
1

Introduction to Serial Communications
Considering Process Concurrency & Synchronization

2

Overview

▪ Convert data to symbols which fit well with a
practical/feasible/affordable communication channel
(aka “medium”)

▪ Communication protocol, and implementation in
processes with communication interface

▪ Interactions between communication interface and
other processes

3

Data and Symbols

▪ Convert data to symbols which fit a practical
communication channel better
▪ Use fewer wires, lower cost wires (e.g. no shielding)
▪ Or even use no wires! Radio, light, acoustic

▪ Start with simple symbols for wires
▪ Symbol uses voltage to represent one data bit
▪ Example: make compatible with KL25Z GPIO
▪ Derive from MCU’s input requirements (min. VIH, max.

VIL) given supply voltage VDD = 3.3V
▪ 1 = H: >= 2.31 V
▪ 0 = L: < 1.155 V

▪ Sending all 32 bits of data word at the same time
takes at least 34 wires. 
▪ 32 signals (for 32 data bits), data valid, ground

3.3 V

0 V

4

Serialization

▪ Don’t send all symbols simultaneously? Serialize symbol transmission to simplify data channel.
▪ Send fewer symbols (e.g. 1, 2, 4) at a time

▪ Transmitter
▪ Selects next bit(s) to send with shift register(s) (PISO: parallel in, serial out)

▪ One bit at a time: Bit 0, bit 1, bit 2, bit 3, etc. -> symbol 0, symbol 1, symbol 2 symbol 3

▪ Two bits at a time: Bits 0 & 1, bits 2 & 3, etc. -> symbol 0&1, symbol 2&3

▪ Receiver
▪ Samples wire(s) at the right times to get the symbols, decodes them into bits, reassembles word with shift

register (SIPO: serial in, parallel out)

▪ Reduces channel requirements but raises interface complexity and delays

Deserialization

Shift Register: PISO

Serialization

Shift Register: SIPO

Receiver samples channel
at middle of symbol time

Pa
ra

lle
l D

a
ta

 In

Pa
ra

lle
l D

a
ta

 O
u

t

5

Use Better Symbols?

▪ Subdivide voltage ranges?
▪ Split into four voltage ranges to send two data bits per symbol

▪ Eight ranges for three bits per symbol

▪ Limited by noise, channel bandwidth from parasitic R/L/C

▪ Used by multi-level flash memory

▪ Many other options!
▪ RF: Modulation of radio carrier wave’s frequency, amplitude, phase etc.

▪ Can use multiple approaches simultaneously: WiFi changes phase and amplitude with QAM
(Quadrature Amplitude Modulation)

3.3 V

0 V

6

Communication Protocol and Interface Controller

▪ Communication protocol defines…
▪ Serialization/deserialization,

▪ data format,

▪ symbol timing,

▪ error control,

▪ flow control,

▪ addressing,

▪ type of data content,

▪ etc. …

▪ Communication interface
▪ Need concurrent processes to implement protocol

▪ Serialize incoming data

▪ De-Serialize outgoing data

▪ Do many other useful things (error detection,
formatting, etc. Much more later)

▪ Hardware process benefits

▪ Very stable timing compared with software

▪ High throughput

▪ Standardized communication protocols are stable,
don’t need software flexibility

7

Relationships between Processes

▪ Communication interface and other processes are
asynchronous with each other

▪ Must be able to make mostly independent progress,
except to synchronize and communicate

▪ Event notification and data communication examples
with UART

▪ Reception: character received, receive error

▪ Transmission: character transmitted, transmit error

▪ Adding protocol features (e.g. node addressing) adds
more events

▪ Meeting synchronization timing requirements
between application and communication interface

▪ May be too strict for a software process: sloppy
timing due to scheduling from interrupts + OS, other
SW processes

▪ Case 1: Response can’t be delayed (e.g. read
response), so implement process natively in
hardware

▪ Case 2: OK for software to respond later. Add
buffering to hold pending data until SW can run.

8

Buffering to Meet Timing Requirements

▪ Software process has sloppy timing due to scheduling from interrupts + OS, other SW processes
▪ Case 2: OK for software to respond later. Add buffering to hold pending data until SW can run.

▪ UART Receive Data Problem:
▪ SW must read Rx shift register (B1) before next character (B2)

starts to arrive, else incoming data (B2) corrupts previous data (B1)

▪ Solution
▪ Add single item buffer RxBuf after Rx shift register.
▪ When data from last symbol of character updates Rx shift register, HW copies

data from Rx shift register to RxBuf and notifies SW of new received data.
▪ Now software just needs to read B1 from RxBuf before B3 starts to arrive, B2 before B4 starts to arrive…

▪ UART Transmit Data Problem:
▪ Can’t write B2 to Tx shift register until all of B1 has been sent

▪ Solution
▪ Add single item buffer TxBuf before Tx shift register
▪ When Tx shift register finishes sending data, HW copies data from TxBuf to Tx Shift Register and notifies SW of

empty TxBuf (ready for SW to load next character)

RxBuf

shift in data

Rx Shift Register

9

Off-Loading Communication Processing

▪ Range of frequencies for sync activities needed to
implement protocol
▪ Per symbol: I2C

▪ Per byte: SPI, UART, I2C

▪ Per message: I2C, SPI

▪ etc.

▪ Off-load communication processing from software
to hardware

▪ Start with Serialization/Deserialization in hardware,
since tightest timing requirements

▪ More sophisticated protocols may shift more
features into hardware, simplifying hardware

▪ Driven by response time requirements, throughput,
processing load incurred

Extreme UART: 1 Mbps

	Default Section
	Slide 1: Introduction to Serial Communications Considering Process Concurrency & Synchronization
	Slide 2: Overview
	Slide 3: Data and Symbols
	Slide 4: Serialization
	Slide 5: Use Better Symbols?
	Slide 6: Communication Protocol and Interface Controller
	Slide 7: Relationships between Processes
	Slide 8: Buffering to Meet Timing Requirements
	Slide 9: Off-Loading Communication Processing

