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Sharing Data Safely (with Mutexes)
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All memory 
data object 

updates are 
critical sections

Overview – Compiler is not Omniscient
Volatile Data: 
things outside 
this function 
can change 

data

Critical sections: 
non-atomic 

memory object 
updatesVulnerability

Fault Trigger

Compiler Optimization: 

Assume data is not 

volatile, so remove 

redundant loads or 

stores

Preemption: 

Interleaving critical 

sections from 

different threads 

for same object

Solution
“volatile” data type 

modifier for compiler

Prevent preemption of 

critical sections 

(interrupt/scheduler 

locking, mutex)

Load/Store 

Architecture: makes 

updates of all 

memory objects into 

critical sections

Simplify: first consider CPU which 

can operate on data in memory 

(not only load/store)
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▪ Race condition 
▪ An ordering of read and write operations in multiple threads (or ISRs) which causes code to behave 

anomalously. 

▪ Is there a way to jump back and forth between two threads and get the wrong answer?

▪ Critical section
▪ A section of code which creates a possible race condition. 

▪ Any access to a shared object in a system with preemption is a critical section of code

▪ Only one critical section per shared object can be executed at a time. 

▪ OK to execute multiple critical sections concurrently if they access different shared objects.

▪ Some synchronization mechanism is required at the entry and exit of each critical section to ensure 
exclusive use. 

Definitions



4

Mutual Exclusion Concepts
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▪ Simple solution: Don’t let any tasks preempt each other

▪ Disadvantage: All higher priority tasks have to wait longer and finish 
later

▪ Slightly better solution: Don’t let tasks which might access shared 
resource preempt each other

▪ Disadvantage: Higher priority tasks which use shared resource have 
to wait longer and finish later

▪ Better solution: Let tasks preempt each other unless it will 
interleave accesses (critical sections) to same shared resource

▪ If gold task wants to run its critical section now and it preempted 
blue task when it was using running the critical section, let blue task 
finish its critical section, and then let gold task run its critical section

▪ Higher priority tasks finish sooner – just what we wanted

Range of Possible Solutions for Sharing Resource
Code accessing same shared resource is called a Critical Section
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▪ Use a lock to protect each shared 
resource by only allowing a single 
thread to access it at a time

▪ Access Rules

▪ We must get permission (acquire the 
lock) before we try to access the 
resource

▪ We must release that permission 
(release the lock) when we are done 
accessing the resource

▪ What is the lock?

▪ Regular shared variable? Vulnerable to 
concurrency bugs from preemption

▪ Use OS-protected variable prevent 
them. Which type?

▪ Event flag? Semaphore -- binary? 
counting? Something else?

Using a Lock for Mutual Exclusion

Shared 
Resource

Unlocked, 

resource is 

available

Locked by blue, 

only blue can use 

resource

Locked by gold, 

only gold can 

use resource

my_data_type SharedResource …;
my_lock_type lockSR;

void T_Rose(void) {
 …
 do_work_without_SharedResource();
 …
}
void T_Gold(void) {
 …
 if (LockAcquire(lockSR)==OK) {
  // start of Gold’s crit. section
  SharedResource.field1 += 37;
  // end of Gold’s crit. section
  LockRelease(lockSR);
 } else handle error
 …
}
void T_Blue(void) {
 …
 if (LockAcquire(lockSR)==OK) {
  // start of Blue’s crit. section
  SharedResource.field1 -= 12;
  // end of Blue’s crit. section
  LockRelease(lockSR);
 } else handle error
 …
}
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▪ Works fine for this simple problem

Lock with a Binary Semaphore?

my_data_type SharedResource …;
osSemaphoreId_t lockSR;

void init(void) {
 // create binary semaphore, init to available (1)
 lockSR = osSemaphoreNew(1,1, NULL); 
}
void T_Gold(void) {
 …
 if (osSemaphoreAcquire(lockSR, osWaitForever)==OK) 
{
  // start of Gold’s critical section
  SharedResource.field1 += 37;
  // end of Gold’s critical section
  osSemaphoreRelease(lockSR);
 } else handle error
 …
}

void T_Blue(void) {
 …
 if (osSemaphoreAcquire(lockSR, osWaitForever)==OK) 
{
  // start of Blue’s critical section
  SharedResource.field1 -= 12;
  // end of Blue’s critical section
  osSemaphoreRelease(lockSR);
 } else handle error
 …
}

void T_Rose(void) {
 …
 do_work_without_SharedResource();
 …
}
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▪ Scaling up threads sharing a 
resource
▪ Thread quantity

▪ Priority inversion

▪ Timing requirements vs. allowed 
slack

▪ Scaling up critical sections
▪ CS quantity 

▪ Locations in source code

▪ Sequencing behavior 

▪ Other wants

▪ Simplify programs with complex 
lock behaviors

▪ Handle thread ending without 
releasing mutex

Scaling Up? Complications

Characteristic Simple Case Not so Easy…

Threads using 

Shared 

Resource

Quantity Two or a few Many threads

Timing slack allowed. 

For how much extra 

time can resource be 

locked before hurting 

system performance?

Much slack Little slack. 

Critical 

Sections in 

Threads for 

Shared 

Resource

Quantity Few Many

Locations Known Not so clear

Sequence of execution Known Unknown, many 

possibilities
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▪ Let only one thread at a time access a 
shared resource using multiple critical 
sections 
▪ Examples: data structure with multiple fields 

which are independent of each other, some 
types of shared peripherals

▪ Note: We trust the programmer not interleave 
the critical sections in this thread.

▪ Let multiple critical sections of that thread 
access that shared resource (but don’t let 
other threads in until this one is done). 
▪ Don’t want to have to track number or ordering 

of critical sections, since complicated. 

▪ Want to protect each critical section 
individually since much easier to implement in 
program. 

Mutex Motivation
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▪ Binary semaphore? 
▪ Maybe? Complicates programming because of 

extra conditions

▪ Acquire semaphore before first access/ start 
of critical section

▪ Must protect intervening critical sections 
somehow -- but can’t increment binary 
semaphore past one

▪ Add code before each critical section to check to 
confirm we have the semaphore? 

▪ What should we do if we don’t have it?  

▪ Assume we have semaphore and do CS anyhow? 

▪ Must check program very carefully, bugs likely

▪ Then release semaphore after last access/ end 
of critical section. Which access is the last? 

▪ Counting semaphore? 
▪ Fails because it allows different threads to 

interleave their critical sections, breaking 
atomic critical sections.

Use a Semaphore?
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▪ Sem1: my thread has rights to use the shared resource

▪ Sem2: my thread has started but not finished a critical section

▪ Before each critical section, maybe acquire sem1 or sem2

▪ After each critical section, maybe release sem1 or sem2

Use Two Binary Semaphores?
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Binary Semaphore + Counter Variable?

▪ Add a counter variable 
▪ Track number of active critical sections: started but not finished

▪ Pending “releases”

▪ Before each critical section, maybe acquire sem
▪ Counter == 0? 

▪ Acquire the semaphore, since this is thread’s first acquire. 

▪ Else skip the acquire, since this thread already has the semaphore.

▪ Increment counter

▪ After each critical section, maybe release sem
▪ Decrement counter

▪ Counter == 0? 

▪ Last release, so release the binary semaphore. 

▪ Else skip the release, since we haven’t finished all the critical sections.
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▪ Want a counting semaphore which can only be 
used by one thread at a time

▪ Mutex is like two semaphores tied together

1. Binary semaphore to limit ownership to one thread at a 
time

2. Counting semaphore (lock counter) to track depth of 
recursive acquisitions, know when to release binary 
semaphore.

Operation:

1. When a thread acquires a mutex, that mutex “belongs” 
to the thread. 

2. The thread can then do additional nested/recursive 
acquisitions, which increment the mutex’s lock counter 
(a special hidden semaphore token counter variable) 
and always succeed immediately without blocking. 

3. When the thread releases the mutex, the lock counter is 
decremented. 

4. When the lock counter finally reaches zero, the thread 
doesn’t own the mutex anymore, and another thread 
can acquire it successfully.

Mutex can also add priority inheritance/ceiling to 
owning thread if enabled.

Mutex Implementation
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Mutex OS Mechanism
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▪ Wait/Pend until mutex is free, then acquire it

▪ If mutex available (1), take it and continue 
executing

▪ Otherwise, OS puts calling task into waiting 
state until mutex is available

▪ Release the mutex

▪ If a task is waiting for this mutex, OS moves that 
task to the ready state

Scheduler Behavior for Mutex

1. Start: Mutex 

available (count = 1)
2. Task A acquires 

mutex (count = 0)

3. Task B tries to 

acquire mutex but 

can’t

4. Task A releases 

mutex (count = 1)

5. Scheduler 

resumes Task B, 

gives it the mutex 

(count = 0)
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▪ osMutexId_t osMutexNew(osMutexAttr_t 
* attr) 
▪ Creates mutex and makes it available (initializes 

it to 1)

▪ osStatus_t osMutexAcquire(osMutexId_t 
mutex_id, uint32_t timeout)
▪ Wait for until mutex is available, then takes it 

(decrements count)

▪ Optional timeout value (in scheduler ticks)

▪ To never timeout, use osWaitForever

▪ Return type is osStatus

▪ osOK, osErrorTimeoutResource, 
osErrorResource, etc. 

▪ osStatus_t osMutexRelease(osMutexId_t 
mutex_id)
▪ Releases (signals) the mutex

▪ Increments count to 1

▪ Can’t release a mutex you don’t have! Error

▪ Return type is osStatus

▪ osStatus osMutexDelete(osMutexId_t 
mutex_id)
▪ Deletes mutex, frees internal memory it used

▪ Return type is osStatus

▪ Note: Can’t call mutex functions from ISR!

CMSIS-RTOS2 Mutex Functions and Macros
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▪ Use a mutex lock to protect each shared variable, object or 
resource

▪ A mutex provides mutual exclusion - Only a single task can have the 
mutex at a time

▪ Mutexes are like binary semaphores with extra features

▪ Access Rules

▪ We must get permission (acquire the mutex) before we try to access 
the resource

▪ We must release that permission (release the mutex) when we are 
done accessing the resource

Using a CMSIS-RTOS2 Mutex Object my_data_type SharedResource …;
my_mutex_type mutexSR;

void T_Rose(void) {
 …
 do_work_without_SharedResource();
 …
}
void T_Gold(void) {
 …
 if (osMutexAcquire(mutexSR)==OK) {
  // start of Gold’s critical section
  SharedResource.field1 += 37;
  // end of Gold’s critical section
  osMutexRelease(mutexSR);
 } else handle error
 …
}
void T_Blue(void) {
 …
 if (osMutexAcquire(mutexSR)==OK) {
  // start of Blue’s critical section
  SharedResource.field1 -= 12;
  // end of Blue’s critical section
  osMutexRelease(mutexSR);
 } else handle error
 …
}
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▪ Three threads running, each lighting 
its LED

▪ Requirement: Light at most one LED 
at a time – e.g. power constraint

▪ Threads are running independently, 
don’t coordinate their activities
▪ So may have more than one LED on

RTX5 Demo: Mutex of LEDs

Thread_R Thread_G Thread_B

Red

Blue

Green

Resulting LED Color R R+B R+B+G B+G G

Without Mutual Exclusion
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▪ Use mutex to indicate permission 
to light an LED
▪ Thread blocks on (waits for) the 

mutex before lighting the LED.

▪ Thread releases mutex after turning 
off LED

RTX5 Demo: Mutex of LEDs

Thread_R

LED_mutex

Thread_G Thread_B

With Mutual Exclusion

LED_mutex 1: available 0: held by Thread_R 0: held by Thread_B 0: held by Thread_G 1: available

Thread_R blocking on osDelay has mutex blocking on osDelay

Red

Thread_B blocking on osDelay blocking on mutex has mutex blocking on osDelay

Blue

Thread_G blocking on osDelay blocking on mutex has mutex blocking on osDelay

Green

Resulting LED 

Color R B G
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▪ Further discussion by Michael Barr at http://www.barrgroup.com/Embedded-
Systems/How-To/RTOS-Mutex-Semaphore 

Mutual Exclusion: Binary Semaphore vs. Mutex

Binary Semaphore Mutex

Meaning of counter value 1 = Shared object is available 1 = Shared object is available

Initial counter value Must explicitly initialize to 1 Typically initialized to 1 when created

Who can acquire it? Any thread Any threa.

Who can release it? Any thread Only owner thread.  Attempts by other 

threads will be ignored.

Which thread owns it? No owner thread Thread which acquired but hasn’t yet 

released the mutex

Repeated acquires 

(recursive/nested locking)

Not allowed, since binary semaphore 

counts up to only 1

Allowed for owner thread (configurable)

Priority elevation 

(inheritance or ceiling)

Not provided Provided by RTOS (configurable).

http://www.barrgroup.com/Embedded-Systems/How-To/RTOS-Mutex-Semaphore
http://www.barrgroup.com/Embedded-Systems/How-To/RTOS-Mutex-Semaphore
http://www.barrgroup.com/Embedded-Systems/How-To/RTOS-Mutex-Semaphore
http://www.barrgroup.com/Embedded-Systems/How-To/RTOS-Mutex-Semaphore
http://www.barrgroup.com/Embedded-Systems/How-To/RTOS-Mutex-Semaphore
http://www.barrgroup.com/Embedded-Systems/How-To/RTOS-Mutex-Semaphore
http://www.barrgroup.com/Embedded-Systems/How-To/RTOS-Mutex-Semaphore
http://www.barrgroup.com/Embedded-Systems/How-To/RTOS-Mutex-Semaphore
http://www.barrgroup.com/Embedded-Systems/How-To/RTOS-Mutex-Semaphore
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▪ Recursive mutex allows nested locking
▪ Thread can acquire mutex more than once before releasing it

▪ Priority inheritance
▪ Thread temporarily inherits priority of higher-priority thread waiting on mutex

▪ Robust mutex
▪ Release mutex automatically when owning thread terminates

▪ Defined by attr_bits in osMutexAttr_t when calling osMutexNew

▪ Details online at https://www.keil.com/pack/doc/CMSIS/RTOS2/html/group__CMSIS__RTOS__MutexMgmt.html#structosMutexAttr__t 

Mutex Options

https://www.keil.com/pack/doc/CMSIS/RTOS2/html/group__CMSIS__RTOS__MutexMgmt.html#structosMutexAttr__t
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▪ “When a thread acquires a mutex and 
becomes its owner, subsequent mutex 
acquires from that thread will succeed 
immediately without any latency (if 
osMutexRecursive is specified). Thus, 
mutex acquires/releases can be nested.” 
– CMSIS-RTOS2 documentation 
▪ http://www.keil.com/pack/doc/CMSIS/RTOS

2/html/group__CMSIS__RTOS__MutexMgm
t.html#details 

▪ Semaphores don’t provide this

Mutex and Thread Ownership

http://www.keil.com/pack/doc/CMSIS/RTOS2/html/group__CMSIS__RTOS__MutexMgmt.html#ga65c2482cc64a35d03871f3180f305926
http://www.keil.com/pack/doc/CMSIS/RTOS2/html/group__CMSIS__RTOS__MutexMgmt.html#details
http://www.keil.com/pack/doc/CMSIS/RTOS2/html/group__CMSIS__RTOS__MutexMgmt.html#details
http://www.keil.com/pack/doc/CMSIS/RTOS2/html/group__CMSIS__RTOS__MutexMgmt.html#details
http://www.keil.com/pack/doc/CMSIS/RTOS2/html/group__CMSIS__RTOS__MutexMgmt.html#details
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▪ Compiler optimizes program by deleting instrs. 
which are useless from function’s point of view

▪ Compiler assumes that this function’s code runs 
without certain disruptions. 

▪ ISRs will never change function’s state (e.g. local 
variables, registers, condition code flags, memory 
used by function) or global variables.

▪ But subroutine calls may change global variables

▪ So, don’t need to repeat instructions if this function 
hasn’t changed their input data – just reuse the 
previous results

▪ Result: Compare do_work to 0 once, and reuse the 
result of that comparison

Dangers: Volatile Data
ISR Mem [do_work] Thread_1

Source Code Assembly Code Assembly Code Source Code
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▪ volatile keyword modifies variable’s storage class

▪ Haunted! Something else can change this variable’s 
value as this function executes. 

▪ For volatile variables, compiler generates code to 
access variable in memory whenever variable 
appears in source code. 

▪ Don’t optimize by reusing first loaded value, or result 
of first comparison, etc.

▪ Should apply volatile to variables which either…

▪ can be changed by …

▪ Code in an ISR or a preempting thread

▪ DMA (direct memory access) transfer

▪ or which are actually mapped to hardware registers 
whose contents can change spontaneously

Solution: Warn the Compiler with “volatile”
ISR Mem [do_work] Thread_1

Source Code Assembly Code Assembly Code Source Code
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▪ Compiler tries to optimize program by deleting useless 
instructions (useless from function’s point of view)

▪ Compiler assumes that this function’s code runs without 
certain disruptions. 

▪ ISRs will never change function’s state (e.g. local variables, 
registers, condition code flags, memory used by function) or global 
variables.

▪ Subroutine calls by the function may change global variables

▪ So, don’t need to repeat instructions if this function hasn’t 
changed their input data – just reuse the previous results

▪ Compare do_work to 0 once, and reuse the result of that 
comparison

▪ Volatile keyword (storage class modifier)

▪ Indicates something else can change this variable’s value as 
this function executes. (It’s haunted!) 

▪ Code: in an ISR or another thread (if preemptive threads)

▪ Hardware: DMA, or if variable is a hardware register

▪ Volatile tells compiler to access variable whenever specified 
in source code. 

▪ Don’t optimize by reusing first loaded value, result of first 
comparison, etc.

OLD: Dangers: Volatile Data

Thread_1{
 while (1){
  if (do_work > 0) { // Any work?

   do_work = 0;
   // Do the work here
  }

 }
}

ISR {

 // Event happened, 

 // so ask work to be done

 do_work = 1;

}

volatile int32_t do_work=0;

To Do:

- Introduce with memory/reg ISA to show general problem without 

load/store complications

- Add column with assembly code for each snippet to illustrate load/store 

optimization
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▪ ARM is a Load/Store architecture
▪ Variables must be in registers (not memory) to be 

tested or modified 
▪ Need to load variable into register from memory 

before using it

▪ Atomic operations are performed without 
interruption or preemption

▪ Any memory-resident variable modification uses at 
least 3 instructions:  read (load), modify, write 
(store) 
▪ Modifying these variables is not atomic
▪ This creates critical section from the load instruction to 

the store instruction (inclusive)
▪ Even single-word variables are vulnerable to 

corruption

▪ What if two threads try to increment the same 
variable in memory? 
▪ Incrementing 3 twice results in 4 or 5

▪ So threads communicating with shared memory 
variables are vulnerable to race conditions
▪ Any variables used in shared memory communication 

must be protected somehow 

Dangers: Load/Store and Atomic Operations

Thread_1{

 counter = counter + 1;

 // load r0 from memory

 // add 1 to r0

 // store r0 to memory

}

Thread_2{

 counter = counter + 1;

 // load r0 from memory

 // add 1 to r0

 // store r0 to memory

}

volatile int32_t counter=3;

To Do:

• Split slide to revise flow/structure

• Non-atomic data: requires multiple operations to update (e.g. 

string, struct, array) may be invalid during update

• Example (using mem/reg ISA)

• Load/Store ISA uses multiple instructions, makes all data updates 

non-atomic

• Example (this one )

• Add column with assembly code for each snippet to 

show load/store architecture makes increments 

non-atomic

• Add arrows showing fail sequence

• Add boxes around critical sections

Thread_1 Mem 
[counter]

Thread_2

Source Code Assembly 
Code

Assembly 
Code

Source Code
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Solution:
ISR Mem [do_work] Thread_1

Source Code Assembly Code Assembly Code Source Code
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▪ ARM is a Load/Store architecture
▪ Variables must be in registers (not memory) to be 

tested or modified 
▪ Need to load variable into register from memory 

before using it

▪ Atomic operations are performed without 
interruption or preemption

▪ Any memory-resident variable modification uses at 
least 3 instructions:  read (load), modify, write 
(store) 
▪ Modifying these variables is not atomic
▪ This creates critical section from the load instruction to 

the store instruction (inclusive)
▪ Even single-word variables are vulnerable to 

corruption

▪ What if two threads try to increment the same 
variable in memory? 
▪ Incrementing 3 twice results in 4 or 5

▪ So threads communicating with shared memory 
variables are vulnerable to race conditions
▪ Any variables used in shared memory communication 

must be protected somehow 

Dangers: Load/Store and Atomic Operations

Thread_1{

 counter = counter + 1;

 // load r0 from memory

 // add 1 to r0

 // store r0 to memory

}

Thread_2{

 counter = counter + 1;

 // load r0 from memory

 // add 1 to r0

 // store r0 to memory

}

volatile int32_t counter=3;

To Do:

• Split slide to revise flow/structure

• Non-atomic data: requires multiple operations to update (e.g. 

string, struct, array) may be invalid during update

• Example (using mem/reg ISA)

• Load/Store ISA uses multiple instructions, makes all data updates 

non-atomic

• Example (this one )

• Add column with assembly code for each snippet to 

show load/store architecture makes increments 

non-atomic

• Add arrows showing fail sequence

• Add boxes around critical sections
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▪ System structure
▪ TimerVal structure holds elapsed time

▪ TimerVal’s fields are updated by periodic timer ISR 

▪ Thread calls GetTime to copy time into time stamp 

▪ Problem
▪ An interrupt at the wrong time will lead to wrong data in T – some is old, some is new

Preemption and a Data Structure

void GetTime(TimeType * T){

 T->minute = TimerVal.minute;

 T->second = TimerVal.second;

}

void Timer_ISR(void){

 TimerVal.second++;

if TimerVal.second >= 60 {

 TimerVal.second -= 60;

 TimerVal.minute ++;

}

}

TimerVal

minute

second



30

▪ TimerVal is {0, 59} 

▪ Thread code calls GetTime(), which starts copying the TimerVal fields to T: minute = 0

▪ A timer interrupt occurs, which updates TimerVal to {1, 0}

▪ GetTime() resumes, copying the remaining TimerVal field to T: second = 0

▪ T now has a corrupted time stamp of {0, 0} (old, new)

▪ The system thinks time just jumped backwards one minute

Fail

void GetTime(TimeType * T){

 T->minute = TimerVal.minute;

 T->second = TimerVal.second;

}

void Timer_ISR(void){

 TimerVal.second++;

if TimerVal.second >= 60 {

 TimerVal.second -= 60;

 TimerVal.minute ++;

}

}

TimerVal

minute

second
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▪ What could possibly go wrong with a shared data?
▪ Data may be overwritten partway through being read or written

▪ Other corruptions:  e.g. two threads incrementing same variable

▪ What could possibly go wrong with a shared peripheral?
▪ All sorts of problems! Depends on the peripheral and device

▪ You must ensure indivisible (atomic) access to the shared 
objects
▪ Don’t let a thread or ISR access an object until an ongoing update 

has completed

Data Corruption from Preemption

# Readers # Writers Overwrite during 

Read?

Overwrite during 

Write?

>0 1 Possible Impossible

>0 >1 Possible Possible

To Do:

- Old data vs. corrupted data vs. new data concepts

- Add big picture of how preemption can corrupt data:

1. Data variables in program (this slide)

2. Peripherals

1. Preemption within operation (e.g. write byte to 

SD or LCD controller)

2. Preemption between sequence of operations 

(e.g. send command + data to SD or LCD 

controller = sequence of byte writes)
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▪ Preemption gives interleaved task execution

▪ Example: Two tasks can access SD card via SPI

▪ Possible failure:

▪ Task 1 starts reading data from SD card block N (sending 0xFF to 
clock out data) but is switched out by scheduler before finishing

▪ Task 2 starts writing new data to SD card block M

▪ Scheduler switches out Task 2 to run Task 1 

▪ Task 1 resumes reading from SD card, sending 0xFF to clock out 
data. SD Card interprets 0xFF as data to write to block M.

▪ Task 1 finishes and is switched out

▪ Task 2 resumes and tries to complete by writing rest of data, but 
will not succeed.

▪ Result: Task 2’s SD card block is corrupted, with some blocks 
overwritten by 0xFF. And SD card controller is probably stuck.

Preemption and a Peripheral: SPI and a µSD Card

??

Block N

Block M

Block N

Block M

Block N

Block M

Block N

Block M
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▪ SD_mutex is initially unlocked

▪ Task 1 locks SD_mutex

▪ Task 1 starts updating SD card

▪ Task 2 preempts Task 1, starts running

▪ Task 2 tries to lock SD_mutex but fails and blocks

▪ Scheduler switches back to Task 1

▪ Task 1 finishes updating SD card

▪ Task 1 unlocks SD_mutex

▪ Scheduler switches context to Task 2

▪ Task 2 locks SD_mutex

▪ Task 2 updates SD card

▪ Task 2 unlocks SD_mutex

▪ Task 2 completes and blocks

▪ Task 1 finishes other (non-SD Card) work

Solution: Task Locks Resource(s) When in Use

Block N

Block M

Block N

Block M

Block N

Block M

Block N

Block M

SD Card SD_mutex
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