NC STATE UNIVERSITY

Introduction to Serial Communications
Considering Process Concurrency & Synchronization

Overview

= Convert data to symbols which fit well with a
practical/feasible/affordable communication channel
(aka “medium”)

= Communication protocol, and implementation in
processes with communication interface

= |nteractions between communication interface and
other processes

NC STATE UNIVERSITY

NC STATE UNIVERSITY

Data and Symbols

= Convert data to symbols which fit a practical
communication channel better

= Use fewer wires, lower cost wires (e.g. no shielding)
= Or even use no wires! Radio, light, acoustic

B3]
3.3V ______
23l
(2, QW\)&%\"CB
;’;l) DI
n DO
ov| O -
= Start with simple symbols for wires =
= Symbol uses voltage to represent one data bit = Sending all 32 bits of data word at the same time
= Example: make compatible with KL25Z GPIO takes at least 34 wires. ®

= Derive from MCU’s input requirements (min. V,,,, max.
V,) given supply voltage V,= 3.3V

= 1=H:>=231V

= 0=L:<1.155V

= 32 signals (for 32 data bits), data valid, ground

NC STATE UNIVERSITY

Serialization
|

t
t Serialization

Parallel Data In
—~ Q) = QY ~e——r —
Parallel Data Out

Shift Register: PISO
= Don’t send all symbols simultaneously? Serialize symbol transmission to simplify data channel.
= Send fewer symbols (e.g. 1, 2, 4) at a time

= Transmitter
= Selects next bit(s) to send with shift register(s) (PISO: parallel in, serial out)
= One bit at a time: Bit 0, bit 1, bit 2, bit 3, etc. -> symbol 0, symbol 1, symbol 2 symbol 3
= Two bits at a time: Bits 0 & 1, bits 2 & 3, etc. -> symbol 0&1, symbol 2&3

= Receiver
= Samples wire(s) at the right times to get the symbols, decodes them into bits, reassembles word with shift

register (SIPO: serial in, parallel out)
= Reduces channel requirements but raises interface complexity and delays

Use Better Symbols?

= Subdivide voltage ranges? 3.3V
= Split into four voltage ranges to send two data bits per symbol
= Eight ranges for three bits per symbol

= Limited by noise, channel bandwidth from parasitic R/L/C
= Used by multi-level flash memory

oV
= Many other options!

NC STATE UNIVERSITY

4
7

o

O

3
V= %4
1 =
R

|
=z
>

= RF: Modulation of radio carrier wave’s frequency, amplitude, phase etc.

M=

= Can use multiple approaches simultaneously: WiFi changes phase and amplitude with QAM

(Quadrature Amplitude Modulation)

Communication Protocol and Interface Controller
CPu Cl ‘A
O Q@O

|

=R

= Communication protocol defines... = Communication interface
= Serialization/deserialization, = Need concurrent processes to implement protocol
= data format, = Serialize incoming data
= symbol timing, = De-Serialize outgoing data
= error control, = Do many other useful things (error detection,

formatting, etc. Much more later)
= flow control, .
, = Hardware process benefits
= addressing, o _
£ g = Very stable timing compared with software

type of data content, - High throughput

" et .. = Standardized communication protocols are stable,

don’t need software flexibility

Relationships between Processes

NC STATE UNIVERSITY

= Communication interface and other processes are = Meeting synchronization timing requirements
asynchronous with each other

Must be able to make mostly independent progress,
except to synchronize and communicate

Event notification and data communication examples
with UART

= Reception: character received, receive error

= Transmission: character transmitted, transmit error

Adding protocol features (e.g. node addressing) adds
more events

between application and communication interface

May be too strict for a software process: sloppy
timing due to scheduling from interrupts + OS, other

SW processes

Case 1: Response can’t be delayed (e.g. read
response), so implement process natively in
hardware

Case 2: OK for software to respond later. Add
buffering to hold pending data until SW can run.

NC STATE UNIVERSITY

Buffering to Meet Timing Requirements

= Software process has sloppy timing due to scheduling from interrupts + OS, other SW processes
= Case 2: OK for software to respond later. Add buffering to hold pending data until SW can run.

= UART Receive Data Problem:

= SW must read Rx shift register (B1) before next character (B2) | j 'l Y : " |
starts to arrive, else incoming data (B2) corrupts previous data (B1) e / } } \
= Solution Nz \Y
= Add single item buffer RxBuf after Rx shift register. RxBuf __>

= When data from last symbol of character updates Rx shift register, HW copies
data from Rx shift register to RxBuf and notifies SW of new received data.
= Now software just needs to read B1 from RxBuf before B3 starts to arrive, B2 before B4 starts to arrive...

= UART Transmit Data Problem:
= Can’t write B2 to Tx shift register until all of B1 has been sent
= Solution
= Add single item buffer TxBuf before Tx shift register
= When Tx shift register finishes sending data, HW copies data from TxBuf to Tx Shift Register and notifies SW of
empty TxBuf (ready for SW to load next character)

NC STATE UNIVERSITY
Off-Loading Communication Processing
Extreme UART: 1 Mbps ’& SV DéD_l

> s e— e o

| bl s/ k o~

- T T
(~ ﬁcr/he?luulu_'ll\kf\'m\f(‘\ HW E}ﬂ:\) C;B

T T 9ﬂc«l’w¢“f v —j'

\\eaﬂ’ff"-j' Ned 374’ e

SH 7 URRT> T ¢ HW s T 57

= Range of frequencies for sync activities needed to = Off-load communication processing from software

implement protocol to hardware
= Per symbol: 12C = Start with Serialization/Deserialization in hardware,
= Per byte: SPI, UART, 12C since tightest timing requirements
* Per message: 12C, SPI = More sophisticated protocols may shift more
" etc. features into hardware, simplifying hardware

= Driven by response time requirements, throughput,
processing load incurred

	Default Section
	Slide 1: Introduction to Serial Communications Considering Process Concurrency & Synchronization
	Slide 2: Overview
	Slide 3: Data and Symbols
	Slide 4: Serialization
	Slide 5: Use Better Symbols?
	Slide 6: Communication Protocol and Interface Controller
	Slide 7: Relationships between Processes
	Slide 8: Buffering to Meet Timing Requirements
	Slide 9: Off-Loading Communication Processing

