NC STATE UNIVERSITY

Sharing Data Safely (with Mutexes)

Overview — Compiler is not Omniscient

Simplify: first consider CPU which

can operate on data in memory Volatile Data: . _ _
(not only load/store) things outside Critical sections:
this function mg(r)nn(;ra;%rgjlgct

Vulnerability Candcangnge updates

NC STATE UNIVERSITY

All memory
data object
updates are
critical sections

Compiler Opfimization: . Load/Store
Assum ta is not q critical Architecture: makes
Fault Trigger volatile,|so|remove ' < updates_of aII_
' memory objects into

Soluti ‘volatile” data type Prevent preemption of
olution modifier for compiler critical sections
(interrupt/scheduler

locking, mutex)

critical sections

NC STATE UNIVERSITY

Definitions

= Race condition

= An ordering of read and write operations in multiple threads (or ISRs) which causes code to behave
anomalously.

= |s there a way to jump back and forth between two threads and get the wrong answer?

= Critical section
= A section of code which creates a possible race condition.
= Any access to a shared object in a system with preemption is a critical section of code
= Only one critical section per shared object can be executed at a time.
= OK to execute multiple critical sections concurrently if they access different shared objects.

= Some synchronization mechanism is required at the entry and exit of each critical section to ensure
exclusive use.

NC STATE UNIVERSITY

Mutual Exclusion Concepts

Range of Possible Solutions for Sharing Resource

Code accessing same shared resource is called a Critical Section

= High = Simple solution: Don’t let any tasks preempt each other

= Disadvantage: All higher priority tasks have to wait longer and finish
later

Prior

Priority
-
«Q
-
a % 1

Low

= Slightly better solution: Don’t let tasks which might access shared
resource preempt each other

= Disadvantage: Higher priority tasks which use shared resource have
to wait longer and finish later

High

ity

Prior

Low

= Better solution: Let tasks preempt each other unless it will
interleave accesses (critical sections) to same shared resource

= |f gold task wants to run its critical section now and it preempted
blue task when it was using running the critical section, let blue task
finish its critical section, and then let gold task run its critical section

= Higher priority tasks finish sooner — just what we wanted

Low

NC STATE UNIVERSITY

NC STATE UNIVERSITY

Using a Lock for Mutual Exclusion S ——_———

my_lock_type LlockSR;

Unlocked = Use a lock to protect eéch shfared void T_Rose(void) {
. Shared resource by only allowing a single
resource Is]) : .
. Resource thread to access it at a time oL@ AR S e REse el g
available
= Access Rules }
.. , void T_Gold(void) {
= We must get permission (acquire the
lock) before we try to access the if (LockAcquire(lockSR)==0K) {
resource // start of Gold’s crit. section
Locked by blue, o SharedResource.fieldl += 37;
only blue can use * We must release that permission // end of Gold’s crit. section
resource (release the lock) when we are done LockRelease(lockSR);
accessing the resource } else handle error
= What is the lock? }
= Regular shared variable? Vulnerable to waskal VL))
LOCked by gO|d concurrency bUgS from preemption if (LockAcquire('LockSR)::OR) {
only gold can = Use OS-protected variable prevent o O S Geha e
h hich 5 SharedResource.fieldl —-= 12;
use resource them. Which type: // end of Blue’s crit. section
= Event flag? Semaphore -- binary? LockRelease(lockSR);

counting? Something else? } else handle error

NC STATE UNIVERSITY

Lock with a Binary Semaphore?

my_data_type SharedResource ..; void T_Blue(void) {
osSemaphoreId_t 1lockSR; -
if (osSemaphoreAcquire(lockSR, osWaitForever)==0K)

void init(void) { {
// create binary semaphore, init to available (1) // start of Blue’s critical section
lockSR = osSemaphoreNew(1,1, NULL); SharedResource.fieldl -= 12;
¥ // end of Blue’s critical section
void T_Gold(void) { osSemaphoreRelease(lockSR);

- } else handle error
if (osSemaphoreAcquire(lockSR, osWaitForever)==0K)

{ ¥
// start of Gold’s critical section
SharedResource.fieldl += 37; void T_Rose(void) {
// end of Gold’s critical section -
osSemaphoreRelease(lockSR); do_work_without_SharedResource();
} else handle error
- }
¥

= Works fine for this simple problem

NC STATE UNIVERSITY

Scaling Up? Complications

r r
esource L0 CEGERTE TS Quantity Two or a few Many threads
= Thread quantity Shared

= Priority inversion Resource Timing slack allowed. Much slack Little slack.
For how much extra
time can resource be
locked before hurting
system performance!

= Scaling up threads sharing a

= Timing requirements vs. allowed
slack

= Scaling up critical sections

" CSquantity Critical Quantity Few Many

= Locations in source code Sections in

= Sequencing behavior Threads for Locations Known Not so clear

= Other wants Shared Sequence of execution Known Unknown, many

R e
= Simplify programs with complex ESOUICE possibilities

lock behaviors

= Handle thread ending without
releasing mutex

Mutex Motivation

= Let only one thread at a time access a
shared resource using multiple critical

sections
= Examples: data structure with multiple fields
which are independent of each other, some
types of shared peripherals

= Note: We trust the programmer not interleave
the critical sections in this thread.

= Let multiple critical sections of that thread
access that shared resource (but don’t let
other threads in until this one is done).

= Don’t want to have to track number or ordering
of critical sections, since complicated.

= Want to protect each critical section
individually since much easier to implement in
program.

NC STATE UNIVERSITY

Use a Semaphore?

= Binary semaphore?

= Maybe? Complicates programming because of
extra conditions

= Acquire semaphore before first access/ start
of critical section

= Must protect intervening critical sections
somehow -- but can’t increment binary
semaphore past one

= Add code before each critical section to check to
confirm we have the semaphore?

= What should we do if we don’t have it?
= Assume we have semaphore and do CS anyhow?
= Must check program very carefully, bugs likely

= Then release semaphore after last access/ end
of critical section. Which access is the last?

10

NC STATE UNIVERSITY

= Counting semaphore?

Fails because it allows different threads to
interleave their critical sections, breaking
atomic critical sections.

Use Two Binary Semaphores?

11

Sem1: my thread has rights to use the shared resource
Sem2: my thread has started but not finished a critical section

Before each critical section, maybe acquire sem1 or sem2

After each critical section, maybe release sem1 or sem2

NC STATE UNIVERSITY

Binary Semaphore + Counter Variable?

= Add a counter variable
= Track number of active critical sections: started but not finished
= Pending “releases”

= Before each critical section, maybe acquire sem
= Counter==07?
= Acquire the semaphore, since this is thread’s first acquire.
= Else skip the acquire, since this thread already has the semaphore.

" Increment counter
= After each critical section, maybe release sem
= Decrement counter
= Counter==07
= Last release, so release the binary semaphore.

= Else skip the release, since we haven’t finished all the critical sections.

12

NC STATE UNIVERSITY

Mutex Implementation

=

13

Want a counting semaphore which can only be
used by one thread at a time

Mutex is like two semaphores tied together

. Binary semaphore to limit ownership to one thread at a
time

. Counting semaphore (lock counter) to track depth of

recursive acquisitions, know when to release binary
semaphore.

NC STATE UNIVERSITY

Operation:

1. When a thread acquires a mutex, that mutex “belongs”
to the thread.

2. The thread can then do additional nested/recursive
acquisitions, which increment the mutex’s lock counter
(a special hidden semaphore token counter variable)
and always succeed immediately without blocking.

3. When the thread releases the mutex, the lock counter is
decremented.

4. When the lock counter finally reaches zero, the thread
doesn’t own the mutex anymore, and another thread
can acquire it successfully.

Mutex can also add priority inheritance/ceiling to
owning thread if enabled.

14

Mutex OS Mechanism

NC STATE UNIVERSITY

NC STATE UNIVERSITY

Scheduler Behavior for Mutex

A\ 4

A\ 4

1. Start: Mutex 2. Task A acquires 3. Task B tries to 4. Task A releases 5. Scheduler
available (count=1) mutex (count = 0) acquire mutex but mutex (count = 1) resumes Task B,
can't gives it the mutex
(count = 0)
= Wait/Pend until mutex is free, then acquire it = Release the mutex
= |f mutex available (1), take it and continue = |f a task is waiting for this mutex, OS moves that
executing task to the ready state

= Otherwise, OS puts calling task into waiting
state until mutex is available

15

NC STATE UNIVERSITY

CMSIS-RTOS2 Mutex Functions and Macros

= osMutexld_t osMutexNew(osMutexAttr t
* attr)
= Creates mutex and makes it available (initializes
itto1)
= osStatus_t osMutexAcquire(osMutex|d t
mutex_id, uint32_t timeout)

= Wait for until mutex is available, then takes it
(decrements count)

= QOptional timeout value (in scheduler ticks)
= To never timeout, use osWaitForever
= Return type is osStatus

= 0sOK, osErrorTimeoutResource,
osErrorResource, etc.

16

= osStatus_t osMutexRelease(osMutexId t
mutex_id)
Releases (signals) the mutex

Increments countto 1

Can’t release a mutex you don’t have! Error

Return type is osStatus

= Note: Can’t call mutex functions from ISR!

Using a CMSIS-RTOS2 Mutex Object

= Use a mutex lock to protect each shared variable, object or
resource

= A mutex provides mutual exclusion - Only a single task can have the
mutex at a time

= Mutexes are like binary semaphores with extra features
= Access Rules

= We must get permission (acquire the mutex) before we try to access
the resource

= We must release that permission (release the mutex) when we are
done accessing the resource

17

NC STATE UNIVERSITY

my_data_type SharedResource ..;
my_mutex_type mutexSR;

void T_Rose(void) {

do_work_without_SharedResource();

, -
void T_Gold(void) {

if (osMutexAcquire(mutexSR)==0K) {
// start of Gold’s critical section
SharedResource.fieldl += 37;
// end of Gold’s critical section
osMutexRelease(mutexSR);

} else handle error

, -
void T_Blue(void) {

if (osMutexAcquire(mutexSR)==0K) {
// start of Blue’s critical section
SharedResource.fieldl —= 12;
// end of Blue’s critical section
osMutexRelease(mutexSR);

} else handle error

RTX5 Demo: Mutex of LEDs

= Three threads running, each lighting

its LED Thread R Thread B
= Requirement: Light at most one LED

at a time — e.g. power constraint
= Threads are running independently, I I

don’t coordinate their activities

= So may have more than one LED on
Wi ithout Mutual Exclusion

Red
Blue
Green

Resulting LED Color

18

NC STATE UNIVERSITY

RTX5 Demo: Mutex of LEDs

LED mutex

= Use mutex to indicate permission
to light an LED

= Thread blocks on (waits for) the
mutex before lighting the LED.

= Thread releases mutex after turning

off LED I I

With Mutual Exclusion

Thread B

Thread R

LED_mutex | |:available 0: held by Thread_R 0: held by Thread B | 0:held by Thread_G | |:available
Thread_R | blocking on osDelay | has mutex blocking on osDelay
Red
Thread_B | blocking on osDelay blocking on mutex has mutex blocking on osDelay
Blue
Thread_G | blocking on osDelay blocking on mutex has mutex blocking on osDelay

Green

Resulting LED
Color

19

NC STATE UNIVERSITY

Mutual Exclusion: Binary Semaphore vs. Mutex

Meaning of counter value | = Shared object is available | = Shared object is available
Initial counter value Must explicitly initialize to | Typically initialized to | when created
Who can acquire it? Any thread Any threa.

Who can release it? Any thread Only owner thread. Attempts by other
threads will be ignored.

Which thread owns it? No owner thread Thread which acquired but hasn’t yet
released the mutex

Repeated acquires Not allowed, since binary semaphore Allowed for owner thread (configurable)

(GEETENE N EE R Ye [F) B8 counts up to only |

Priority elevation Not provided Provided by RTOS (configurable).
(inheritance or ceiling)

= Further discussion by Michael Barr at http://www.barrgroup.com/Embedded-
Systems/How-To/RTOS-Mutex-Semaphore

20

http://www.barrgroup.com/Embedded-Systems/How-To/RTOS-Mutex-Semaphore
http://www.barrgroup.com/Embedded-Systems/How-To/RTOS-Mutex-Semaphore
http://www.barrgroup.com/Embedded-Systems/How-To/RTOS-Mutex-Semaphore
http://www.barrgroup.com/Embedded-Systems/How-To/RTOS-Mutex-Semaphore
http://www.barrgroup.com/Embedded-Systems/How-To/RTOS-Mutex-Semaphore
http://www.barrgroup.com/Embedded-Systems/How-To/RTOS-Mutex-Semaphore
http://www.barrgroup.com/Embedded-Systems/How-To/RTOS-Mutex-Semaphore
http://www.barrgroup.com/Embedded-Systems/How-To/RTOS-Mutex-Semaphore
http://www.barrgroup.com/Embedded-Systems/How-To/RTOS-Mutex-Semaphore

Mutex Options

21

Recursive mutex allows nested locking
= Thread can acquire mutex more than once before releasing it

Priority inheritance
= Thread temporarily inherits priority of higher-priority thread waiting on mutex

Robust mutex
= Release mutex automatically when owning thread terminates

Defined by attr_bits in osMutexAttr_t when calling osMutexNew

DEtaiIS Online at nhttps://www.keil.com/pack/doc/CMSIS/RTOS2/html/group CMSIS RTOS MutexMgmt.html#structosMutexAttr t

NC STATE UNIVERSITY

https://www.keil.com/pack/doc/CMSIS/RTOS2/html/group__CMSIS__RTOS__MutexMgmt.html#structosMutexAttr__t

Mutex and Thread Ownership

= “When a thread acquires a mutex and
becomes its owner, subsequent mutex
acquires from that thread will succeed
immediately without any latency (if
osMutexRecursive is specified). Thus,
mutex acquires/releases can be nested.”
— CMSIS-RTOS2 documentation

= http://www.keil.com/pack/doc/CMSIS/RTOS
2/html/group CMSIS RTOS MutexMgm

t.html#details
= Semaphores don’t provide this

22

available

osMutexAcquire() osMutexRelease()
/ owner = running, [owner == running & !count]
count =0 J/ owner = NULL
blocked
osMutexAcquire() osMutexRelease()
[owner == running] [owner == running && count]
/ count++ / count--

NC STATE UNIVERSITY

http://www.keil.com/pack/doc/CMSIS/RTOS2/html/group__CMSIS__RTOS__MutexMgmt.html#ga65c2482cc64a35d03871f3180f305926
http://www.keil.com/pack/doc/CMSIS/RTOS2/html/group__CMSIS__RTOS__MutexMgmt.html#details
http://www.keil.com/pack/doc/CMSIS/RTOS2/html/group__CMSIS__RTOS__MutexMgmt.html#details
http://www.keil.com/pack/doc/CMSIS/RTOS2/html/group__CMSIS__RTOS__MutexMgmt.html#details
http://www.keil.com/pack/doc/CMSIS/RTOS2/html/group__CMSIS__RTOS__MutexMgmt.html#details

Dangers: Volatile Data

NC STATE UNIVERSITY

ISR

Mem [do_work]

Thread_1

Source Code

Assembly Code

Assembly Code

Source Code

= Compiler optimizes program by deleting instrs.

23

which are useless from function’s point of view

= Compiler assumes that this function’s code runs
without certain disruptions.

= So, don’t need to repeat instructions if this function

hasn’t changed their input data — just reuse the

previous results

= Result: Compare do_work to 0 once, and reuse the
result of that comparison

= |SRs will never change function’s state (e.g. local
variables, registers, condition code flags, memory

used by function) or global variables.

= But subroutine calls may change global variables

Solution: Warn the Com

oiler with “volatile”

NC STATE UNIVERSITY

ISR

Mem [do_work]

Thread_1

Source Code

Assembly Code

Assembly Code

Source Code

= volatile keyword modifies variable’s storage class

= Haunted! Something else can change this variable’s
value as this function executes.

= For volatile variables, compiler generates code to
access variable in memory whenever variable
appears in source code.

= Don’t optimize by reusing first loaded value, or result
of first comparison, etc.

24

= can be changed by ..

= Should apply volatile to variables which either...

= Code in an ISR or a preempting thread

= DMA (direct memory access) transfer

= or which are actually mapped to hardware registers
whose contents can change spontaneously

OLD: Dangers: Volatile Data

To Do:

- Introduce with memory/reg ISA to show general problem without
load/store complications

- Add column with assembly code for each snippet to illustrate load/store

volatile int32 t do work=0;

optimization

ISR {
// Event happened,

// so ask work to be done

do work = 1;

= Compiler tries to optimize program by deleting useless
instructions (useless from function’s point of view)

= Compiler assumes that this function’s code runs without
certain disruptions.

= ISRs will never change function’s state (e.g. local variables,

registers, condition code flags, memory used by function) or global

variables.

= Subroutine calls by the function may change global variables

= So, don’t need to repeat instructions if this function hasn’t

changed their input data — just reuse the previous results

= Compare do_work to 0 once, and reuse the result of that

comparison
25

Thread 1{
while (1) {
if (do work > 0) { // Any work?
do work = 0;
// Do the work here
}
}
}

= Volatile keyword (storage class modifier)

= |Indicates something else can change this variable’s value as
this function executes. (/t’s haunted!)
= Code: in an ISR or another thread (if preemptive threads)
= Hardware: DMA, or if variable is a hardware register

= Volatile tells compiler to access variable whenever specified
in source code.

= Don’t optimize by reusing first loaded value, result of first
comparison, etc.

To Do: I
» Split slide to revise flow/structure

Da n ge rS : Loa d/StO re a n d Ato m iC * Non-atomic data: requires multiple operations to update (e.g.
crr-mg struct, awav\ may. be invalid d|||:|ng ||pdate

Thread_1 Mem * Example (using mem/reg TAread_2
[counter] * Load/Store ISA uses multiple instructions, makes all data updates
MON-atomic
Source Code Assembly . Example (A gﬁglply Source Code
Code « AddEedmn with assembly code for each snippkt to
shgw load/store architecture makes increments
nomn-atomic

* Add arrows showing fail $equence
* Add boxes around critical sections

s Thread 1{ the store instructjon (inclusive)
counten = counter + 1; emory) to be = |Even single-waord|variables are vulherable to
// load r0 from memory corrd Thread 2{
{{ el i volatile [int32 t counter=3; ??u?te{ =nciunter fL ¥
// sStore rU TO memory — varaore 77 LOodd ru I ronr memory
ul } thout = |ncre // add 1 to r0
interruption or preemption = So threzc // store r0 to memory ry
= Any memory-resident variable modification uses at variable }_. e
least 3 instructions: read (load), modify, write = Any variables used in shared memory communication
(store) must be protected somehow

= Modifying these variables is not atomic
26 = This creates critical section from the load instruction to

Solution:

NC STATE UNIVERSITY

ISR

Mem [do_work]

Thread_1

Source Code

Assembly Code

Assembly Code

Source Code

27

To Do: I
» Split slide to revise flow/structure

D a n ge rS : Loa d/StO re a n d Ato m iC * Non-atomic data: requires multiple operations to update (e.g.

string, struct, array) may be invalid during update
* Example (using mem/reg ISA)
* Load/Store ISA uses multiple instructions, makes all data updates

Thread 1{ non-atomic
— * Example (this one)

volatile 1nt32 t

counter = counter + 1; * Add column with assembly code for each snippet to
// load r0 from memory show load/store architecture makes increments
// add 1 to r0 non-atomic . ‘
|/ srore 50 to menony |l o seece
s
= ARM is a Load/Store architecture the store instruction (inclusive)
= Variables must be in registers (not memory) to be = Even single-word variables are vulnerable to
tested or modified corruption
= Need to load variable into register from memory = What if two threads try to increment the same
before using it variable in memory?
= Atomic operations are performed without = Incrementing 3 twice resultsin 4 or 5
interruption or preemption = So threads communicating with shared memory
= Any memory-resident variable modification uses at variables are vulnerable to race conditions
least 3 instructions: read (load), modify, write = Any variables used in shared memory communication
(store) must be protected somehow

= Modifying these variables is not atomic
28 = This creates critical section from the load instruction to

Preemption and a Data Structure

volid Timer ISR (void) {

TimerVal.second++;

1if TimerVal.second >= 60 {

TimerVal.second —-= 60; minute

TimerVal.minute ++; second

= System structure
= TimerVal structure holds elapsed time
= TimerVal’s fields are updated by periodic timer ISR
= Thread calls GetTime to copy time into time stamp

= Problem

vold GetTime (TimeType * T) {
T->minute = TimerVal.minute;

T->second = TimerVal.second;

= An interrupt at the wrong time will lead to wrong data in T—some is old, some is new

29

NC STATE UNIVERSITY

NC STATE UNIVERSITY
Fail

volid Timer ISR (void) {

TimerVal.second++;

. . . vold GetTime (TimeType * T) {
if TimerVal.second >= 60 ({ . . .
. T->minute = TimerVal.minute;
TimerVal.second -= 60; minute

T->second = TimerVal.second;

TimerVal.minute ++; second)

= TimerValis {0, 59}

= Thread code calls GetTime(), which starts copying the TimerVal fields to T: minute =0
= A timer interrupt occurs, which updates TimerVal to {1, 0}

= GetTime() resumes, copying the remaining TimerVal field to T: second =0

= T now has a corrupted time stamp of {0, 0} (old, new)

= The system thinks time just jumped backwards one minute

30

Data Corruption from Preemption

= What could possibly go wrong with a shared data?
= Data may be overwritten partway through being read or written

Readers | #Writers | Overwrite during | Overwrite during
Read? Write?

Possible Impossible

>0 > | Possible Possible

= QOther corruptions: e.g. two threads incrementing same variable

= What could possibly go wrong with a shared peripheral?
= All sorts of problems! Depends on the peripheral and device

objects

= Don’t let a thread or ISR access an object until an ongoing update

has completed

31

You must ensure indivisible (atomic) access to the shared

To Do:
- Old data vs. corrupted data vs. new data concepts
- Add big picture of how preemption can corrupt data:
|. Data variables in program (this slide)
2. Peripherals
I. Preemption within operation (e.g. write byte to
SD or LCD controller)
Preemption between sequence of operations
(e.g. send command + data to SD or LCD

2.

NC STATE UNIVERSITY

Preemption and a Peripheral: SPlI and a uSD Card

= Preemption gives interleaved task execution

= Example: Two tasks can access SD card via SPI

Block N = Possible failure:
Block M | - starts reading data from SD card block N (sending OxFF to

clock out data) but is switched out by scheduler before finishing
Block N = Task 2 starts writing new data to SD card block M
Block M F = Scheduler switches out Task 2 to run

L resumes reading from SD card, sending OxFF to clock out

Block N data. SD Card interprets OxFF as data to write to block M.
Block M [3 finishes and is switched out
Block N L Ta'sk 2 resumes and tries to complete by writing rest of data, but
Block M N will not succeed.

% = Result: Task 2’s SD card block is corrupted, with some blocks
overwritten by OxFF. And SD card controller is probably stuck.

32

NC STATE UNIVERSITY

Solution: Task Locks Resource(s) When in Use

Block N
Block M

Block N
Block M

Block N
Block M

Block N
Block M

33

SD Card

SD_mutex

SD_mutex is initially unlocked

Task 1 locks SD_mutex

Task 1 starts updating SD card

Task 2 preempts Task 1, starts running
Task 2 tries to lock SD_mutex but fails and blocks
Scheduler switches back to Task 1

Task 1 finishes updating SD card

Task 1 unlocks SD_mutex

Scheduler switches context to Task 2
Task 2 locks SD_mutex

Task 2 updates SD card

Task 2 unlocks SD_mutex

Task 2 completes and blocks

Task 1 finishes other (non-SD Card) work

	Mutexes_v1
	Sharing Data Safely (with Mutexes)
	Overview – Compiler is not Omniscient
	Definitions
	Mutual Exclusion Concepts
	Range of Possible Solutions for Sharing Resource
	Using a Lock for Mutual Exclusion
	Lock with a Binary Semaphore?
	Scaling Up? Complications
	Mutex Motivation
	Use a Semaphore?
	Use Two Binary Semaphores?
	Binary Semaphore + Counter Variable?
	Mutex Implementation
	Mutex OS Mechanism
	Scheduler Behavior for Mutex
	CMSIS-RTOS2 Mutex Functions and Macros
	Using a CMSIS-RTOS2 Mutex Object
	RTX5 Demo: Mutex of LEDs
	RTX5 Demo: Mutex of LEDs
	Mutual Exclusion: Binary Semaphore vs. Mutex
	Mutex Options
	Mutex and Thread Ownership
	Dangers: Volatile Data
	Solution: Warn the Compiler with “volatile”
	OLD: Dangers: Volatile Data
	Dangers: Load/Store and Atomic Operations
	Solution:
	Dangers: Load/Store and Atomic Operations
	Preemption and a Data Structure
	Fail
	Data Corruption from Preemption
	Preemption and a Peripheral: SPI and a µSD Card
	Solution: Task Locks Resource(s) When in Use

