= Better synchronization to incoming data, improving noise immunity

= UARTO provides configurable oversampling from 4x to 32x
= Put desired oversampling factor minus one into UARTO Control Register 4, OSR bits.

= UART1, UART2 have fixed 16x oversampling

7




NC STATE UNIVERSITY

Baud Rate Generator

Modulo Divide By
(1 through 8191)
B Divide By
UART Module Clock — SBR[12:0] 16 ™ Tx Baud Rate
Baud Rate Generator Rx Sampling Clock
Off If [SBR12:SBR0] = 0 (16 x Baud Rate)
Baud Rate — UART Module Clock
SBR[12:0] x 16

= Need to divide module clock frequency down to desired baud rate * oversampling
factor

= Example
= 24 MHz -> 4800 baud with 16x oversampling

= Division factor = 24E6/(4800*16) = 312.5. Must round to closest integer value ( 312 or 313), will
have a slight frequency error.

42



Using the UART

= When can we transmit?

= Transmit buffer must be empty
= Can poll UARTx->S1 TDRE flag

= Or we can use an interrupt, in which case we
will need to queue up data

= Put data to be sent into UARTx_D
(UARTx->D)

43

NC STATE UNIVERSITY

= When can we receive a byte?

= Receive buffer must be full
= Can poll UARTx->S1 RDRF flag

= Or we can use an interrupt, and again we will
need to queue the data

= Get data from UARTx_D (UARTx->D)



UART Control Register 1 (UARTO_C1)

44

Read
Write

Bit T G b 4 3 2 1

NC STATE UNIVERSITY

LOOPS DOZEEN RSRC M WAKE ILT PE

PT

Reset 0 0 0 0 0 0 0

LOOPS: Enables loopback/single-pin (TX/RX) mode
DOZEEN: Doze enable — disable UART in sleep mode
RSRC: Selects between loopback and single-pin mode
M: Select 9-bit data mode (instead of 8-bit data)
WAKE: Wakeup method

ILT: Idle line type

PE: Parity enabled with 1

PT. Odd parity with 1, even parity with O



45

UART Control Register 2 (UARTO_C2)

Bit
Head
Write

Heset

= Interrupt Enables

= TIE: Interrupt when Transmit Data Register is empty

T
TIE

G
TCIE

3]
RIE

4

3

NC STATE UNIVERSITY

0

0

ILIE

TE

RE

RWLU

0

= TCIE: Interrupt when transmission completes

= RIE: Interrupt when receiver has data ready

= Module Enables

= TE: Transmitter enable
= RE: Receiver enable

= Other

SBK

= RWU: Put receiver in standby mode, will wake up when condition occurs

= SBK: Send a break character (all zeroes)



UART Status Register 1 (UART_S1)

45

Bit T B & 4

NC STATE UNIVERSITY

Read TDRE TC RDRF IDLE

OR

NF

FE

PF

Write wic

wic

wic

wic

wic

Reset 1 1 0 0

TDRE: Transmit data register empty, can write more data to data register

TC: Transmission complete.

RDRF: Receiver data register full, can read data from data register

IDLE: UART receive line has been idle for one full character time

OR: Receive overrun. Received data has overwritten previous data in receive buffer

NF: Noise flag. Receiver data bit samples don’t agree.

FE: Framing error. Received O for a stop bit, expected 1.

PF: Parity error. Incorrect parity received.



UART Status Register 2 (UARTx_S2)

47

Bit
Read
Write

Reset

LBDIF: LIN break detect interrupt flag
RXEDGIF: Active edge on receive pin detected
MSBF: Send MSB first. Should be 0 for R$232

7

6

5

4

3

LEKDIF

RXEDGIF

MSBF

RXINV

RWUID

BRK13

LEKDE

RAF

0

0

0

0

RXINV: Invert received signals (data, start, stop, etc.)
RWUID: Set idle bit upon wakeup?
BRK13: Set break character to 13 bits long (not 10)
LBKDE: LIN break character time.
RAF: Receiver is actively receiving data (not idle line)

0

NC STATE UNIVERSITY
0



Software for Polled Serial Comm.

48

void Init_UART2(uint32_t baud_rate) {

uint32_t divisor;

// enable clock to UART and Port A
SIM->SCGC4 |= SIM_SCGC4_UARTZ2_MASK;
SIM->SCGC5 |= SIM_SCGC5_PORTE_MASK;

// connect UART to pins for PTE22, PTE23

PORTE->PCR[22] = PORT_PCR_MUX(4);

PORTE->PCR[23] = PORT_PCR_MUX(4);

// ensure tx and rx are disabled before configuration
UART2->C2 &= ~(UARTLP_C2_TE_MASK | UARTLP_C2_RE_MASK) ;

// Set baud rate to 4800 baud

divisor = BUS_CLOCK/(baud_rate*16);
UART2->BDH = UART_BDH_SBR(diViSOF>>8);
UART2->BDL = UART_BDL_SBR(divisor);

// No parity, 8 bits, two stop bits, other settings;
UART2->C1l = UART2->S2 = UART2->C3 = O;

// Enable transmitter and receiver
UART2->C2 = UART_C2_TE_MASK | UART_CZ2_RE_MASK;

NC STATE UNIVERSITY



Polled Serial Transmitter Code

void UART2_Transmit_Pol1(uint8_t data) {
// wait until transmit data register 1s empty
while (!(UART2->S1 & UART_S1_TDRE_MASK))

UART2->D = data;

}
void main(void) {
char c;
// Initialization goes here
while (1) {
for (c="a'; c<="z2"; c++) {

UARTZ2_Transmit_Pol1(c);

49

NC STATE UNIVERSITY



Polled Serial Receiver Code with Echo

uint8_t UART2_Receive_Poll(void) {
// wait until receive data register is full
while (!(UART2->S1 & UART_S1_RDRF_MASK))

return UARTZ2->D;

}

void main(void) {
char c;
// Initialization goes here
while (1) {

C = UART2_Receive_Poll1();
UARTZ2_Transmit_Pol1(c);

50

NC STATE UNIVERSITY



Software for Interrupt-Driven Serial Comm.

= Use interrupts
= First, initialize peripheral to generate interrupts

= Second, create single ISR with three sections corresponding to cause of interrupt
= Transmitter
= Receiver
= Error

51

NC STATE UNIVERSITY



NC STATE UNIVERSITY

Peripheral Initialization

void Init_UART2(uint32_t baud_rate) {

NVIC_SetPriority(UART2_IRQn, 2);
NVIC_ClearPendingIRQ(UART2_IRQnN);
NVIC_EnableIRQ(UART2_IRQn);

UART2->C2 |= UART_C2_TIE_MASK |
UART_CZ2_RIE_MASK;

UART2->C2 |= UART_C2_RIE_MASK;

Q_Init(&TxQ);

Q_Ini1t(&RxQ);

52



Interrupt Handler: Transmitter

void UARTZ2_IRQHandler(void) {
NVIC_ClearPendingIRQ(UARTZ2_IRQn);
if (UART2->S1 & UART_S1_TDRE_MASK) {
// can send another character
it (1Q_Empty(&TxQ)) {
UART2->D = Q_Dequeue (&TxQ);
} else {
// queue 1s empty so disable tx
UART2->C2 &= ~UART_CZ2_TIE_MASK;

53

NC STATE UNIVERSITY



NC STATE UNIVERSITY

Interrupt Handler: Receiver

void UARTZ2_IRQHandler(void) {

if (UART2->S1 & UART_S1_RDRF_MASK) {
// received a character

1f ('Q_Full(&RxQ)) {
Q_Enqueue (&RxQ, UART2->D);

} else {
// error - queue full.
while (1)

}

54



NC STATE UNIVERSITY

Interrupt Handler: Error Cases

void UARTZ2_IRQHandler(void) {

if (UART2->S1 & (UART_S1_OR_MASK |
UART_S1_NF_MASK |
UART_S1_FE_MASK |
UART_S1_PF_MASK)) {
// handle the error

// clear the flag

55



Example UART Application

= Many subsystems connect with the
rest of the system using
asynchronous serial
communications

Table 3.1 Default Protocols and Port Configurations
Port | Input Default Setup Output | Default Setup
Protocol Language

1 TSIP Baud Rate: 9600 | TSIP Baud Rate: 95600
Data Bits: 8 Data Bits: &
Parity: Odd Parity: Odd
Stop Bits: 1 Stop Bits: 1
Mo Flow Confrol No Flow Control

2 RTCM Baud Rate: 4300 | NMEA Baud Rate: 4500
Data Bits: 8 Data Bits: 8
Panty: None Parity: None
Stop Bits: 1 Stop Bits: 1
Mo Flow Confrol Mo Flow Control

54

NC STATE UNIVERSITY

Lassen iQ GPS receiver module from
Trimble

= Two full-duplex asynch. serial
connections

= Three protocols supported

= Support higher speeds through
reconfiguration



NC STATE UNIVERSITY

USB to UART Interface

= PCs haven’t had external asynchronous serial

interfaces for a while, so how do we —
communicate with a UART? lIllIJlllI 0] SUSPEND

* USB to UART interface = USBO1A USB to serial adaptor
= USB connection to PC =  http://www.pololu.com/catalog/product/391
= Logic level (0-3.3V) to microcontroller’s UART (not = Can also supply 5V, 3.3 V from USB

RS232 voltage levels)

57


http://www.pololu.com/catalog/product/391
http://www.pololu.com/catalog/product/391

NC STATE UNIVERSITY
Building on Asynchronous Comm.

= Asynchronous communication is useful but runs into some problems when
applying it to some applications

= Problem #1

= Logic-level signals (0 to 1.65V, 1.65 V to 3.3 V) are sensitive to noise and signal
degradation

= Problem #2

= Point-to-point topology does not support a large number of nodes well
= Need a dedicated wire to send information from one device to another
= Need a UART channel for each device the MCU needs to talk to
= Single transmitter, single receiver per data wire

58



Solution to Noise: Higher Voltages

—+25 T L &
0.1uF ,_-_TE
Lpace Space
Logic 0" S
0 1;,1F+
2
— +3vh
Tranzition Region 3 -
_ ok Tirn 0.1uF
Logic'1" - hark
TTL/CMOS
- IS T INPUTS

= Use higher voltages to improve noise margin
+3to+15V,-3to-15V

TTL/CMOS
QUTPUTS

= Example IC (Maxim MAX3232) uses charge
pumps to generate higher voltages from 3.3\
supply rail

59

NC STATE UNIVERSITY

R10UT

2
T
T 0pF
MAXIMN ="
MAX3232 Ve 6
L c4
EO.MF
> T10UT |14
RS-232
QUTPUTS
T20UT g7
So———— 4
< L
5kQ2 RS-232
INPUTS
— R2IN] 8
-
5kQ2

__U5



NC STATE UNIVERSITY

Solution to Noise: Differential Signaling

VG oo i=1MHz, tLH =3ns, 4= 3ns
Data into Transmitter % \\
-K- 15V 15V N -
0 | |
_-‘15 IDPH‘ i"‘— _...15 tDPHL ;L,.‘_
B |
Data out of >C
Transmitter, on bus A
Vo VoD =[Va-Vp] |
Data out of Receiver Voo © Vo

_\_JG

MAXT4640E
MAXT4641E

= Use differential signaling

= Send two signals: Buffered data (A), buffered
complement of data (B)

= Receiver compares the two signals to determine if data is
aone (A>B)orazero(B>A)

€0



é!

NC STATE UNIVERSITY

Solutions to Poor Scaling
= Approaches

= Allow one transmitter to drive multiple receivers (multi-drop)

= Connect all transmitters and all receivers to same data line (multi-point

network). Need to add a medium access control technique so all nodes can
share the wire

= Example Protocols
= RS-232: higher voltages, point-to-point

= RS-422: higher voltages, differential data transmission, multi-drop
= RS-485: higher voltages, multi-point



NC STATE UNIVERSITY

Example Protocols
= RS-232: higher voltages, point-to-point

= RS-422: higher voltages, differential data transmission, multi-drop

= RS-485: higher voltages, multi-point

€2



NC STATE UNIVERSITY

SPI COMMUNICATIONS



NC STATE UNIVERSITY
l ! i l

Hardware Architecture

Select Select Select Select
Peripheral Peripheral Peripheral Peripheral
Clk DIn DOut Din DOut Din DOut Din DOut
11 il il 1
(

= All chips share bus signals
= Clock SCK
= Data lines MOSI (master out, slave in) and MISO (master in, slave out)

= Each peripheral has its own chip select line (CS)
= Master (MCU) asserts the CS line of only the peripheral it’'s communicating with

64



NC STATE UNIVERSITY

Serial Data Transmission

Parallel Data In

D3 D2 D1 DO
L L L L Serial Serial
A A A A

Clk Clk ‘

D3 Vv D2 v D1 v DO
Parallel Data Out

Transmitting Device Receiving Device

Clock _[1LITLI LML LML

Serial Data —_AD7XD8XD5AD4XD3X D2 A D1 X DO
Data Sampling TimeatReceiver— 1L | | | | | | |

= Use shift registers and a clock signal to convert between serial and parallel formats
= Synchronous: an explicit clock signal is along with the data signal

€5



SPI Signal Connection Overview

NC STATE UNIVERSITY

) MASTER SLAVE ,
J L
MOSI MOSI

> »
SPI SHIFTER SPI SHIFTER
MISO MISO
8 BITS < < 8 BITS N
SPSCK SPSCK T
> >
CLOCK
GENERATOR = oz
-

3

= SPI Communication consists of a series of data swaps between the

Master and the Slave

= As the master shifts out its transmit byte, it is also shifting in the received byte

from the Slave

€4



SPI Control Register 1 (SPIx_C1)

€7

NC STATE UNIVERSITY

Bit 7 6 5 3 2 1 0
Eﬁﬁg SPIE SPE SPTIE MSTR CPOL CPHA SSOE LSBFE
Reset 0 0 0 0 0 1 0 0

SPIE: SPI interrupt enable for receive buffer full and mode fault
SPE: SPI system enable

SPTIE: SPI interrupt enable for transmit buffer empty

MSTR: select master mode

CPOL: Clock polarity

CPHA: Clock phase

SSOE: Slave select output enable



NC STATE UNIVERSITY

Clock and Phase Settings: CPHA =1

BIT TIME # : 5 6
(REFERENCE) |

o
3}

(CPOL=0) /7’;_\\_7‘,_\_/_( \_/_\_/
m_/_\LE /_\\_/_\\_/_\
|
< \

SPSCK v
(CPOL = 1) h_/

SAMPLE IN
(MISO OR MOSI)

NPT

vos) Y X >/—55 \

(MASTER OUT) N__c¢ /|
MSB FIRST BIT7 BIT& BIT 2 BIT 1 BIT O
LSE FIRST BITO BIT 1 BITS BITE BIT7
- (¢
MISO | / Y | \ N\
(SLAVE OUT) T o N A / //
55 oUT y [/
(MASTER) [, er 7
L —
S5 IN - .
(SLAVE) LN (c A

€8



Clock and Phase Settings: CPHA =0

BIT TIME #

(REFERENCE)

2

i

B

SPSCK
(CPOL =0}

SPSCK
(CPOL = 1)

SAMPLE IN
(MISO OR MOSI)

x.j;
5

$5—

v

a
C\

_8%

MOSI \5
(MASTER OUT)

MSE FIRST
LSE FIRST

MISO i

s

BITT
BITO

(SLAVE OUT)

SSOUT
(MASTER)

N
/

R P

BIT 2
BIT5

BITO
BITT

QNN
S

d
R

A
/]

SSIN - -

(SLAVE) o _

€9

L")
L=

NC STATE UNIVERSITY



SPI Control Re

70

gister 2 (SPIx_C2)

NC STATE UNIVERSITY

Bit 7 3 2 1 0
ﬁﬁ,ﬁg SPMIE SPLPIE TXDMAE MODFEN BIDIROE RXDMAE SPISWAI SPCO
Reset 0 0 0 0 0 0 0 0

SPMIE: SPI interrupt enable for receive data match

SPLPIE: SPI interrupt enable for wake from low-power mode
TXDMAE: Transmit DMA enable
MODFEN: Master mode-fault function enable

BIDIROE

RDDMAE: Receive DMA enable
SPISWAI: Stop SPI in wait mode
SPCO: Single wire (bidirectional) mode



NC STATE UNIVERSITY

SPI Baud Rate Register (SPIx_BR)

Bit Fi ] 5 4 3 2 1 0
Wit H SPPAEO SPRIS:0]
Write
Reset 0 0 0 0 0 0 0 0

= SPPR: SPI baud rate prescale divisor: divides by n+1
= SPR: SPI baud rate divisor: divides by 2"*!

PRESCALER BAUD RATE DIVIDER
DIVIDE BY MASTER
CLSHE—:- 12 ET%EBB\; or 8 —>= 24 8, 16,32, 64, 128, —>SPI
P 256, or 512 BIT RATE
“ T
SPPR2:SPPR1:SPPR0O SPR3:SPR2:SPR1:SPR0
8 fSPI = fbus_clock/((SPPR+1)*ZSPR+1)

7!



NC STATE UNIVERSITY

Normal and Bidirectional Modes
When SPE =1 Master Mode MSTR =1 Slave Mode MSTR =0
Serial Out > MOSI Serial In MQOSI
Normal Mode
SPI SP|
SPC0=0
Serial In |-= MISO Serial Out = MISO
Serial Out [\ | MOMI Serial In =
Bidirectional Mode h BIDIROE
SPCO < 1 SPI BIDIROE SPI M
Serial In |-= Serial Out | = SISO




SPI Example: Secure Digital Card Access

73

SD cards have two
communication modes

= Native 4-bit
= Legacy SPI 1-bit
SPI mode O
= CPHA=0
= CPOL=0
Vpp from2.7t0 3.6V
CS: Chip Select (active low)
Source — FatFS FAT File System
Module:
= http://elm-chan.org/docs/mmc/mmc_e.html

microSD

SD |SPI

DAT1

DATO| DO

Vss

CLK [SCLK

vdd

CMD | DI

DAT3| CS

RN(wes|olov | o|F

DAT2

SDC

SD | SPI

DAT1

DATO| DO

Vss2

CLK [SCLK

Vece

Vssl

= http://elm-chan.org/fsw/ff/00index e.html

CMD | DI

\ov-mw.bu-ox\loog

CAT3| CS

DAT2

NC STATE UNIVERSITY

MMC

MMC | SPI

DAT | DO

Vss2

CLK [SCLK

Vce

Vssl

HNQ)AU‘IO\\Ig

CMD | DI

RES | CS



http://elm-chan.org/docs/mmc/mmc_e.html
http://elm-chan.org/docs/mmc/mmc_e.html
http://elm-chan.org/docs/mmc/mmc_e.html
http://elm-chan.org/docs/mmc/mmc_e.html
http://elm-chan.org/fsw/ff/00index_e.html
http://elm-chan.org/fsw/ff/00index_e.html
http://elm-chan.org/fsw/ff/00index_e.html
http://elm-chan.org/fsw/ff/00index_e.html

NC STATE UNIVERSITY

SPI Commands for SD Card

Command Frame CR , R1 resp. ,
| | | I |
seui LU LSO ULA UL ATt Rtr MHHUU
] | | | | |
DI |E|1 Index Argument CRC
| b5 DhOp31 | | | hO[bG bo |
DO jJ l] Flags

= Host sends a six-byte command packet to card
= Index, argument, CRC

= Host reads bytes from card until card signals it is ready
= Card returns
= Oxff while busy
= 0x00 when ready without errors
= 0x01-0x7f when error has occurred

74



NC STATE UNIVERSITY

SD Card Transactions

. DI [ cMD17
= Single Block Read /RS,
Do L] | DataPacket
1~8hyte
- e
DI CMD18 CMD12 cmd
= Multiple Block Res AL D | fRes.
Do |_| | Data Packet | | Data Packet | //I k-ll | Busy
Data Packet
Z 1hyte
I
DI [ cmD24 | ‘ Data Packet
. . DO Cm /|_| Data Busy
= Single Block Write Resp Resp:
%1“1355 Thyte.
DI [ cmD25 | ‘ Data Packet [ DataPacket stop {_|
Tran
DO Cmd /|_| Data A_| BUSY Data A_| BUSY Busy
Resp. Resp. Resn.
u

Multipe Block Write

75



NC STATE UNIVERSITY

12C COMMUNICATIONS



12C Bus Overview

77

= “Inter-Integrated Circuit” bus

= Multiple devices connected by a shared serial
bus

= Bus is typically controlled by master device,
slaves respond when addressed

= |2C bus has two signal lines
= SCL: Serial clock
= SDA: Serial data

= Full details available in “The 12C-bus
Specification”

DTMF
GENERATOR

PCD3311

NC STATE UNIVERSITY

ADPCM

PCD5032

ILI

LINE
INTERFACE

PCA10TO

MICRO-
CONTROLLER

PROCLXXX

[

BURST MODE
CONTROLLER

PCD5042

MSB57S



12C Bus Connections

78

SDA (Serial Data Line)

- . +VDD
pull-up
resistors Rpﬁ |j:| RD

SCL (Serial Clock Ling)

[
SCLKN1
| ouT

SCLK

S e
Eﬁb*‘{k oats_H g

L]

|
1

DEVICE 1

= Resistors pull up lines to V,

-

SCLKNZ2
| ouT

SCLK

_J[i? D?J?P2‘J
<<

L]

i

DEVICE 2

= QOpen-drain transistors pull lines down to ground

= Master generates SCL clock signal

Can range up to 400 kHz, 1 MHz, or more

MBCE31

NC STATE UNIVERSITY



12C Message Format

MsB

SCL |\;1 2 3 4 5

NC STATE UNIVERSITY

I

= Message-oriented data transfer with four

79

parts
1. Start condition
2. Slave Address transmission
= Address

= Command (read or write)

= Acknowledgement by receiver
3. Data fields

= Data byte

= Acknowledgement by receiver

T\

|
SOA \ /'m? XADE XADS XADdXADSXADEXAW):EW \ / XXX
Start Signal Calling Address Read/ Ack Data Byte No | | Stop
Write Bit Ack| [Signal
Bit

4. Stop condition

= Message is made of

= Bytes
= Acknowledgement bits

= Signals: Start, Stop, Repeated Start



NC STATE UNIVERSITY

Master Writing Data to Slave

/x" L Ve S S _/x’/
7S SLAVEADDRESS%W 71 A [/DATAZ] A |/ DATA|A/A
pd

P
VIS f‘";"/ LS L /"A

‘ _ data transferred
‘0" (write) (n bytes + acknowledge)

// from master to slave

A = acknowledge (SDA LOW)

A = not acknowledge (SDA HIGH)
S = START condition

MBCE05 P = STOP condition

from slave to master

80



NC STATE UNIVERSITY

Master Reading Data from Slave

1

/.f" S L2 V 7, V_x"f" iy

S/} SLAVE ADDRESS%WWQ’ A | DATA [A/] DATA [ AP

/’/ LS LLLL S s A //'
data transferred

MBC606 (read) (n bytes + acknowledge)

%

from master to slave
A = acknowledge (SDA LOW)

A = not acknowledge (SDA HIGH)
S = START condition

from slave to master

MBCE05 P = STOP condition

8!



NC STATE UNIVERSITY

12C Addressing: Devices and Registers

SDA  SCL

= Slave device addressing 0x32 |- ﬁﬂ
= Each slave device has a seven-bit address L™ 0x16
= Can support up to 27=128 different devices on same Ox66 |- I
bus B
= Different types of device have different default e s 0x20
addresses Master |
= Sometimes can select a secondary default address by et
tying a device pin to a different logic level fame TYP® | Address comment
= Register addressing STATUSIE_STATUS® | R | 00 | "L e e
= |2C devices may have multiple control, status, data ourxmss2 | R | mor | o e
registers and even data memory internally — how do UTXLsE™ | R | o | [AAEOLSE ol b eatime
we get at it? ourymsat® | m | o TS MSBsol ibtreatine
= Use the first byte of data as a register address ouTY1sE0® | R | o4 |PA¥SLSBsol b eakine
= Example: First seven registers of MMA8451 12C oUT ZMsE | R | o5 |[O1eENSBof dbieatime
accelerometer iz | n | oo |FASELE e

a8



NC STATE UNIVERSITY

’C with Register Addressing

SINGLE-BYTE WRITE
MASTER STARTl | SLAVE ADDRESS + WRITE REGISTER ADDRESS DATA STOP
SLAVE ACK ACK ACK

MULTIPLE-BYTE WRITE
MASTER START' | SLAVE ADDRESS + WRITE REGISTER ADDRESS DATA DATA STOP
SLAVE ACK ACK ACK ACK

SINGLE-BYTE READ
MASTER |[START| | SLAVE ADDRESS + WRITE REGISTER ADDRESS START| | SLAVE ADDRESS + READ Nack | | sTop
SLAVE ACK ACK ack || DATA

MULTIPLE-BYTE READ
MASTER STARTl | SLAVE ADDRESS + WRITE REGISTER ADDRESS START'l | SLAVE ADDRESS + READ ACK NACKl | STOP
SLAVE ACK ACK ACK | | DATA DATA

NOTES
1. THIS START IS EITHER A RESTART OR A STOP FOLLOWED BY A START.
2. THE SHADED AREAS REFPRESENT WHEN THE DEVICE IS LISTENING.

= Master drives communication

= Sends start condition, address of slave, read/write command
= Listens for acknowledgement from slave
= Sends register address (byte)

Listens for acknowledgement from slave

a3



NC STATE UNIVERSITY

KL25Z 12C Controller

Module Enable Address Write/Read
Interrupt

A DATA_MUX

ADDR_DECODE

T T

CTRL_REG |FREQ_REG| ADDR_REG | STATUS_REG | DATA_REG
| T L
Y |
> Input
Sync
In/Out
A START - Data
STOP Shift - -
[ Arbitration > Register
Control
Clock < _ -
Control - Address
> - Compare -

T
SCL SDA

84



NC STATE UNIVERSITY

Setting the I°C Baud Rate

Bit 7 B 5 4 | 3 2 1
RHead
Write MULT ICR
Reset 0 0 0 o | o 0 0 0

= |2Cx_F: Frequency Divider register
= MULT: specified multiplier mul = 2MULT
= valid values: 1, 2,4
= |CR: Clock Rate
= 12C baud rate = f, / (2MY'T * ICR)

85



NC STATE UNIVERSITY

12C Control Register 1 —12Cx_C1

Bit ) B 2] 4 3 2 1 0

Read
HCEN ICIE MST TX TXAK WUEN DMAEN
Write RSTA

Reset 0 0 0 0 0 0 0 0

= |ICEN - enable I12C module TX — Select 1 for master transmit and O for

= |ICIE - enable 12C interrupt master receive
TXAK — Transmit Acknowledge enable

RSTA — Repeat Start
WUEN — Wakeup enable
DMAEN — Enable DMA

= MST - select master mode
= 0=»1 generates Start condition

= 1=»0 generates Stop condition

84



|2C Status Register — 12Cx_S

Bit G

NC STATE UNIVERSITY

3 2 1 ]

ARBL

Read TCF BUSY
lAAS
Write

wic

SRW HNCIF R AK
RAM
wic

Reset 1 0 0

TCF — Transfer Complete flag set after
transferring byte and acknowledge bit

|IAAS — Addressed as a Slave
BUSY — bus busy
ARBL — arbitration lost

87

0 0 0 0

RAM — Range address match

SRW — when slave, indicates transmission
direction (O: slave receive, 1: slave
transmit)

lICIF: Interrupt pending flag
RXAK: 0: acknowledge signal received



12C Data Register —12Cx_D

ait 7 & & 4 | 3 2 1 0
Raad
Write DATA
Resat 0 0 0 o | o 0 0 0

= 8-bit data register

= Master transmit mode
= Writing to 12Cx_D starts a data transfer

= Master receive mode
= Reading from 12Cx_D starts reception of next byte

a8



NC STATE UNIVERSITY

Macros for Polled Communications

89

#define
#define
#define

#define
#define

#define
#define
#define

#define
#define

I2C_M_START
T2C_M_STOP
T2C_M_RSTART

T2C_TRAN
T2C_REC

BUSY_ACK
TRANS_COMP
TI2C_WAIT

NACK
ACK

I2C0->C1l |= I2C_CI1_MST_MASK
I12C0->Cl &= ~I2C_C1_MST_MASK
I2C0->C1l |= I2C_CI1_RSTA_MASK

I2C0->C1l |= I2C_C1_TX_MASK
I2C0->Cl &= ~I2C_Cl_TX_MASK

while(I2C0->S & 0x01)

while(! (I2C0->S & 0x80))

while((12C0->S & I2C_S_IICIF_MASK)==0){} \
I2C0->S |= I2C_S_IICIF_MASK;

I2C0->C1l |= I2C_C1_TXAK_MASK
T2C0->Cl &= ~I2C_Cl1_TXAK_MASK



NC STATE UNIVERSITY

Writing a Single Byte to a Device

TI2C_TRAN; /*set to transmit mode */
TI2C_M_START; /*send start */
I2C0->D = dev; /*send dev address */
I2C_WAIT; /*wait for ack */

I2C0->D = address; /*send write address */
I2C_WAIT;

I2C0->D = data; /*send data */

I2C_WAIT;

I2C_M_STOP;

90



NC STATE UNIVERSITY

Reading a Single Byte from a Device

I2C_TRAN; /*set to transmit mode */
I2C_M_START; /*send start */
I2C0->D = dev; /*send dev address */
I2C_WAIT; /*wait for completion */
I2C0->D = address; /*send read address */
I2C_WAIT; /*wait for completion */
I2C_M_RSTART; /*repeated start */
I2C0->D = (dev|0x1); /*send dev address (read) */
I2C_WAIT; /*wait for completion */
I2C_REC; /*set to recieve mode */
NACK ; /*set NACK after read */
data = I2C0->D; /*dummy read */
TI2C_WAIT; /*wait for completion */
I2C_M_STOP; /*send stop */

data = I2C0->D; /*read data */

9!



Reading Multiple Bytes from a Device: Set Up

92

I2C_TRAN;
I2C_M_START;
I2C0->D = dev;
I2C_WAIT;
I2C0->D =
I2C_WAIT;
I2C_M_RSTART;
I2C0->D =
I2C_WAIT;
I12C_REC;

address;

(dev|0x1);

/*set to transmit mode

."
" /

/*send start

/*send dev address
/*wait for ack */
/*send read address

ala /
Al

/*wait for completion

/*repeated start */

ala /
Al

ala
sl

NC STATE UNIVERSITY

."
" /

/*send dev address (read) */
/*wait for completion
/*set to receive mode

ala
sl
ala
sl



Reading Multiple Bytes from a Device: Data
// For each byte
1f(isLastRead) {

NACK ; /*set NACK after read
} else {

ACK; /*ACK after read */
}
data = 12C0->D; /*dummy read */
TI2C_WAIT; /*wait for completion

if(isLastRead) {
I2C_M_STOP; /*send stop */

}
data = 12C0->D; /*read real data */

93

ala
sl

ala /
sl

NC STATE UNIVERSITY



NC STATE UNIVERSITY

¥

Clear lICIF

Interrupt-Driven [2C Communications

= Example flowchart from KL25Z Reference Manual
chapter on 12C peripheral

Clear ARBL

= One ISR handles all possible cases
= |s MCU is in master or slave mode?

= Arbitration lost (in multi-master bus)?
= Transmit or receive?
= More data to send? |__‘_, l
= Acknowledge received? e o
" etc v sy
et ||| Sy || o

RTI

94



NC STATE UNIVERSITY

Example I°C Peripheral: 3-Axis Accelerometer

INT1
Internal | | Clock INT2
VDD [X—» > X-axis 0sC GEN —_—
VDDIO Transducer
Y-axis CtoV 14-bit Embedded . X spa
vss [ *| Transd Convert | ADC DSP “C
et onverter Functions —X] scL
= > Z-axis -
Transducer = ~
e — H_F -
—_— = T —
— = ~—
e -— - —
32 Data Point Freefall Transi_ent _Enhahced. Shake Detection Single, Double
Configurable 2nd Motion _ Detectlon_ Orientation .wﬂh thrOL_Jgh & Directional Tap
FIFO Buffer Detection (i.e., fast motion, Hysteresis Motion Detecti
with Watermark jolt) and Z-lockout Threshold election
| [ [ | I [

* Freescale MMA8451, included in Freedom KL25Z board

= Freedom KL26Z board has 3-axis accelerometer and 3-axis magnetometer (compass)
= Can measure acceleration in x/y/z directions up to +2g, + 4g, + 8g
= Can compute rotation about x/y axes (pitch, roll)

|12C addresses are Ox3A (read) and 0x3B (write)
= 011101r (r=1 for read, r=0 for write)

95



MMA8451 on Freedom KL25Z

l Earth Gravity

MMA8451Q

7

P3V3 P3V3
J_T TJ_
P3V3 c20 c18
oar L L o
R16 v R18 GND GND
47K 47K
P3V3 <
uz7 -
4
pg(3) 12C0_SCL g SCL 2 3
2 ?5,3 pg(3) 12CO_SDA §8< 6 I'spA 8 >
| @0 =
| MMAB451 SERIAL ADDRO 7y sno INTH ;1 NT1_ACCEL  pg(3)
TP23 INT2 INT2 ACCEL  pg(3)
| - @ MMABISI BYP 2 | o\ NCa g
10K T c22 .o N"é?g BERS
oNP — O1UF 999 NC15 [5—
GND G056 NC16 [—X
= MMABAETQ ool
GND ==
GND

94



NC STATE UNIVERSITY

Main Registers of Interest in MMAS8451

= Acceleration Data

Register

Address Comment

. , Name Type
= Signed (two’s complement) data

= 14 or 8 bits per channel (left aligned)

STATUSIF_STATUS(M® | R | ox00 | ' MODE =0, realfime stafus

= X-axis: 0x01, 0x02 FMODE > 0, FIFO status
= Y-axis: 0x03, 0x04 outxmss® | R | oo (R e o s
= Z-axis: 0x05, 0x06 OUT X LSBM® . ooy | 2lare BLS:::; ::-bitreal—time
= Resolution is about 1/4096 g per LSB (in+/-2 g — A e
mode) OUT_Y_MSB R | o0x03 .
= Who Am |I? OUT Y LSB(M2) R 004 |77 areE-LS:::;L#-bitreal-ume
= Used to identify which device this is (IC-specific) OUT 7 MSB n | oxgs |[7:01are 8 MSBs of 14-bit reaktime
= Device ID - Ox1A _ il ——
OUT 7 LSB® n | oge |72 are 6LSBs of 14-bitrealtime

sample

97



Control Register 1 (Ox2A)

0x2A: CTRL_REG1 Register (Read/Write)

NC STATE UNIVERSITY

Bit7

Bit6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

ASLP_RATE1

ASLP_RATEOD

DR2

DR1

DRO

LNQISE

F_READ

ACTIVE

= ACTIVE: set to 1 to put in active (not standby) mode
= FREAD: set to 1 to fast read just 8 MSBs of XYZ data
= LNOISE: low noise mode
= DR2-0: select output data rate from 1.56 Hz to 800

Hz

= ASLP_RATE1-0: Select Sleep mode rate from 1.56 to

50 Hz

98

Output Data
Rate

o O O O

800 Hz
400
200
100

50

12.5
6.25
1.56




NC STATE UNIVERSITY

Registers for Additional Features

= FIFO configuration = Sleep control registers
Offset per axis

* |Interrupt control and status
= Dynamic range = Transient event detection settings

= High-pass filter configuration Tap (pulse) detection settings
= Portrait/Landscape detection settings

= Freefall detection settings

99



NC STATE UNIVERSITY

if(i2c_read_byte(MMA_ADDR, REG_WHOAMI) == WHOAMI) {
Delay(10);
//set active, 14 bit data and 100 Hz ODR (0x19)
12c_write_byte(MMA_ADDR, REG_CTRL1, 0x01);
return 1;

Demonstration: Configure the Accelerometer

= Source code in mma8451.c

= Basic approach

= Read byte from the WHOAM I register, verify it matches expected value for
MMAS8451

= Delay...
= Set to active, 14-bit mode, 100 Hz sampling rate

100



NC STATE UNIVERSITY

Demonstration: Read the Accelerations

= Send 12C Start condition i2c_startQ;
12c_read_setup(MMA_ADDR , REG_XHI);

= Send read addresses (device and
register) for( i=0;i<5;i++) {
datal[i1] =

= Read first five bytes of data into i2c_repeated_read(1);

datali] oo
= Read last byte of data into datali] datali] = 12c_repeated_read(0);
(also sends stop condition) for ( i=0; i<3; i++ ) {
temp[i1] = (intl6_t)
((data[2*1]<<8) |
= Append bytes to form 16-bit words data[2*i+1]);
(int16 t) }

= Divide by four to adjust for scaling ~ // Right-justify, is 14 bits

acc_X = temp[0]/4;
acc_Y = temp[1l]/4;
acc_Z = temp[2]/4;

101



NC STATE UNIVERSITY

PROTOCOL COMPARISON



NC STATE UNIVERSITY

Factors to Consider
= How fast can the data get through?
= Depends on raw bit rate, protocol overhead in packet
= How many hardware signals do we need?
= May need clock line, chip select lines, etc.
= How do we connect multiple devices (topology)?

= Dedicated link and hardware per device - point-to-point

= One bus for master transmit/slave receive, one bus for slave transmit/master
receive

= All transmitters and receivers connected to same bus — multi-point

= How do we address a target device?
= Discrete hardware signal (chip select line)
= Address embedded in packet, decoded internally by receiver

How do these factors change as we add more devices?

103



NC STATE UNIVERSITY

Protocol Trade-Offs

Protocol | Speed Signals Regq. for Device Topology
Bidirectional Addressing

Communication
with N devices

Fast — Tens of Mbit/s ~ 2*N (TxD, RxD) None Point-to-point full
duplex
Fast —Tens of Mbit/s 2 (TxD, RxD) Added by user in  Multi-drop
software

Fast —Tens of Mbit/s  3+N for SCLK, MOS|, Hardware chip Multi-point full-
MISO, and one SS per select signal per  duplex, multi-drop

device device half-duplex buses
Moderate — 100 2:SCL, SDA In packet Multi-point half-
kbit/s, 400 kbit/s, | duplex bus

Mbit/s, 3.4 Mbit/s.
Packet overhead.

104



	Default Section
	Slide 1: Serial Communications
	Slide 2: Overview
	Slide 3: Evolution of Communications for ES
	Slide 4: Evolution of Communications for ES
	Slide 5: Why Communicate Serially?
	Slide 6: Example System
	Slide 7: Parallel Buses
	Slide 8: Synchronous Serial Data Transmission
	Slide 9: Synchronous Full-Duplex Serial Data Bus
	Slide 10: Synchronous Half-Duplex Serial Data Bus
	Slide 11: Asynchronous Serial Communication
	Slide 12: Serial Communication Specifics
	Slide 13: Error Detection
	Slide 14: Tools for Serial Communications Development

	Software Architecture and Design
	Slide 15: Software Architecture for Handling asynchronous Communication
	Slide 16: Software Structure
	Slide 17: Serial Communications and Interrupts
	Slide 18: Enabling and Connecting Interrupts to ISRs
	Slide 19: Code to Implement Queues
	Slide 20: Defining the Queues
	Slide 21: Initialization and Status Inquiries
	Slide 22: Enqueue and Dequeue
	Slide 23: Using the Queues
	Slide 24: Software Designs – Parsing Messages
	Slide 25: Decoding Messages
	Slide 26: Example UART Application
	Slide 27: Example Binary Serial Data: TSIP
	Slide 28: Example ASCII Serial Data: NMEA-0183
	Slide 29: State Machine for Parsing NMEA-0183
	Slide 30: Parsing

	KL25Z Serial Comm
	Slide 31: KL25Z and Freedom Specifics
	Slide 32: Freedom KL25Z Serial I/O
	Slide 33: KL25Z Clock Gating for Serial Comm.

	UART
	Slide 34: Asynchronous serial (UART) Communications
	Slide 35: Transmitter Basics
	Slide 36: Receiver Basics
	Slide 37: For this to work…
	Slide 38: KL25 UARTs
	Slide 39: UART Transmitter
	Slide 40: UART Receiver
	Slide 41: Input Data Oversampling
	Slide 42: Baud Rate Generator
	Slide 43: Using the UART
	Slide 44: UART Control Register 1 (UART0_C1)
	Slide 45: UART Control Register 2 (UART0_C2)
	Slide 46: UART Status Register 1 (UART_S1)
	Slide 47: UART Status Register 2 (UARTx_S2)
	Slide 48: Software for Polled Serial Comm.
	Slide 49: Polled Serial Transmitter Code
	Slide 50: Polled Serial Receiver Code with Echo
	Slide 51: Software for Interrupt-Driven Serial Comm.
	Slide 52: Peripheral Initialization
	Slide 53: Interrupt Handler: Transmitter
	Slide 54: Interrupt Handler: Receiver
	Slide 55: Interrupt Handler: Error Cases
	Slide 56: Example UART Application
	Slide 57: USB to UART Interface
	Slide 58: Building on Asynchronous Comm.
	Slide 59: Solution to Noise: Higher Voltages
	Slide 60: Solution to Noise: Differential Signaling
	Slide 61: Solutions to Poor Scaling
	Slide 62: Example Protocols

	SPI
	Slide 63: SPI Communications
	Slide 64: Hardware Architecture
	Slide 65: Serial Data Transmission
	Slide 66: SPI Signal Connection Overview
	Slide 67: SPI Control Register 1 (SPIx_C1)
	Slide 68: Clock and Phase Settings: CPHA = 1
	Slide 69: Clock and Phase Settings: CPHA = 0
	Slide 70: SPI Control Register 2 (SPIx_C2)
	Slide 71: SPI Baud Rate Register (SPIx_BR)
	Slide 72: Normal and Bidirectional Modes
	Slide 73: SPI Example: Secure Digital Card Access
	Slide 74: SPI Commands for SD Card
	Slide 75: SD Card Transactions

	I2C
	Slide 76: I2C Communications
	Slide 77: I2C Bus Overview
	Slide 78: I2C Bus Connections
	Slide 79: I2C Message Format
	Slide 80: Master Writing Data to Slave
	Slide 81: Master Reading Data from Slave
	Slide 82: I2C Addressing: Devices and Registers
	Slide 83: I2C with Register Addressing
	Slide 84: KL25Z I2C Controller
	Slide 85: Setting the I2C Baud Rate
	Slide 86: I2C Control Register 1 – I2Cx_C1
	Slide 87: I2C Status Register – I2Cx_S
	Slide 88: I2C Data Register – I2Cx_D
	Slide 89: Macros for Polled Communications
	Slide 90: Writing a Single Byte to a Device
	Slide 91: Reading a Single Byte from a Device
	Slide 92: Reading Multiple Bytes from a Device: Set Up
	Slide 93: Reading Multiple Bytes from a Device: Data
	Slide 94: Interrupt-Driven I2C Communications
	Slide 95: Example I2C Peripheral: 3-Axis Accelerometer
	Slide 96: MMA8451 on Freedom KL25Z
	Slide 97: Main Registers of Interest in MMA8451
	Slide 98: Control Register 1 (0x2A)
	Slide 99: Registers for Additional Features
	Slide 100: Demonstration: Configure the Accelerometer
	Slide 101: Demonstration: Read the Accelerations

	Comparison
	Slide 102: Protocol Comparison
	Slide 103: Factors to Consider
	Slide 104: Protocol Trade-Offs


