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Introduction to Serial Communications
Considering Process Concurrency & Synchronization



Overview

= Convert data to symbols which fit well with a
practical/feasible/affordable communication channel
(aka “medium”)

= Communication protocol, and implementation in
processes with communication interface

= |nteractions between communication interface and
other processes
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Data and Symbols

= Convert data to symbols which fit a practical
communication channel better

= Use fewer wires, lower cost wires (e.g. no shielding)
= Or even use no wires! Radio, light, acoustic
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= Start with simple symbols for wires =
= Symbol uses voltage to represent one data bit = Sending all 32 bits of data word at the same time
= Example: make compatible with KL25Z GPIO takes at least 34 wires. ®

= Derive from MCU’s input requirements (min. V,,,, max.
V, ) given supply voltage V,= 3.3V

= 1=H:>=231V

= 0=L:<1.155V

= 32 signals (for 32 data bits), data valid, ground
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Serialization
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Shift Register: PISO
= Don’t send all symbols simultaneously? Serialize symbol transmission to simplify data channel.
= Send fewer symbols (e.g. 1, 2, 4) at a time

= Transmitter
= Selects next bit(s) to send with shift register(s) (PISO: parallel in, serial out)
= One bit at a time: Bit 0, bit 1, bit 2, bit 3, etc. -> symbol 0, symbol 1, symbol 2 symbol 3
= Two bits at a time: Bits 0 & 1, bits 2 & 3, etc. -> symbol 0&1, symbol 2&3

= Receiver
= Samples wire(s) at the right times to get the symbols, decodes them into bits, reassembles word with shift

register (SIPO: serial in, parallel out)
= Reduces channel requirements but raises interface complexity and delays



Use Better Symbols?

= Subdivide voltage ranges? 3.3V
= Split into four voltage ranges to send two data bits per symbol
= Eight ranges for three bits per symbol

= Limited by noise, channel bandwidth from parasitic R/L/C
= Used by multi-level flash memory

oV
= Many other options!
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= RF: Modulation of radio carrier wave’s frequency, amplitude, phase etc.

M=

= Can use multiple approaches simultaneously: WiFi changes phase and amplitude with QAM

(Quadrature Amplitude Modulation)



Communication Protocol and Interface Controller
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= Communication protocol defines... = Communication interface
= Serialization/deserialization, = Need concurrent processes to implement protocol
= data format, = Serialize incoming data
= symbol timing, = De-Serialize outgoing data
= error control, = Do many other useful things (error detection,

formatting, etc. Much more later)
= flow control, .
, = Hardware process benefits
= addressing, o _
£ g = Very stable timing compared with software

type of data content, - High throughput

" et .. = Standardized communication protocols are stable,

don’t need software flexibility



Relationships between Processes
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= Communication interface and other processes are = Meeting synchronization timing requirements
asynchronous with each other

Must be able to make mostly independent progress,
except to synchronize and communicate

Event notification and data communication examples
with UART

= Reception: character received, receive error

= Transmission: character transmitted, transmit error

Adding protocol features (e.g. node addressing) adds
more events

between application and communication interface

May be too strict for a software process: sloppy
timing due to scheduling from interrupts + OS, other

SW processes

Case 1: Response can’t be delayed (e.g. read
response), so implement process natively in
hardware

Case 2: OK for software to respond later. Add
buffering to hold pending data until SW can run.
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Buffering to Meet Timing Requirements

= Software process has sloppy timing due to scheduling from interrupts + OS, other SW processes
= Case 2: OK for software to respond later. Add buffering to hold pending data until SW can run.

= UART Receive Data Problem:

= SW must read Rx shift register (B1) before next character (B2) | j 'l Y : " |
starts to arrive, else incoming data (B2) corrupts previous data (B1) e / } } \
= Solution Nz \Y
= Add single item buffer RxBuf after Rx shift register. RxBuf __>

= When data from last symbol of character updates Rx shift register, HW copies
data from Rx shift register to RxBuf and notifies SW of new received data.
= Now software just needs to read B1 from RxBuf before B3 starts to arrive, B2 before B4 starts to arrive...

= UART Transmit Data Problem:
= Can’t write B2 to Tx shift register until all of B1 has been sent
= Solution
= Add single item buffer TxBuf before Tx shift register
= When Tx shift register finishes sending data, HW copies data from TxBuf to Tx Shift Register and notifies SW of
empty TxBuf (ready for SW to load next character)
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Off-Loading Communication Processing
Extreme UART: 1 Mbps ’& SV DéD_l
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= Range of frequencies for sync activities needed to = Off-load communication processing from software

implement protocol to hardware
= Per symbol: 12C = Start with Serialization/Deserialization in hardware,
= Per byte: SPI, UART, 12C since tightest timing requirements
* Per message: 12C, SPI = More sophisticated protocols may shift more
" etc. features into hardware, simplifying hardware

= Driven by response time requirements, throughput,
processing load incurred
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