
1

Scheduling Overview



2

Operation Programmed I/O ISR Non-Premptive Scheduler Preemptive Scheduler

Synch – Detect event
while (!e); HW: Peripheral Task requests release IRQ -> ISR, which 

requests release
Task signals event IRQ -> ISR

Start Scheduler
n/a HW: Interrupt System Code reaches scheduling point, 

RTCS_Scheduler resumes
SVC Exception handler

Pick what to run n/a (implied, sequential) HW: Interrupt Vector Pick highest-priority ready task Pick highest-priority ready task

Switch to 
other code

Save old context
n/a HW: push some regs 

onto stack
Compiler handles with register allocation Some saved by entering SVC exception handler.

SW saves rest of registers in TCB

Create or restore 
context

n/a none Prolog of task function saves more as needed Restore some registers from TCB with 
software. Return from interrupt restores rest

Transfer Control n/a (implied, sequential) PC <- Vector Subroutine call Return from interrupt

New code is in … This function IRQHandler Subroutine Task function

Preemption
By Interrupt

Yes, IRQ Yes, Higher priority 
IRQ

Yes, IRQ Yes, IRQ

By Task Not possible Not possible Not possible Yes, higher-priority task

Yield
No, unless statically 
scheduled and manually 
integrated (can use FSM)

Not possible No, unless statically scheduled and manually 
integrated (can use FSM)

Yes, explicit OS call (yield, delay) or implicit 
(potentially blocking call)

Terminate …? return from interrupt Return from subroutine OS call, end of task root function

CPU Scheduling Approach Overview



3

Programmed I/O ISR Non-Premptive Scheduler Preemptive Scheduler

Concurrency

Among ISRs Yes, if nested Yes, if nested Yes, if nested

Between ISRs 

and Tasks
Yes Yes Yes

Among tasks
n/a n/a No, unless explicitly integrated 

(synchronous, or async using FSMs)
Yes

CPU Scheduling Approach Overview


	Scheduling Overview_v1
	Scheduling Overview
	CPU Scheduling Approach Overview
	CPU Scheduling Approach Overview


