
1

Sharing Data Safely (with Mutexes)

2

All memory
data object

updates are
critical sections

Overview – Compiler is not Omniscient
Volatile Data:
things outside
this function
can change

data

Critical sections:
non-atomic

memory object
updatesVulnerability

Fault Trigger

Compiler Optimization:

Assume data is not

volatile, so remove

redundant loads or

stores

Preemption:

Interleaving critical

sections from

different threads

for same object

Solution
“volatile” data type

modifier for compiler

Prevent preemption of

critical sections

(interrupt/scheduler

locking, mutex)

Load/Store

Architecture: makes

updates of all

memory objects into

critical sections

Simplify: first consider CPU which

can operate on data in memory

(not only load/store)

3

▪ Race condition
▪ An ordering of read and write operations in multiple threads (or ISRs) which causes code to behave

anomalously.

▪ Is there a way to jump back and forth between two threads and get the wrong answer?

▪ Critical section
▪ A section of code which creates a possible race condition.

▪ Any access to a shared object in a system with preemption is a critical section of code

▪ Only one critical section per shared object can be executed at a time.

▪ OK to execute multiple critical sections concurrently if they access different shared objects.

▪ Some synchronization mechanism is required at the entry and exit of each critical section to ensure
exclusive use.

Definitions

4

Mutual Exclusion Concepts

5

▪ Simple solution: Don’t let any tasks preempt each other

▪ Disadvantage: All higher priority tasks have to wait longer and finish
later

▪ Slightly better solution: Don’t let tasks which might access shared
resource preempt each other

▪ Disadvantage: Higher priority tasks which use shared resource have
to wait longer and finish later

▪ Better solution: Let tasks preempt each other unless it will
interleave accesses (critical sections) to same shared resource

▪ If gold task wants to run its critical section now and it preempted
blue task when it was using running the critical section, let blue task
finish its critical section, and then let gold task run its critical section

▪ Higher priority tasks finish sooner – just what we wanted

Range of Possible Solutions for Sharing Resource
Code accessing same shared resource is called a Critical Section

CS

C S

CS

CS

CS

CS

P
ri
o
ri

ty

Low

High

P
ri
o

ri
ty

Low

High

P
ri
o

ri
ty

Low

High

6

▪ Use a lock to protect each shared
resource by only allowing a single
thread to access it at a time

▪ Access Rules

▪ We must get permission (acquire the
lock) before we try to access the
resource

▪ We must release that permission
(release the lock) when we are done
accessing the resource

▪ What is the lock?

▪ Regular shared variable? Vulnerable to
concurrency bugs from preemption

▪ Use OS-protected variable prevent
them. Which type?

▪ Event flag? Semaphore -- binary?
counting? Something else?

Using a Lock for Mutual Exclusion

Shared
Resource

Unlocked,

resource is

available

Locked by blue,

only blue can use

resource

Locked by gold,

only gold can

use resource

my_data_type SharedResource …;
my_lock_type lockSR;

void T_Rose(void) {
 …
 do_work_without_SharedResource();
 …
}
void T_Gold(void) {
 …
 if (LockAcquire(lockSR)==OK) {
 // start of Gold’s crit. section
 SharedResource.field1 += 37;
 // end of Gold’s crit. section
 LockRelease(lockSR);
 } else handle error
 …
}
void T_Blue(void) {
 …
 if (LockAcquire(lockSR)==OK) {
 // start of Blue’s crit. section
 SharedResource.field1 -= 12;
 // end of Blue’s crit. section
 LockRelease(lockSR);
 } else handle error
 …
}

7

▪ Works fine for this simple problem

Lock with a Binary Semaphore?

my_data_type SharedResource …;
osSemaphoreId_t lockSR;

void init(void) {
 // create binary semaphore, init to available (1)
 lockSR = osSemaphoreNew(1,1, NULL);
}
void T_Gold(void) {
 …
 if (osSemaphoreAcquire(lockSR, osWaitForever)==OK)
{
 // start of Gold’s critical section
 SharedResource.field1 += 37;
 // end of Gold’s critical section
 osSemaphoreRelease(lockSR);
 } else handle error
 …
}

void T_Blue(void) {
 …
 if (osSemaphoreAcquire(lockSR, osWaitForever)==OK)
{
 // start of Blue’s critical section
 SharedResource.field1 -= 12;
 // end of Blue’s critical section
 osSemaphoreRelease(lockSR);
 } else handle error
 …
}

void T_Rose(void) {
 …
 do_work_without_SharedResource();
 …
}

8

▪ Scaling up threads sharing a
resource
▪ Thread quantity

▪ Priority inversion

▪ Timing requirements vs. allowed
slack

▪ Scaling up critical sections
▪ CS quantity

▪ Locations in source code

▪ Sequencing behavior

▪ Other wants

▪ Simplify programs with complex
lock behaviors

▪ Handle thread ending without
releasing mutex

Scaling Up? Complications

Characteristic Simple Case Not so Easy…

Threads using

Shared

Resource

Quantity Two or a few Many threads

Timing slack allowed.

For how much extra

time can resource be

locked before hurting

system performance?

Much slack Little slack.

Critical

Sections in

Threads for

Shared

Resource

Quantity Few Many

Locations Known Not so clear

Sequence of execution Known Unknown, many

possibilities

9

▪ Let only one thread at a time access a
shared resource using multiple critical
sections
▪ Examples: data structure with multiple fields

which are independent of each other, some
types of shared peripherals

▪ Note: We trust the programmer not interleave
the critical sections in this thread.

▪ Let multiple critical sections of that thread
access that shared resource (but don’t let
other threads in until this one is done).
▪ Don’t want to have to track number or ordering

of critical sections, since complicated.

▪ Want to protect each critical section
individually since much easier to implement in
program.

Mutex Motivation

10

▪ Binary semaphore?
▪ Maybe? Complicates programming because of

extra conditions

▪ Acquire semaphore before first access/ start
of critical section

▪ Must protect intervening critical sections
somehow -- but can’t increment binary
semaphore past one

▪ Add code before each critical section to check to
confirm we have the semaphore?

▪ What should we do if we don’t have it?

▪ Assume we have semaphore and do CS anyhow?

▪ Must check program very carefully, bugs likely

▪ Then release semaphore after last access/ end
of critical section. Which access is the last?

▪ Counting semaphore?
▪ Fails because it allows different threads to

interleave their critical sections, breaking
atomic critical sections.

Use a Semaphore?

11

▪ Sem1: my thread has rights to use the shared resource

▪ Sem2: my thread has started but not finished a critical section

▪ Before each critical section, maybe acquire sem1 or sem2

▪ After each critical section, maybe release sem1 or sem2

Use Two Binary Semaphores?

12

Binary Semaphore + Counter Variable?

▪ Add a counter variable
▪ Track number of active critical sections: started but not finished

▪ Pending “releases”

▪ Before each critical section, maybe acquire sem
▪ Counter == 0?

▪ Acquire the semaphore, since this is thread’s first acquire.

▪ Else skip the acquire, since this thread already has the semaphore.

▪ Increment counter

▪ After each critical section, maybe release sem
▪ Decrement counter

▪ Counter == 0?

▪ Last release, so release the binary semaphore.

▪ Else skip the release, since we haven’t finished all the critical sections.

13

▪ Want a counting semaphore which can only be
used by one thread at a time

▪ Mutex is like two semaphores tied together

1. Binary semaphore to limit ownership to one thread at a
time

2. Counting semaphore (lock counter) to track depth of
recursive acquisitions, know when to release binary
semaphore.

Operation:

1. When a thread acquires a mutex, that mutex “belongs”
to the thread.

2. The thread can then do additional nested/recursive
acquisitions, which increment the mutex’s lock counter
(a special hidden semaphore token counter variable)
and always succeed immediately without blocking.

3. When the thread releases the mutex, the lock counter is
decremented.

4. When the lock counter finally reaches zero, the thread
doesn’t own the mutex anymore, and another thread
can acquire it successfully.

Mutex can also add priority inheritance/ceiling to
owning thread if enabled.

Mutex Implementation

14

Mutex OS Mechanism

15

▪ Wait/Pend until mutex is free, then acquire it

▪ If mutex available (1), take it and continue
executing

▪ Otherwise, OS puts calling task into waiting
state until mutex is available

▪ Release the mutex

▪ If a task is waiting for this mutex, OS moves that
task to the ready state

Scheduler Behavior for Mutex

1. Start: Mutex

available (count = 1)
2. Task A acquires

mutex (count = 0)

3. Task B tries to

acquire mutex but

can’t

4. Task A releases

mutex (count = 1)

5. Scheduler

resumes Task B,

gives it the mutex

(count = 0)

16

▪ osMutexId_t osMutexNew(osMutexAttr_t
* attr)
▪ Creates mutex and makes it available (initializes

it to 1)

▪ osStatus_t osMutexAcquire(osMutexId_t
mutex_id, uint32_t timeout)
▪ Wait for until mutex is available, then takes it

(decrements count)

▪ Optional timeout value (in scheduler ticks)

▪ To never timeout, use osWaitForever

▪ Return type is osStatus

▪ osOK, osErrorTimeoutResource,
osErrorResource, etc.

▪ osStatus_t osMutexRelease(osMutexId_t
mutex_id)
▪ Releases (signals) the mutex

▪ Increments count to 1

▪ Can’t release a mutex you don’t have! Error

▪ Return type is osStatus

▪ osStatus osMutexDelete(osMutexId_t
mutex_id)
▪ Deletes mutex, frees internal memory it used

▪ Return type is osStatus

▪ Note: Can’t call mutex functions from ISR!

CMSIS-RTOS2 Mutex Functions and Macros

17

▪ Use a mutex lock to protect each shared variable, object or
resource

▪ A mutex provides mutual exclusion - Only a single task can have the
mutex at a time

▪ Mutexes are like binary semaphores with extra features

▪ Access Rules

▪ We must get permission (acquire the mutex) before we try to access
the resource

▪ We must release that permission (release the mutex) when we are
done accessing the resource

Using a CMSIS-RTOS2 Mutex Object my_data_type SharedResource …;
my_mutex_type mutexSR;

void T_Rose(void) {
 …
 do_work_without_SharedResource();
 …
}
void T_Gold(void) {
 …
 if (osMutexAcquire(mutexSR)==OK) {
 // start of Gold’s critical section
 SharedResource.field1 += 37;
 // end of Gold’s critical section
 osMutexRelease(mutexSR);
 } else handle error
 …
}
void T_Blue(void) {
 …
 if (osMutexAcquire(mutexSR)==OK) {
 // start of Blue’s critical section
 SharedResource.field1 -= 12;
 // end of Blue’s critical section
 osMutexRelease(mutexSR);
 } else handle error
 …
}

18

▪ Three threads running, each lighting
its LED

▪ Requirement: Light at most one LED
at a time – e.g. power constraint

▪ Threads are running independently,
don’t coordinate their activities
▪ So may have more than one LED on

RTX5 Demo: Mutex of LEDs

Thread_R Thread_G Thread_B

Red

Blue

Green

Resulting LED Color R R+B R+B+G B+G G

Without Mutual Exclusion

19

▪ Use mutex to indicate permission
to light an LED
▪ Thread blocks on (waits for) the

mutex before lighting the LED.

▪ Thread releases mutex after turning
off LED

RTX5 Demo: Mutex of LEDs

Thread_R

LED_mutex

Thread_G Thread_B

With Mutual Exclusion

LED_mutex 1: available 0: held by Thread_R 0: held by Thread_B 0: held by Thread_G 1: available

Thread_R blocking on osDelay has mutex blocking on osDelay

Red

Thread_B blocking on osDelay blocking on mutex has mutex blocking on osDelay

Blue

Thread_G blocking on osDelay blocking on mutex has mutex blocking on osDelay

Green

Resulting LED

Color R B G

20

▪ Further discussion by Michael Barr at http://www.barrgroup.com/Embedded-
Systems/How-To/RTOS-Mutex-Semaphore

Mutual Exclusion: Binary Semaphore vs. Mutex

Binary Semaphore Mutex

Meaning of counter value 1 = Shared object is available 1 = Shared object is available

Initial counter value Must explicitly initialize to 1 Typically initialized to 1 when created

Who can acquire it? Any thread Any threa.

Who can release it? Any thread Only owner thread. Attempts by other

threads will be ignored.

Which thread owns it? No owner thread Thread which acquired but hasn’t yet

released the mutex

Repeated acquires

(recursive/nested locking)

Not allowed, since binary semaphore

counts up to only 1

Allowed for owner thread (configurable)

Priority elevation

(inheritance or ceiling)

Not provided Provided by RTOS (configurable).

http://www.barrgroup.com/Embedded-Systems/How-To/RTOS-Mutex-Semaphore
http://www.barrgroup.com/Embedded-Systems/How-To/RTOS-Mutex-Semaphore
http://www.barrgroup.com/Embedded-Systems/How-To/RTOS-Mutex-Semaphore
http://www.barrgroup.com/Embedded-Systems/How-To/RTOS-Mutex-Semaphore
http://www.barrgroup.com/Embedded-Systems/How-To/RTOS-Mutex-Semaphore
http://www.barrgroup.com/Embedded-Systems/How-To/RTOS-Mutex-Semaphore
http://www.barrgroup.com/Embedded-Systems/How-To/RTOS-Mutex-Semaphore
http://www.barrgroup.com/Embedded-Systems/How-To/RTOS-Mutex-Semaphore
http://www.barrgroup.com/Embedded-Systems/How-To/RTOS-Mutex-Semaphore

21

▪ Recursive mutex allows nested locking
▪ Thread can acquire mutex more than once before releasing it

▪ Priority inheritance
▪ Thread temporarily inherits priority of higher-priority thread waiting on mutex

▪ Robust mutex
▪ Release mutex automatically when owning thread terminates

▪ Defined by attr_bits in osMutexAttr_t when calling osMutexNew

▪ Details online at https://www.keil.com/pack/doc/CMSIS/RTOS2/html/group__CMSIS__RTOS__MutexMgmt.html#structosMutexAttr__t

Mutex Options

https://www.keil.com/pack/doc/CMSIS/RTOS2/html/group__CMSIS__RTOS__MutexMgmt.html#structosMutexAttr__t

22

▪ “When a thread acquires a mutex and
becomes its owner, subsequent mutex
acquires from that thread will succeed
immediately without any latency (if
osMutexRecursive is specified). Thus,
mutex acquires/releases can be nested.”
– CMSIS-RTOS2 documentation
▪ http://www.keil.com/pack/doc/CMSIS/RTOS

2/html/group__CMSIS__RTOS__MutexMgm
t.html#details

▪ Semaphores don’t provide this

Mutex and Thread Ownership

http://www.keil.com/pack/doc/CMSIS/RTOS2/html/group__CMSIS__RTOS__MutexMgmt.html#ga65c2482cc64a35d03871f3180f305926
http://www.keil.com/pack/doc/CMSIS/RTOS2/html/group__CMSIS__RTOS__MutexMgmt.html#details
http://www.keil.com/pack/doc/CMSIS/RTOS2/html/group__CMSIS__RTOS__MutexMgmt.html#details
http://www.keil.com/pack/doc/CMSIS/RTOS2/html/group__CMSIS__RTOS__MutexMgmt.html#details
http://www.keil.com/pack/doc/CMSIS/RTOS2/html/group__CMSIS__RTOS__MutexMgmt.html#details

23

▪ Compiler optimizes program by deleting instrs.
which are useless from function’s point of view

▪ Compiler assumes that this function’s code runs
without certain disruptions.

▪ ISRs will never change function’s state (e.g. local
variables, registers, condition code flags, memory
used by function) or global variables.

▪ But subroutine calls may change global variables

▪ So, don’t need to repeat instructions if this function
hasn’t changed their input data – just reuse the
previous results

▪ Result: Compare do_work to 0 once, and reuse the
result of that comparison

Dangers: Volatile Data
ISR Mem [do_work] Thread_1

Source Code Assembly Code Assembly Code Source Code

24

▪ volatile keyword modifies variable’s storage class

▪ Haunted! Something else can change this variable’s
value as this function executes.

▪ For volatile variables, compiler generates code to
access variable in memory whenever variable
appears in source code.

▪ Don’t optimize by reusing first loaded value, or result
of first comparison, etc.

▪ Should apply volatile to variables which either…

▪ can be changed by …

▪ Code in an ISR or a preempting thread

▪ DMA (direct memory access) transfer

▪ or which are actually mapped to hardware registers
whose contents can change spontaneously

Solution: Warn the Compiler with “volatile”
ISR Mem [do_work] Thread_1

Source Code Assembly Code Assembly Code Source Code

25

▪ Compiler tries to optimize program by deleting useless
instructions (useless from function’s point of view)

▪ Compiler assumes that this function’s code runs without
certain disruptions.

▪ ISRs will never change function’s state (e.g. local variables,
registers, condition code flags, memory used by function) or global
variables.

▪ Subroutine calls by the function may change global variables

▪ So, don’t need to repeat instructions if this function hasn’t
changed their input data – just reuse the previous results

▪ Compare do_work to 0 once, and reuse the result of that
comparison

▪ Volatile keyword (storage class modifier)

▪ Indicates something else can change this variable’s value as
this function executes. (It’s haunted!)

▪ Code: in an ISR or another thread (if preemptive threads)

▪ Hardware: DMA, or if variable is a hardware register

▪ Volatile tells compiler to access variable whenever specified
in source code.

▪ Don’t optimize by reusing first loaded value, result of first
comparison, etc.

OLD: Dangers: Volatile Data

Thread_1{
 while (1){
 if (do_work > 0) { // Any work?

 do_work = 0;
 // Do the work here
 }

 }
}

ISR {

 // Event happened,

 // so ask work to be done

 do_work = 1;

}

volatile int32_t do_work=0;

To Do:

- Introduce with memory/reg ISA to show general problem without

load/store complications

- Add column with assembly code for each snippet to illustrate load/store

optimization

26

▪ ARM is a Load/Store architecture
▪ Variables must be in registers (not memory) to be

tested or modified
▪ Need to load variable into register from memory

before using it

▪ Atomic operations are performed without
interruption or preemption

▪ Any memory-resident variable modification uses at
least 3 instructions: read (load), modify, write
(store)
▪ Modifying these variables is not atomic
▪ This creates critical section from the load instruction to

the store instruction (inclusive)
▪ Even single-word variables are vulnerable to

corruption

▪ What if two threads try to increment the same
variable in memory?
▪ Incrementing 3 twice results in 4 or 5

▪ So threads communicating with shared memory
variables are vulnerable to race conditions
▪ Any variables used in shared memory communication

must be protected somehow

Dangers: Load/Store and Atomic Operations

Thread_1{

 counter = counter + 1;

 // load r0 from memory

 // add 1 to r0

 // store r0 to memory

}

Thread_2{

 counter = counter + 1;

 // load r0 from memory

 // add 1 to r0

 // store r0 to memory

}

volatile int32_t counter=3;

To Do:

• Split slide to revise flow/structure

• Non-atomic data: requires multiple operations to update (e.g.

string, struct, array) may be invalid during update

• Example (using mem/reg ISA)

• Load/Store ISA uses multiple instructions, makes all data updates

non-atomic

• Example (this one)

• Add column with assembly code for each snippet to

show load/store architecture makes increments

non-atomic

• Add arrows showing fail sequence

• Add boxes around critical sections

Thread_1 Mem
[counter]

Thread_2

Source Code Assembly
Code

Assembly
Code

Source Code

27

Solution:
ISR Mem [do_work] Thread_1

Source Code Assembly Code Assembly Code Source Code

28

▪ ARM is a Load/Store architecture
▪ Variables must be in registers (not memory) to be

tested or modified
▪ Need to load variable into register from memory

before using it

▪ Atomic operations are performed without
interruption or preemption

▪ Any memory-resident variable modification uses at
least 3 instructions: read (load), modify, write
(store)
▪ Modifying these variables is not atomic
▪ This creates critical section from the load instruction to

the store instruction (inclusive)
▪ Even single-word variables are vulnerable to

corruption

▪ What if two threads try to increment the same
variable in memory?
▪ Incrementing 3 twice results in 4 or 5

▪ So threads communicating with shared memory
variables are vulnerable to race conditions
▪ Any variables used in shared memory communication

must be protected somehow

Dangers: Load/Store and Atomic Operations

Thread_1{

 counter = counter + 1;

 // load r0 from memory

 // add 1 to r0

 // store r0 to memory

}

Thread_2{

 counter = counter + 1;

 // load r0 from memory

 // add 1 to r0

 // store r0 to memory

}

volatile int32_t counter=3;

To Do:

• Split slide to revise flow/structure

• Non-atomic data: requires multiple operations to update (e.g.

string, struct, array) may be invalid during update

• Example (using mem/reg ISA)

• Load/Store ISA uses multiple instructions, makes all data updates

non-atomic

• Example (this one)

• Add column with assembly code for each snippet to

show load/store architecture makes increments

non-atomic

• Add arrows showing fail sequence

• Add boxes around critical sections

29

▪ System structure
▪ TimerVal structure holds elapsed time

▪ TimerVal’s fields are updated by periodic timer ISR

▪ Thread calls GetTime to copy time into time stamp

▪ Problem
▪ An interrupt at the wrong time will lead to wrong data in T – some is old, some is new

Preemption and a Data Structure

void GetTime(TimeType * T){

 T->minute = TimerVal.minute;

 T->second = TimerVal.second;

}

void Timer_ISR(void){

 TimerVal.second++;

if TimerVal.second >= 60 {

 TimerVal.second -= 60;

 TimerVal.minute ++;

}

}

TimerVal

minute

second

30

▪ TimerVal is {0, 59}

▪ Thread code calls GetTime(), which starts copying the TimerVal fields to T: minute = 0

▪ A timer interrupt occurs, which updates TimerVal to {1, 0}

▪ GetTime() resumes, copying the remaining TimerVal field to T: second = 0

▪ T now has a corrupted time stamp of {0, 0} (old, new)

▪ The system thinks time just jumped backwards one minute

Fail

void GetTime(TimeType * T){

 T->minute = TimerVal.minute;

 T->second = TimerVal.second;

}

void Timer_ISR(void){

 TimerVal.second++;

if TimerVal.second >= 60 {

 TimerVal.second -= 60;

 TimerVal.minute ++;

}

}

TimerVal

minute

second

31

▪ What could possibly go wrong with a shared data?
▪ Data may be overwritten partway through being read or written

▪ Other corruptions: e.g. two threads incrementing same variable

▪ What could possibly go wrong with a shared peripheral?
▪ All sorts of problems! Depends on the peripheral and device

▪ You must ensure indivisible (atomic) access to the shared
objects
▪ Don’t let a thread or ISR access an object until an ongoing update

has completed

Data Corruption from Preemption

Readers # Writers Overwrite during

Read?

Overwrite during

Write?

>0 1 Possible Impossible

>0 >1 Possible Possible

To Do:

- Old data vs. corrupted data vs. new data concepts

- Add big picture of how preemption can corrupt data:

1. Data variables in program (this slide)

2. Peripherals

1. Preemption within operation (e.g. write byte to

SD or LCD controller)

2. Preemption between sequence of operations

(e.g. send command + data to SD or LCD

controller = sequence of byte writes)

32

▪ Preemption gives interleaved task execution

▪ Example: Two tasks can access SD card via SPI

▪ Possible failure:

▪ Task 1 starts reading data from SD card block N (sending 0xFF to
clock out data) but is switched out by scheduler before finishing

▪ Task 2 starts writing new data to SD card block M

▪ Scheduler switches out Task 2 to run Task 1

▪ Task 1 resumes reading from SD card, sending 0xFF to clock out
data. SD Card interprets 0xFF as data to write to block M.

▪ Task 1 finishes and is switched out

▪ Task 2 resumes and tries to complete by writing rest of data, but
will not succeed.

▪ Result: Task 2’s SD card block is corrupted, with some blocks
overwritten by 0xFF. And SD card controller is probably stuck.

Preemption and a Peripheral: SPI and a µSD Card

??

Block N

Block M

Block N

Block M

Block N

Block M

Block N

Block M

33

▪ SD_mutex is initially unlocked

▪ Task 1 locks SD_mutex

▪ Task 1 starts updating SD card

▪ Task 2 preempts Task 1, starts running

▪ Task 2 tries to lock SD_mutex but fails and blocks

▪ Scheduler switches back to Task 1

▪ Task 1 finishes updating SD card

▪ Task 1 unlocks SD_mutex

▪ Scheduler switches context to Task 2

▪ Task 2 locks SD_mutex

▪ Task 2 updates SD card

▪ Task 2 unlocks SD_mutex

▪ Task 2 completes and blocks

▪ Task 1 finishes other (non-SD Card) work

Solution: Task Locks Resource(s) When in Use

Block N

Block M

Block N

Block M

Block N

Block M

Block N

Block M

SD Card SD_mutex

	Mutexes_v1
	Sharing Data Safely (with Mutexes)
	Overview – Compiler is not Omniscient
	Definitions
	Mutual Exclusion Concepts
	Range of Possible Solutions for Sharing Resource
	Using a Lock for Mutual Exclusion
	Lock with a Binary Semaphore?
	Scaling Up? Complications
	Mutex Motivation
	Use a Semaphore?
	Use Two Binary Semaphores?
	Binary Semaphore + Counter Variable?
	Mutex Implementation
	Mutex OS Mechanism
	Scheduler Behavior for Mutex
	CMSIS-RTOS2 Mutex Functions and Macros
	Using a CMSIS-RTOS2 Mutex Object
	RTX5 Demo: Mutex of LEDs
	RTX5 Demo: Mutex of LEDs
	Mutual Exclusion: Binary Semaphore vs. Mutex
	Mutex Options
	Mutex and Thread Ownership
	Dangers: Volatile Data
	Solution: Warn the Compiler with “volatile”
	OLD: Dangers: Volatile Data
	Dangers: Load/Store and Atomic Operations
	Solution:
	Dangers: Load/Store and Atomic Operations
	Preemption and a Data Structure
	Fail
	Data Corruption from Preemption
	Preemption and a Peripheral: SPI and a µSD Card
	Solution: Task Locks Resource(s) When in Use

