NC STATE UNIVERSITY

Scheduling Overview

CPU Scheduling Approach Overview

NC STATE UNIVERSITY

Operation Programmed I/O |ISR Non-Premptive Scheduler Preemptive Scheduler
while (le); HW: Peripheral Task requests release | IRQ -> ISR, which Task signals event IRQ -> ISR
Synch — Detect event requests release
n/a HW: Interrupt System | Code reaches scheduling point, SVC Exception handler

Start Scheduler

RTCS_Scheduler resumes

Pick what to run

n/a (implied, sequential)

HW: Interrupt Vector

Pick highest-priority ready task

Pick highest-priority ready task

Save old context n/a HW: push some regs | Compiler handles with register allocation Some saved by entering SVC exception handler.
onto stack SW saves rest of registers in TCB
Switch to Create or restore |n/a none Prolog of task function saves more as needed | Restore some registers from TCB with
other code | context software. Return from interrupt restores rest
Transfer Control n/a (implied, sequential) | PC <- Vector Subroutine call Return from interrupt
New code is in This function IRQHandler Subroutine Task function
By Interrupt Yes, IRQ Yes, Higher priority Yes, IRQ Yes, IRQ
. IRQ
Preemption
By Task Not possible Not possible Not possible Yes, higher-priority task
No, unless statically Not possible No, unless statically scheduled and manually Yes, explicit OS call (yield, delay) or implicit
Yield scheduled and manually integrated (can use FSM) (potentially blocking call)
integrated (can use FSM)
Terminate w? return from interrupt | Return from subroutine OS call, end of task root function

CPU Scheduling Approach Overview

NC STATE UNIVERSITY

Programmed I/O

ISR

Non-Premptive Scheduler

Preemptive Scheduler

Concurrency

Among ISRs Yes, if nested Yes, if nested Yes, if nested
Between ISRs Yes Yes Yes
and Tasks

n/a n/a No, unless explicitly integrated Yes

Among tasks

(synchronous, or async using FSMs)

	Scheduling Overview_v1
	Scheduling Overview
	CPU Scheduling Approach Overview
	CPU Scheduling Approach Overview

