
1
ARM University Program

Copyright © ARM Ltd 2013

Serial Communications

2
ARM University Program

Copyright © ARM Ltd 2013

Overview

▪ Serial communications
▪ Concepts

▪ Tools

▪ Software: polling, interrupts and buffering

▪ UART communications
▪ Concepts

▪ KL25 I2C peripheral

▪ SPI communications
▪ Concepts

▪ KL25 SPI peripheral

▪ I2C communications
▪ Concepts

▪ KL25 I2C peripheral

3
ARM University Program

Copyright © ARM Ltd 2013

Evolution of Communications for ES

▪ Go serial instead of parallel
▪ Why? Fewer signals -> smaller PCBs, ICs, connectors…

(but lower throughput)

▪ How?
▪ Timing reference: clock vs. no clock

▪ Message framing: start and stop

▪ Error control: detection, correction, retry

▪ Flow control

▪ Go half-duplex
▪ Why? Fewer signals -> smaller (but lower throughput)

4
ARM University Program

Copyright © ARM Ltd 2013

Evolution of Communications for ES

▪ Share bus (“medium”) instead of using
dedicated links

▪ Why? Smaller, share data more easily (but
lower throughput)

▪ How?
▪ Use access control to arbitrate access (MAC)

▪ Collisions: Detection, prevention, avoidance,
arbitration

▪ Addressing to support multiple devices

▪ In-message addressing vs. chip select lines

▪ Addressing methods: per device, message type

5
ARM University Program

Copyright © ARM Ltd 2013

Why Communicate Serially?

▪ Although native word size for CPU is 32 bits, sending all of a
word’s bits simultaneously has disadvantages:
▪ Cost and weight: larger IC package, more wires, larger connectors

▪ Mechanical reliability: more wires => more connector contacts to
fail

▪ Timing complexity: some bits may arrive later than others due to
variations in capacitance and resistance across conductors

▪ Circuit complexity and power: may not want to have 16 different
transmitters + receivers in the system

▪ Communicating serially reduces number of signals needed

80 pins

14 mm/side

196 sq. mm

32 pins

5 mm/side

25 sq. mm

20 pins

1.94 mm/side

3.76 sq. mm

Shrinking Packages

for NXP MCUs

6
ARM University Program

Copyright © ARM Ltd 2013

Example System

▪ Dedicated point-to-point connections
▪ Parallel data lines, read and write lines between MCU and each peripheral

▪ Fast, allows simultaneous transfers

▪ Requires many connections, PCB area, scales badly
▪ Need 4*(8+2) = 40 pins on MCU to communicate!

MCU

Peripheral
DataRdWr

Peripheral

Data Rd Wr

P
e

ri
p

h
e

ra
l

D
a

ta
R

d
W

r

P
e

rip
h

e
ra

l

D
a

ta
R

d
W

r

7
ARM University Program

Copyright © ARM Ltd 2013

Parallel Buses

▪ All devices use buses to share data, read and write signals

▪ MCU uses individual select lines to address each peripheral

▪ MCU requires fewer pins for data, but still one per data bit
▪ Need 4 + (8+2) = 14 pins on MCU to communicate

▪ MCU can communicate with only one peripheral at a time

MCU

Peripheral
DataRdWr

Select

Peripheral
DataRdWr

Select

Peripheral
DataRdWr

Select

Peripheral
DataRdWr

Select

8
ARM University Program

Copyright © ARM Ltd 2013

Synchronous Serial Data Transmission

▪ Use shift registers and a clock signal to convert between serial and parallel formats

▪ Synchronous: an explicit clock signal is sent along with the data signal

Clk

D Q

D3

D Q

D2

D Q

D1

D Q

D0

Serial

Data Out

Parallel Data In

Clk

D Q

D3

D Q

D2

D Q

D1

D Q

D0

Serial

Data In

Parallel Data Out

Transmitting Device Receiving Device

Clock

Serial Data

Data Sampling Time at Receiver

9
ARM University Program

Copyright © ARM Ltd 2013

Synchronous Full-Duplex Serial Data Bus

▪ Now can use two serial data lines - one for reading, one for writing.
▪ Allows simultaneous send and receive full-duplex communication

▪ Need 4 + 3 = 7 pins on MCU to communicate

MCU

Peripheral
DOut

Select

DInClk

Peripheral
DOut

Select

DIn

Peripheral
DOut

Select

DIn

Peripheral
DOut

Select

DIn

10
ARM University Program

Copyright © ARM Ltd 2013

Synchronous Half-Duplex Serial Data Bus

• Share the serial data line
• Need 4 + 2 = 6 pins on MCU to communicate

• Doesn’t allow simultaneous send and receive - is half-duplex
communication

MCU

Peripheral
Data

Select

Clk

Peripheral
Data

Select

Clk

Peripheral
Data

Select

Clk

Peripheral
Data

Select

Clk

11
ARM University Program

Copyright © ARM Ltd 2013

Asynchronous Serial Communication

▪ Eliminate the clock line!
▪ Transmitter and receiver must generate clock locally
▪ States: Idle, Message
▪ Transmitter must add start bit (always same value) to indicate transition from Idle to

message
▪ Receiver detects leading edge of start bit, then uses it as a timing reference for sampling

data line to extract each data bit N at time Tbit*(N+1.5)
▪ Stop bit is also used to detect some timing errors

T
b
it *1

.5

Data

bits

Data Sampling

Time at Receiver

T
b
it *2

.5

T
b
it *3

.5

T
b
it *4

.5

T
b
it *5

.5

T
b
it *6

.5

T
b
it *7

.5

T
b
it *8

.5

T
b
it *9

.5

T
b
it *1

0
.5

T
im

e
 Z

e
ro

12
ARM University Program

Copyright © ARM Ltd 2013

Serial Communication Specifics

▪ Data frame fields
▪ Start bit (one bit)
▪ Data (LSB or MSB first, and size –

7, 8, 9 bits)
▪ Optional parity bit is used to make total

number of ones in data even or odd
▪ Stop bit (one or two bits)

▪ All devices must use the same communications parameters
▪ E.g. communication speed (300 baud, 600, 1200, 2400, 9600, 14400, 19200, etc.)

▪ Sophisticated network protocols have more information in each data frame
▪ Medium access control – when multiple nodes are on bus, they must arbitrate for permission to

transmit
▪ Addressing information – for which node is this message intended?
▪ Larger data payload
▪ Stronger error detection or error correction information
▪ Request for immediate response (“in-frame”)

Message

Data

bits

13
ARM University Program

Copyright © ARM Ltd 2013

Error Detection

▪ Can send additional information to verify data was received correctly

▪ Need to specify which parity to expect: even, odd or none.

▪ Parity bit is set so that total number of “1” bits in data and parity is even (for even
parity) or odd (for odd parity)
▪ 01110111 has 6 “1” bits, so parity bit will be 1 for odd parity, 0 for even parity

▪ 01100111 has 5 “1” bits, so parity bit will be 0 for odd parity, 1 for even parity

▪ Single parity bit detects if 1, 3, 5, 7 or 9 bits are corrupted, but doesn’t detect an even
number of corrupted bits

▪ Stronger error detection codes (e.g. Cyclic Redundancy Check) exist and use multiple
bits (e.g. 8, 16), and can detect many more corruptions.
▪ Used for CAN, USB, Ethernet, Bluetooth, etc.

14
ARM University Program

Copyright © ARM Ltd 2013

Tools for Serial Communications Development

▪ Tedious and slow to debug
serial protocols with just an
oscilloscope

▪ Instead use a logic analyzer to
decode bus traffic

▪ Worth its weight in gold!
▪ Analog Discovery and Waveforms

▪ Saelae 8-Channel Logic Analyzer

▪ Build your own: with Logic Sniffer
or related open-source project

Start ACK ACK StopACKDev. Address Reg. Address Data

15
ARM University Program

Copyright © ARM Ltd 2013

SOFTWARE ARCHITECTURE FOR
HANDLING ASYNCHRONOUS
COMMUNICATION

16
ARM University Program

Copyright © ARM Ltd 2013

Software Structure

▪ Communication is asynchronous to program
▪ Don’t know what code the program will be executing …

▪ when the next item arrives

▪ when current outgoing item completes transmission

▪ when an error occurs

▪ Need to synchronize between program and serial communication interface somehow

▪ Options
▪ Polling

▪ Wait until data is available

▪ Simple but inefficient of processor time

▪ Interrupt

▪ CPU interrupts program when data is available

▪ Efficient, but more complex

17
ARM University Program

Copyright © ARM Ltd 2013

Serial Communications and Interrupts

▪ Want to provide multiple threads of
control in the program
▪ Main program (and subroutines it calls)

▪ ISR(s)

▪ Transmit ISR activity – executes when serial
interface is ready to send another character

▪ Receive ISR activity – executes when serial
interface receives a character

▪ Error ISR(s) activity – execute if an error
occurs

▪ Need a way of buffering information
between threads
▪ Solution: circular queue with head and tail

pointers

▪ One for tx, one for rx

Serial
Interface

ISR:Tx ISR:Rx

get_stringsend_string

Main Program or
other threads

18
ARM University Program

Copyright © ARM Ltd 2013

Enabling and Connecting Interrupts to ISRs

▪ ARM Cortex-M0+ provides one
IRQ for all of a communication
interface’s events

▪ Within ISR (IRQ Handler), need to
determine what triggered the
interrupt, and then service it

void UART2_IRQHandler() {
 if (transmitter ready) {
 if (more data to send) {
 get next byte
 send it out transmitter
 }
 }
 if (received data) {
 get byte from receiver
 save it
 }
 if (error occurred) {
 handle error
 }

}

19
ARM University Program

Copyright © ARM Ltd 2013

Code to Implement Queues

▪ Enqueue at tail: tail_ptr points to next free entry

▪ Dequeue from head: head_ptr points to item to remove

▪ #define the queue size to make it easy to change

▪ One queue per direction
▪ ISR unloads tx_q for transmit

▪ ISR loads rx_q for receive

▪ Other threads (e.g. main) load tx_q and unload rx_q

▪ Need to wrap pointer at end of buffer to make it circular,
▪ Use % (modulus, remainder) operator if queue size is not power of two

▪ Use & (bitwise and) if queue size is a power of two

▪ Queue is empty if size == 0

▪ Queue is full if size == Q_SIZE

write data

to tail
read data

from head

older

data

newer

data

Serial
Interface

ISR:Tx ISR:Rx

get_stringsend_string

20
ARM University Program

Copyright © ARM Ltd 2013

Defining the Queues

#define Q_SIZE (32)

typedef struct {

 unsigned char Data[Q_SIZE];

 unsigned int Head; // points to oldest data element

 unsigned int Tail; // points to next free space

 unsigned int Size; // quantity of elements in queue

} Q_T;

Q_T tx_q, rx_q;

21
ARM University Program

Copyright © ARM Ltd 2013

Initialization and Status Inquiries

void Q_Init(Q_T * q) {

 unsigned int i;

 for (i=0; i<Q_SIZE; i++)

 q->Data[i] = 0; // to simplify our lives when debugging

 q->Head = 0;

 q->Tail = 0;

 q->Size = 0;

}

int Q_Empty(Q_T * q) {

 return q->Size == 0;

}

int Q_Full(Q_T * q) {

 return q->Size == Q_SIZE;

}

22
ARM University Program

Copyright © ARM Ltd 2013

Enqueue and Dequeue

int Q_Enqueue(Q_T * q, unsigned char d) {
 // What if queue is full?
 if (!Q_Full(q)) {
 q->Data[q->Tail++] = d;
 q->Tail %= Q_SIZE;
 q->Size++;
 return 1; // success
 } else
 return 0; // failure
}
unsigned char Q_Dequeue(Q_T * q) {
 // Must check to see if queue is empty before dequeueing
 unsigned char t=0;
 if (!Q_Empty(q)) {
 t = q->Data[q->Head];
 q->Data[q->Head++] = 0; // to simplify debugging
 q->Head %= Q_SIZE;
 q->Size--;
 }
 return t;
}

23
ARM University Program

Copyright © ARM Ltd 2013

Using the Queues

▪ Sending data:

 if (!Queue_Full(…)) {

 Queue_Enqueue(…, c)

}

▪ Receiving data:

 if (!Queue_Empty(…)) {

 c=Queue_Dequeue(…)

}

24
ARM University Program

Copyright © ARM Ltd 2013

SOFTWARE DESIGNS – PARSING
MESSAGES

25
ARM University Program

Copyright © ARM Ltd 2013

Decoding Messages

▪ Two types of messages

▪ Actual binary data sent
▪ Detect start of message

▪ Identify message type

▪ Optional: Confirm integrity with CRC

▪ Based on this message type, copy binary data from message fields into variables

▪ May need to use pointers and casting to get code to translate formats correctly and safely

▪ ASCII text characters representing data sent
▪ Detect start of message

▪ Identify message type

▪ Optional: Confirm integrity with CRC

▪ Based on this message type, translate (parse) the data from the ASCII message format into a
binary format

▪ Copy the binary data into variables

26
ARM University Program

Copyright © ARM Ltd 2013

Example UART Application

▪ Many subsystems connect with the rest
of the system using asynchronous
serial communications

▪ Lassen iQ GPS receiver module from Trimble
▪ Two full-duplex asynch. serial connections

▪ Three protocols supported

▪ Support higher speeds through reconfiguration

27
ARM University Program

Copyright © ARM Ltd 2013

Example Binary Serial Data: TSIP

switch (id) {
case 0x84:
 lat = *((double *) (&msg[0]));
 lon = *((double *) (&msg[8]));
 alt = *((double *) (&msg[16]));
 clb = *((double *) (&msg[24]));
 tof = *((float *) (&msg[32]));
 break;
case 0x4A: …

default:
 break;
}

28
ARM University Program

Copyright © ARM Ltd 2013

Example ASCII Serial Data: NMEA-0183

29
ARM University Program

Copyright © ARM Ltd 2013

State Machine for Parsing NMEA-0183

Start
Talker +

Sentence
Type

Sentence
Body

Checksum
1

Checksum
2

$
Append char to buf.

Any char. except *, \r or \n
Append char to buf.
Inc. counter

*, \r or \n,
non-text, or
counter>6

buf==$SDDBT, $VWVHW,
or $YXXDR
Enqueue all chars. from buf

Any char. except *
Enqueue char

*
Enqueue char

Any char.
Save as checksum1

/r or /n

Any char.
Save as checksum2

30
ARM University Program

Copyright © ARM Ltd 2013

Parsing
switch (parser_state) {
case TALKER_SENTENCE_TYPE:
 switch (msg[i]) {
 ‘*’:
 ‘\r’:
 ‘\n’:
 parser_state = START;
 break;
 default:
 if (Is_Not_Character(msg[i]) || n>6) {
 parser_state = START;
 } else {
 buf[n++] = msg[i];
 }
 break;
 }
 if ((n==6) & …){
 parser_state = SENTENCE_BODY;
 }
 break;
case SENTENCE_BODY:
 break;

31
ARM University Program

Copyright © ARM Ltd 2013

KL25Z AND FREEDOM SPECIFICS

32
ARM University Program

Copyright © ARM Ltd 2013

Freedom KL25Z Serial I/O

UART

SPI

I2C

33
ARM University Program

Copyright © ARM Ltd 2013

KL25Z Clock Gating for Serial Comm.

▪ Set corresponding bit(s) in SIM_SCGC4 Register

34
ARM University Program

Copyright © ARM Ltd 2013

ASYNCHRONOUS SERIAL (UART)
COMMUNICATIONS

35
ARM University Program

Copyright © ARM Ltd 2013

Transmitter Basics

▪ If no data to send, keep sending 1 (stop bit) – idle line
▪ When there is a data word to send

▪ Send a 0 (start bit) to indicate the start of a word
▪ Send each data bit in the word (use a shift register for the transmit buffer)
▪ Send a 1 (stop bit) to indicate the end of the word

T
b
it

Data

bits

Data Sampling

Time at Receiver

T
im

e
 Z

e
ro

T
b
it

T
b
it

T
b
it

T
b
it

T
b
it

T
b
it

T
b
it

T
b
it

T
b
it

T
b
it

36
ARM University Program

Copyright © ARM Ltd 2013

Receiver Basics

▪ Wait for a falling edge (beginning of a Start bit)
▪ Then wait ½ bit time
▪ Do the following for as many data bits in the word
▪ Wait 1 bit time
▪ Read the data bit and shift it into a receive buffer (shift register)

▪ Wait 1 bit time
▪ Read the bit
▪ if 1 (Stop bit), then OK
▪ if 0, there’s a problem!

T
b
it *1

.5

Data

bits

Data Sampling

Time at Receiver

T
b
it *2

.5

T
b
it *3

.5

T
b
it *4

.5

T
b
it *5

.5

T
b
it *6

.5

T
b
it *7

.5

T
b
it *8

.5

T
b
it *9

.5

T
b
it *1

0
.5

T
im

e
 Z

e
ro

37
ARM University Program

Copyright © ARM Ltd 2013

For this to work…

▪ Transmitter and receiver must agree on several things (protocol)
▪ Order of data bits

▪ Number of data bits

▪ What a start bit is (1 or 0)

▪ What a stop bit is (1 or 0)

▪ How long a bit lasts

▪ Transmitter and receiver clocks must be reasonably close in frequency, since the only timing
reference is the start of the start bit

38
ARM University Program

Copyright © ARM Ltd 2013

KL25 UARTs

▪ UART: Universal (configurable) Asynchronous Receiver/Transmitter

▪ UART0
▪ Low Power

▪ Can oversample from 4x to 32x

▪ Is used by debugger MCU on Freedom KL25Z, so not available

▪ UART1, UART2
▪ More basic, fewer features, easier to program

39
ARM University Program

Copyright © ARM Ltd 2013

UART Transmitter

40
ARM University Program

Copyright © ARM Ltd 2013

UART Receiver

41
ARM University Program

Copyright © ARM Ltd 2013

Input Data Oversampling

▪ When receiving, UART oversamples incoming data line
▪ Extra samples allow voting, improving noise immunity

▪ Better synchronization to incoming data, improving noise immunity

▪ UART0 provides configurable oversampling from 4x to 32x
▪ Put desired oversampling factor minus one into UART0 Control Register 4, OSR bits.

▪ UART1, UART2 have fixed 16x oversampling

42
ARM University Program

Copyright © ARM Ltd 2013

Baud Rate Generator

▪ Need to divide module clock frequency down to desired baud rate * oversampling
factor

▪ Example
▪ 24 MHz -> 4800 baud with 16x oversampling

▪ Division factor = 24E6/(4800*16) = 312.5. Must round to closest integer value (312 or 313), will
have a slight frequency error.

43
ARM University Program

Copyright © ARM Ltd 2013

Using the UART

▪ When can we transmit?
▪ Transmit buffer must be empty

▪ Can poll UARTx->S1 TDRE flag

▪ Or we can use an interrupt, in which case we
will need to queue up data

▪ Put data to be sent into UARTx_D
(UARTx->D)

▪ When can we receive a byte?
▪ Receive buffer must be full

▪ Can poll UARTx->S1 RDRF flag

▪ Or we can use an interrupt, and again we will
need to queue the data

▪ Get data from UARTx_D (UARTx->D)

44
ARM University Program

Copyright © ARM Ltd 2013

UART Control Register 1 (UART0_C1)

▪ LOOPS: Enables loopback/single-pin (TX/RX) mode

▪ DOZEEN: Doze enable – disable UART in sleep mode

▪ RSRC: Selects between loopback and single-pin mode

▪ M: Select 9-bit data mode (instead of 8-bit data)

▪ WAKE: Wakeup method

▪ ILT: Idle line type

▪ PE: Parity enabled with 1

▪ PT: Odd parity with 1, even parity with 0

45
ARM University Program

Copyright © ARM Ltd 2013

UART Control Register 2 (UART0_C2)

▪ Interrupt Enables
▪ TIE: Interrupt when Transmit Data Register is empty

▪ TCIE: Interrupt when transmission completes

▪ RIE: Interrupt when receiver has data ready

▪ Module Enables
▪ TE: Transmitter enable

▪ RE: Receiver enable

▪ Other
▪ RWU: Put receiver in standby mode, will wake up when condition occurs

▪ SBK: Send a break character (all zeroes)

46
ARM University Program

Copyright © ARM Ltd 2013

UART Status Register 1 (UART_S1)

▪ TDRE: Transmit data register empty, can write more data to data register

▪ TC: Transmission complete.

▪ RDRF: Receiver data register full, can read data from data register

▪ IDLE: UART receive line has been idle for one full character time

▪ OR: Receive overrun. Received data has overwritten previous data in receive buffer

▪ NF: Noise flag. Receiver data bit samples don’t agree.

▪ FE: Framing error. Received 0 for a stop bit, expected 1.

▪ PF: Parity error. Incorrect parity received.

47
ARM University Program

Copyright © ARM Ltd 2013

UART Status Register 2 (UARTx_S2)

▪ LBDIF: LIN break detect interrupt flag

▪ RXEDGIF: Active edge on receive pin detected

▪ MSBF: Send MSB first. Should be 0 for RS232

▪ RXINV: Invert received signals (data, start, stop, etc.)

▪ RWUID: Set idle bit upon wakeup?

▪ BRK13: Set break character to 13 bits long (not 10)

▪ LBKDE: LIN break character time.

▪ RAF: Receiver is actively receiving data (not idle line)

48
ARM University Program

Copyright © ARM Ltd 2013

Software for Polled Serial Comm.
void Init_UART2(uint32_t baud_rate) {
 uint32_t divisor;
 // enable clock to UART and Port A
 SIM->SCGC4 |= SIM_SCGC4_UART2_MASK;
 SIM->SCGC5 |= SIM_SCGC5_PORTE_MASK;

 // connect UART to pins for PTE22, PTE23
 PORTE->PCR[22] = PORT_PCR_MUX(4);
 PORTE->PCR[23] = PORT_PCR_MUX(4);
 // ensure tx and rx are disabled before configuration
 UART2->C2 &= ~(UARTLP_C2_TE_MASK | UARTLP_C2_RE_MASK);

 // Set baud rate to 4800 baud
 divisor = BUS_CLOCK/(baud_rate*16);
 UART2->BDH = UART_BDH_SBR(divisor>>8);
 UART2->BDL = UART_BDL_SBR(divisor);

 // No parity, 8 bits, two stop bits, other settings;
 UART2->C1 = UART2->S2 = UART2->C3 = 0;

 // Enable transmitter and receiver
 UART2->C2 = UART_C2_TE_MASK | UART_C2_RE_MASK;
}

49
ARM University Program

Copyright © ARM Ltd 2013

Polled Serial Transmitter Code

void UART2_Transmit_Poll(uint8_t data) {

 // wait until transmit data register is empty

 while (!(UART2->S1 & UART_S1_TDRE_MASK))

 ;

 UART2->D = data;

}

void main(void) {

 char c;

 // Initialization goes here

 while (1) {

 for (c='a'; c<='z'; c++) {

 UART2_Transmit_Poll(c);

}

50
ARM University Program

Copyright © ARM Ltd 2013

Polled Serial Receiver Code with Echo

uint8_t UART2_Receive_Poll(void) {

 // wait until receive data register is full

 while (!(UART2->S1 & UART_S1_RDRF_MASK))

 ;

 return UART2->D;

}

void main(void) {

 char c;

 // Initialization goes here

 while (1) {

 c = UART2_Receive_Poll();

 UART2_Transmit_Poll(c);

}

51
ARM University Program

Copyright © ARM Ltd 2013

Software for Interrupt-Driven Serial Comm.

▪ Use interrupts

▪ First, initialize peripheral to generate interrupts

▪ Second, create single ISR with three sections corresponding to cause of interrupt

▪ Transmitter

▪ Receiver

▪ Error

52
ARM University Program

Copyright © ARM Ltd 2013

Peripheral Initialization

void Init_UART2(uint32_t baud_rate) {

 …

 NVIC_SetPriority(UART2_IRQn, 2);

 NVIC_ClearPendingIRQ(UART2_IRQn);

 NVIC_EnableIRQ(UART2_IRQn);

 UART2->C2 |= UART_C2_TIE_MASK |

 UART_C2_RIE_MASK;

 UART2->C2 |= UART_C2_RIE_MASK;

 Q_Init(&TxQ);

 Q_Init(&RxQ);

}

53
ARM University Program

Copyright © ARM Ltd 2013

Interrupt Handler: Transmitter

void UART2_IRQHandler(void) {

 NVIC_ClearPendingIRQ(UART2_IRQn);

 if (UART2->S1 & UART_S1_TDRE_MASK) {

 // can send another character

 if (!Q_Empty(&TxQ)) {

 UART2->D = Q_Dequeue(&TxQ);

 } else {

 // queue is empty so disable tx

 UART2->C2 &= ~UART_C2_TIE_MASK;

 }

 }

 …

54
ARM University Program

Copyright © ARM Ltd 2013

Interrupt Handler: Receiver

void UART2_IRQHandler(void) {

 …

 if (UART2->S1 & UART_S1_RDRF_MASK) {

 // received a character

 if (!Q_Full(&RxQ)) {

 Q_Enqueue(&RxQ, UART2->D);

 } else {

 // error - queue full.

 while (1)

 ;

 }

 }

55
ARM University Program

Copyright © ARM Ltd 2013

Interrupt Handler: Error Cases

void UART2_IRQHandler(void) {

 …

 if (UART2->S1 & (UART_S1_OR_MASK |

 UART_S1_NF_MASK |

 UART_S1_FE_MASK |

 UART_S1_PF_MASK)) {

 // handle the error

 // clear the flag

 }

}

56
ARM University Program

Copyright © ARM Ltd 2013

Example UART Application

▪ Many subsystems connect with the
rest of the system using
asynchronous serial
communications

▪ Lassen iQ GPS receiver module from
Trimble

▪ Two full-duplex asynch. serial
connections

▪ Three protocols supported

▪ Support higher speeds through
reconfiguration

57
ARM University Program

Copyright © ARM Ltd 2013

USB to UART Interface

▪ PCs haven’t had external asynchronous serial
interfaces for a while, so how do we
communicate with a UART?

▪ USB to UART interface

▪ USB connection to PC

▪ Logic level (0-3.3V) to microcontroller’s UART (not
RS232 voltage levels)

▪ USB01A USB to serial adaptor
▪ http://www.pololu.com/catalog/product/391

▪ Can also supply 5 V, 3.3 V from USB

http://www.pololu.com/catalog/product/391
http://www.pololu.com/catalog/product/391

58
ARM University Program

Copyright © ARM Ltd 2013

Building on Asynchronous Comm.
▪ Asynchronous communication is useful but runs into some problems when

applying it to some applications

▪ Problem #1

▪ Logic-level signals (0 to 1.65 V, 1.65 V to 3.3 V) are sensitive to noise and signal
degradation

▪ Problem #2

▪ Point-to-point topology does not support a large number of nodes well

▪ Need a dedicated wire to send information from one device to another

▪ Need a UART channel for each device the MCU needs to talk to

▪ Single transmitter, single receiver per data wire

59
ARM University Program

Copyright © ARM Ltd 2013

Solution to Noise: Higher Voltages

▪ Use higher voltages to improve noise margin:
+3 to +15 V, -3 to -15 V

▪ Example IC (Maxim MAX3232) uses charge
pumps to generate higher voltages from 3.3V
supply rail

60
ARM University Program

Copyright © ARM Ltd 2013

Solution to Noise: Differential Signaling

▪ Use differential signaling
▪ Send two signals: Buffered data (A), buffered

complement of data (B)

▪ Receiver compares the two signals to determine if data is
a one (A > B) or a zero (B > A)

Data into Transmitter

Data out of

Transmitter, on bus

Data out of Receiver

61
ARM University Program

Copyright © ARM Ltd 2013

Solutions to Poor Scaling
▪ Approaches

▪ Allow one transmitter to drive multiple receivers (multi-drop)

▪ Connect all transmitters and all receivers to same data line (multi-point
network). Need to add a medium access control technique so all nodes can
share the wire

▪ Example Protocols
▪ RS-232: higher voltages, point-to-point

▪ RS-422: higher voltages, differential data transmission, multi-drop

▪ RS-485: higher voltages, multi-point

62
ARM University Program

Copyright © ARM Ltd 2013

Example Protocols
▪ RS-232: higher voltages, point-to-point

▪ RS-422: higher voltages, differential data transmission, multi-drop

▪ RS-485: higher voltages, multi-point

63
ARM University Program

Copyright © ARM Ltd 2013

SPI COMMUNICATIONS

64
ARM University Program

Copyright © ARM Ltd 2013

Hardware Architecture

▪ All chips share bus signals

▪ Clock SCK

▪ Data lines MOSI (master out, slave in) and MISO (master in, slave out)

▪ Each peripheral has its own chip select line (CS)

▪ Master (MCU) asserts the CS line of only the peripheral it’s communicating with

MCU

Peripheral
DOut

Select

DInClk

Peripheral
DOut

Select

DIn

Peripheral
DOut

Select

DIn

Peripheral
DOut

Select

DIn

65
ARM University Program

Copyright © ARM Ltd 2013

Serial Data Transmission

▪ Use shift registers and a clock signal to convert between serial and parallel formats

▪ Synchronous: an explicit clock signal is along with the data signal

Clk

D Q

D3

D Q

D2

D Q

D1

D Q

D0

Serial

Data Out

Parallel Data In

Clk

D Q

D3

D Q

D2

D Q

D1

D Q

D0

Serial

Data In

Parallel Data Out

Transmitting Device Receiving Device

Clock

Serial Data

Data Sampling Time at Receiver

66
ARM University Program

Copyright © ARM Ltd 2013

SPI Signal Connection Overview

▪ SPI Communication consists of a series of data swaps between the
Master and the Slave
▪ As the master shifts out its transmit byte, it is also shifting in the received byte

from the Slave

67
ARM University Program

Copyright © ARM Ltd 2013

SPI Control Register 1 (SPIx_C1)

▪ SPIE: SPI interrupt enable for receive buffer full and mode fault

▪ SPE: SPI system enable

▪ SPTIE: SPI interrupt enable for transmit buffer empty

▪ MSTR: select master mode

▪ CPOL: Clock polarity

▪ CPHA: Clock phase

▪ SSOE: Slave select output enable

68
ARM University Program

Copyright © ARM Ltd 2013

Clock and Phase Settings: CPHA = 1

69
ARM University Program

Copyright © ARM Ltd 2013

Clock and Phase Settings: CPHA = 0

70
ARM University Program

Copyright © ARM Ltd 2013

SPI Control Register 2 (SPIx_C2)

▪ SPMIE: SPI interrupt enable for receive data match

▪ SPLPIE: SPI interrupt enable for wake from low-power mode

▪ TXDMAE: Transmit DMA enable

▪ MODFEN: Master mode-fault function enable

▪ BIDIROE

▪ RDDMAE: Receive DMA enable

▪ SPISWAI: Stop SPI in wait mode

▪ SPC0: Single wire (bidirectional) mode

71
ARM University Program

Copyright © ARM Ltd 2013

SPI Baud Rate Register (SPIx_BR)

▪ SPPR: SPI baud rate prescale divisor: divides by n+1

▪ SPR: SPI baud rate divisor: divides by 2n+1

▪ fSPI = fbus_clock/((SPPR+1)*2SPR+1)

72
ARM University Program

Copyright © ARM Ltd 2013

Normal and Bidirectional Modes

73
ARM University Program

Copyright © ARM Ltd 2013

SPI Example: Secure Digital Card Access
▪ SD cards have two

communication modes

▪ Native 4-bit

▪ Legacy SPI 1-bit

▪ SPI mode 0

▪ CPHA=0

▪ CPOL=0

▪ VDD from 2.7 to 3.6 V

▪ CS: Chip Select (active low)

▪ Source – FatFS FAT File System
Module:

▪ http://elm-chan.org/docs/mmc/mmc_e.html

▪ http://elm-chan.org/fsw/ff/00index_e.html

http://elm-chan.org/docs/mmc/mmc_e.html
http://elm-chan.org/docs/mmc/mmc_e.html
http://elm-chan.org/docs/mmc/mmc_e.html
http://elm-chan.org/docs/mmc/mmc_e.html
http://elm-chan.org/fsw/ff/00index_e.html
http://elm-chan.org/fsw/ff/00index_e.html
http://elm-chan.org/fsw/ff/00index_e.html
http://elm-chan.org/fsw/ff/00index_e.html

74
ARM University Program

Copyright © ARM Ltd 2013

SPI Commands for SD Card

▪ Host sends a six-byte command packet to card

▪ Index, argument, CRC

▪ Host reads bytes from card until card signals it is ready

▪ Card returns

▪ 0xff while busy

▪ 0x00 when ready without errors

▪ 0x01-0x7f when error has occurred

75
ARM University Program

Copyright © ARM Ltd 2013

SD Card Transactions

▪ Single Block Read

▪ Multiple Block Read

▪ Single Block Write

▪ Multipe Block Write

76
ARM University Program

Copyright © ARM Ltd 2013

I2C COMMUNICATIONS

77
ARM University Program

Copyright © ARM Ltd 2013

I2C Bus Overview
▪ “Inter-Integrated Circuit” bus

▪ Multiple devices connected by a shared serial
bus

▪ Bus is typically controlled by master device,
slaves respond when addressed

▪ I2C bus has two signal lines
▪ SCL: Serial clock
▪ SDA: Serial data

▪ Full details available in “The I2C-bus
Specification”

78
ARM University Program

Copyright © ARM Ltd 2013

I2C Bus Connections

▪ Resistors pull up lines to VDD

▪ Open-drain transistors pull lines down to ground

▪ Master generates SCL clock signal

▪ Can range up to 400 kHz, 1 MHz, or more

79
ARM University Program

Copyright © ARM Ltd 2013

I2C Message Format

▪ Message-oriented data transfer with four
parts

1. Start condition
2. Slave Address transmission
▪ Address
▪ Command (read or write)
▪ Acknowledgement by receiver

3. Data fields
▪ Data byte
▪ Acknowledgement by receiver

4. Stop condition

▪ Message is made of
▪ Signals: Start, Stop, Repeated Start

▪ Bytes

▪ Acknowledgement bits

80
ARM University Program

Copyright © ARM Ltd 2013

Master Writing Data to Slave

81
ARM University Program

Copyright © ARM Ltd 2013

Master Reading Data from Slave

82
ARM University Program

Copyright © ARM Ltd 2013

I2C Addressing: Devices and Registers

▪ Slave device addressing
▪ Each slave device has a seven-bit address

▪ Can support up to 27=128 different devices on same
bus

▪ Different types of device have different default
addresses

▪ Sometimes can select a secondary default address by
tying a device pin to a different logic level

▪ Register addressing
▪ I2C devices may have multiple control, status, data

registers and even data memory internally – how do
we get at it?

▪ Use the first byte of data as a register address

▪ Example: First seven registers of MMA8451 I2C
accelerometer

0x32

0x16

0x66

0x20

Master

83
ARM University Program

Copyright © ARM Ltd 2013

I2C with Register Addressing

▪ Master drives communication
▪ Sends start condition, address of slave, read/write command

▪ Listens for acknowledgement from slave

▪ Sends register address (byte)

▪ Listens for acknowledgement from slave

84
ARM University Program

Copyright © ARM Ltd 2013

KL25Z I2C Controller

85
ARM University Program

Copyright © ARM Ltd 2013

Setting the I2C Baud Rate

▪ I2Cx_F: Frequency Divider register
▪ MULT: specified multiplier mul = 2MULT

▪ valid values: 1, 2,4

▪ ICR: Clock Rate

▪ I2C baud rate = fbus/ (2MULT * ICR)

86
ARM University Program

Copyright © ARM Ltd 2013

I2C Control Register 1 – I2Cx_C1

▪ IICEN - enable I2C module

▪ IICIE - enable I2C interrupt

▪ MST - select master mode
▪ 0➔1 generates Start condition

▪ 1➔0 generates Stop condition

▪ TX – Select 1 for master transmit and 0 for
master receive

▪ TXAK – Transmit Acknowledge enable

▪ RSTA – Repeat Start

▪ WUEN – Wakeup enable

▪ DMAEN – Enable DMA

87
ARM University Program

Copyright © ARM Ltd 2013

I2C Status Register – I2Cx_S

▪ TCF – Transfer Complete flag set after
transferring byte and acknowledge bit

▪ IAAS – Addressed as a Slave

▪ BUSY – bus busy

▪ ARBL – arbitration lost

▪ RAM – Range address match

▪ SRW – when slave, indicates transmission
direction (0: slave receive, 1: slave
transmit)

▪ IICIF: Interrupt pending flag

▪ RXAK: 0: acknowledge signal received

88
ARM University Program

Copyright © ARM Ltd 2013

I2C Data Register – I2Cx_D

▪ 8-bit data register

▪ Master transmit mode
▪ Writing to I2Cx_D starts a data transfer

▪ Master receive mode
▪ Reading from I2Cx_D starts reception of next byte

89
ARM University Program

Copyright © ARM Ltd 2013

Macros for Polled Communications
#define I2C_M_START I2C0->C1 |= I2C_C1_MST_MASK

#define I2C_M_STOP I2C0->C1 &= ~I2C_C1_MST_MASK

#define I2C_M_RSTART I2C0->C1 |= I2C_C1_RSTA_MASK

#define I2C_TRAN I2C0->C1 |= I2C_C1_TX_MASK

#define I2C_REC I2C0->C1 &= ~I2C_C1_TX_MASK

#define BUSY_ACK while(I2C0->S & 0x01)

#define TRANS_COMP while(!(I2C0->S & 0x80))

#define I2C_WAIT while((I2C0->S & I2C_S_IICIF_MASK)==0){} \

 I2C0->S |= I2C_S_IICIF_MASK;

#define NACK I2C0->C1 |= I2C_C1_TXAK_MASK

#define ACK I2C0->C1 &= ~I2C_C1_TXAK_MASK

90
ARM University Program

Copyright © ARM Ltd 2013

Writing a Single Byte to a Device
I2C_TRAN; /*set to transmit mode */

I2C_M_START; /*send start */

I2C0->D = dev; /*send dev address */

I2C_WAIT; /*wait for ack */

I2C0->D = address; /*send write address */

I2C_WAIT;

I2C0->D = data; /*send data */

I2C_WAIT;

I2C_M_STOP;

91
ARM University Program

Copyright © ARM Ltd 2013

Reading a Single Byte from a Device
I2C_TRAN; /*set to transmit mode */

I2C_M_START; /*send start */

I2C0->D = dev; /*send dev address */

I2C_WAIT; /*wait for completion */

I2C0->D = address; /*send read address */

I2C_WAIT; /*wait for completion */

I2C_M_RSTART; /*repeated start */

I2C0->D = (dev|0x1); /*send dev address (read) */

I2C_WAIT; /*wait for completion */

I2C_REC; /*set to recieve mode */

NACK; /*set NACK after read */

data = I2C0->D; /*dummy read */

I2C_WAIT; /*wait for completion */

I2C_M_STOP; /*send stop */

data = I2C0->D; /*read data */

92
ARM University Program

Copyright © ARM Ltd 2013

Reading Multiple Bytes from a Device: Set Up

I2C_TRAN; /*set to transmit mode */

I2C_M_START; /*send start */

I2C0->D = dev; /*send dev address */

I2C_WAIT; /*wait for ack */

I2C0->D = address; /*send read address */

I2C_WAIT; /*wait for completion */

I2C_M_RSTART; /*repeated start */

I2C0->D = (dev|0x1); /*send dev address (read) */

I2C_WAIT; /*wait for completion */

I2C_REC; /*set to receive mode */

93
ARM University Program

Copyright © ARM Ltd 2013

Reading Multiple Bytes from a Device: Data
// For each byte

if(isLastRead) {

 NACK; /*set NACK after read */

} else {

 ACK; /*ACK after read */

}

data = I2C0->D; /*dummy read */

I2C_WAIT; /*wait for completion */

if(isLastRead) {

 I2C_M_STOP; /*send stop */

}

data = I2C0->D; /*read real data */

94
ARM University Program

Copyright © ARM Ltd 2013

Interrupt-Driven I2C Communications

▪ Example flowchart from KL25Z Reference Manual
chapter on I2C peripheral

▪ One ISR handles all possible cases
▪ Is MCU is in master or slave mode?

▪ Arbitration lost (in multi-master bus)?

▪ Transmit or receive?

▪ More data to send?

▪ Acknowledge received?

▪ etc.

95
ARM University Program

Copyright © ARM Ltd 2013

Example I2C Peripheral: 3-Axis Accelerometer

▪ Freescale MMA8451, included in Freedom KL25Z board
▪ Freedom KL26Z board has 3-axis accelerometer and 3-axis magnetometer (compass)

▪ Can measure acceleration in x/y/z directions up to ±2g, ± 4g, ± 8g

▪ Can compute rotation about x/y axes (pitch, roll)

▪ I2C addresses are 0x3A (read) and 0x3B (write)
▪ 011101r (r=1 for read, r=0 for write)

96
ARM University Program

Copyright © ARM Ltd 2013

MMA8451 on Freedom KL25Z

97
ARM University Program

Copyright © ARM Ltd 2013

Main Registers of Interest in MMA8451

▪ Acceleration Data

▪ Signed (two’s complement) data

▪ 14 or 8 bits per channel (left aligned)

▪ X-axis: 0x01, 0x02

▪ Y-axis: 0x03, 0x04

▪ Z-axis: 0x05, 0x06

▪ Resolution is about 1/4096 g per LSB (in +/- 2 g
mode)

▪ Who Am I?

▪ Used to identify which device this is (IC-specific)

▪ Device ID - 0x1A

98
ARM University Program

Copyright © ARM Ltd 2013

Control Register 1 (0x2A)

▪ ACTIVE: set to 1 to put in active (not standby) mode

▪ FREAD: set to 1 to fast read just 8 MSBs of XYZ data

▪ LNOISE: low noise mode

▪ DR2-0: select output data rate from 1.56 Hz to 800
Hz

▪ ASLP_RATE1-0: Select Sleep mode rate from 1.56 to
50 Hz

DR

2

DR1 DR0 Output Data

Rate

0 0 0 800 Hz

0 0 1 400

0 1 0 200

0 1 1 100

1 0 0 50

1 0 1 12.5

1 1 0 6.25

1 1 1 1.56

99
ARM University Program

Copyright © ARM Ltd 2013

Registers for Additional Features

▪ FIFO configuration

▪ Interrupt control and status

▪ Dynamic range

▪ High-pass filter configuration

▪ Portrait/Landscape detection settings

▪ Freefall detection settings

▪ Sleep control registers

▪ Offset per axis

▪ Transient event detection settings

▪ Tap (pulse) detection settings

100
ARM University Program

Copyright © ARM Ltd 2013

Demonstration: Configure the Accelerometer

▪ Source code in mma8451.c

▪ Basic approach
▪ Read byte from the WHOAMI register, verify it matches expected value for

MMA8451

▪ Delay…

▪ Set to active, 14-bit mode, 100 Hz sampling rate

if(i2c_read_byte(MMA_ADDR, REG_WHOAMI) == WHOAMI) {
 Delay(10);
 //set active, 14 bit data and 100 Hz ODR (0x19)
 i2c_write_byte(MMA_ADDR, REG_CTRL1, 0x01);
 return 1;
}

101
ARM University Program

Copyright © ARM Ltd 2013

Demonstration: Read the Accelerations
▪ Send I2C Start condition

▪ Send read addresses (device and
register)

▪ Read first five bytes of data into
data[i]

▪ Read last byte of data into data[i]
(also sends stop condition)

▪ Append bytes to form 16-bit words
(int16_t)

▪ Divide by four to adjust for scaling

i2c_start();
i2c_read_setup(MMA_ADDR , REG_XHI);

for(i=0;i<5;i++) {
 data[i] =
 i2c_repeated_read(1);
}
data[i] = i2c_repeated_read(0);

for (i=0; i<3; i++) {
temp[i] = (int16_t)

((data[2*i]<<8) |
data[2*i+1]);

}

// Right-justify, is 14 bits
acc_X = temp[0]/4;
acc_Y = temp[1]/4;
acc_Z = temp[2]/4;

102
ARM University Program

Copyright © ARM Ltd 2013

PROTOCOL COMPARISON

103
ARM University Program

Copyright © ARM Ltd 2013

Factors to Consider
▪ How fast can the data get through?

▪ Depends on raw bit rate, protocol overhead in packet

▪ How many hardware signals do we need?
▪ May need clock line, chip select lines, etc.

▪ How do we connect multiple devices (topology)?
▪ Dedicated link and hardware per device - point-to-point

▪ One bus for master transmit/slave receive, one bus for slave transmit/master
receive

▪ All transmitters and receivers connected to same bus – multi-point

▪ How do we address a target device?
▪ Discrete hardware signal (chip select line)

▪ Address embedded in packet, decoded internally by receiver

▪ How do these factors change as we add more devices?

104
ARM University Program

Copyright © ARM Ltd 2013

Protocol Trade-Offs
Protocol Speed Signals Req. for

Bidirectional

Communication

with N devices

Device

Addressing

Topology

UART

(Point to

Point)

Fast – Tens of Mbit/s 2*N (TxD, RxD) None Point-to-point full

duplex

UART

(Multi-

drop)

Fast – Tens of Mbit/s 2 (TxD, RxD) Added by user in

software

Multi-drop

SPI Fast – Tens of Mbit/s 3+N for SCLK, MOSI,

MISO, and one SS per

device

Hardware chip

select signal per

device

Multi-point full-

duplex, multi-drop

half-duplex buses

I2C Moderate – 100

kbit/s, 400 kbit/s, 1

Mbit/s, 3.4 Mbit/s.

Packet overhead.

2: SCL, SDA In packet Multi-point half-

duplex bus

	Default Section
	Slide 1: Serial Communications
	Slide 2: Overview
	Slide 3: Evolution of Communications for ES
	Slide 4: Evolution of Communications for ES
	Slide 5: Why Communicate Serially?
	Slide 6: Example System
	Slide 7: Parallel Buses
	Slide 8: Synchronous Serial Data Transmission
	Slide 9: Synchronous Full-Duplex Serial Data Bus
	Slide 10: Synchronous Half-Duplex Serial Data Bus
	Slide 11: Asynchronous Serial Communication
	Slide 12: Serial Communication Specifics
	Slide 13: Error Detection
	Slide 14: Tools for Serial Communications Development

	Software Architecture and Design
	Slide 15: Software Architecture for Handling asynchronous Communication
	Slide 16: Software Structure
	Slide 17: Serial Communications and Interrupts
	Slide 18: Enabling and Connecting Interrupts to ISRs
	Slide 19: Code to Implement Queues
	Slide 20: Defining the Queues
	Slide 21: Initialization and Status Inquiries
	Slide 22: Enqueue and Dequeue
	Slide 23: Using the Queues
	Slide 24: Software Designs – Parsing Messages
	Slide 25: Decoding Messages
	Slide 26: Example UART Application
	Slide 27: Example Binary Serial Data: TSIP
	Slide 28: Example ASCII Serial Data: NMEA-0183
	Slide 29: State Machine for Parsing NMEA-0183
	Slide 30: Parsing

	KL25Z Serial Comm
	Slide 31: KL25Z and Freedom Specifics
	Slide 32: Freedom KL25Z Serial I/O
	Slide 33: KL25Z Clock Gating for Serial Comm.

	UART
	Slide 34: Asynchronous serial (UART) Communications
	Slide 35: Transmitter Basics
	Slide 36: Receiver Basics
	Slide 37: For this to work…
	Slide 38: KL25 UARTs
	Slide 39: UART Transmitter
	Slide 40: UART Receiver
	Slide 41: Input Data Oversampling
	Slide 42: Baud Rate Generator
	Slide 43: Using the UART
	Slide 44: UART Control Register 1 (UART0_C1)
	Slide 45: UART Control Register 2 (UART0_C2)
	Slide 46: UART Status Register 1 (UART_S1)
	Slide 47: UART Status Register 2 (UARTx_S2)
	Slide 48: Software for Polled Serial Comm.
	Slide 49: Polled Serial Transmitter Code
	Slide 50: Polled Serial Receiver Code with Echo
	Slide 51: Software for Interrupt-Driven Serial Comm.
	Slide 52: Peripheral Initialization
	Slide 53: Interrupt Handler: Transmitter
	Slide 54: Interrupt Handler: Receiver
	Slide 55: Interrupt Handler: Error Cases
	Slide 56: Example UART Application
	Slide 57: USB to UART Interface
	Slide 58: Building on Asynchronous Comm.
	Slide 59: Solution to Noise: Higher Voltages
	Slide 60: Solution to Noise: Differential Signaling
	Slide 61: Solutions to Poor Scaling
	Slide 62: Example Protocols

	SPI
	Slide 63: SPI Communications
	Slide 64: Hardware Architecture
	Slide 65: Serial Data Transmission
	Slide 66: SPI Signal Connection Overview
	Slide 67: SPI Control Register 1 (SPIx_C1)
	Slide 68: Clock and Phase Settings: CPHA = 1
	Slide 69: Clock and Phase Settings: CPHA = 0
	Slide 70: SPI Control Register 2 (SPIx_C2)
	Slide 71: SPI Baud Rate Register (SPIx_BR)
	Slide 72: Normal and Bidirectional Modes
	Slide 73: SPI Example: Secure Digital Card Access
	Slide 74: SPI Commands for SD Card
	Slide 75: SD Card Transactions

	I2C
	Slide 76: I2C Communications
	Slide 77: I2C Bus Overview
	Slide 78: I2C Bus Connections
	Slide 79: I2C Message Format
	Slide 80: Master Writing Data to Slave
	Slide 81: Master Reading Data from Slave
	Slide 82: I2C Addressing: Devices and Registers
	Slide 83: I2C with Register Addressing
	Slide 84: KL25Z I2C Controller
	Slide 85: Setting the I2C Baud Rate
	Slide 86: I2C Control Register 1 – I2Cx_C1
	Slide 87: I2C Status Register – I2Cx_S
	Slide 88: I2C Data Register – I2Cx_D
	Slide 89: Macros for Polled Communications
	Slide 90: Writing a Single Byte to a Device
	Slide 91: Reading a Single Byte from a Device
	Slide 92: Reading Multiple Bytes from a Device: Set Up
	Slide 93: Reading Multiple Bytes from a Device: Data
	Slide 94: Interrupt-Driven I2C Communications
	Slide 95: Example I2C Peripheral: 3-Axis Accelerometer
	Slide 96: MMA8451 on Freedom KL25Z
	Slide 97: Main Registers of Interest in MMA8451
	Slide 98: Control Register 1 (0x2A)
	Slide 99: Registers for Additional Features
	Slide 100: Demonstration: Configure the Accelerometer
	Slide 101: Demonstration: Read the Accelerations

	Comparison
	Slide 102: Protocol Comparison
	Slide 103: Factors to Consider
	Slide 104: Protocol Trade-Offs

