NC STATE UNIVERSITY

Message Queues

NC STATE UNIVERSITY

Message Queues

Put(&src_msg) # Get(&dst_msg)

l—~~\
~

/’ \\
’, N

\
Get message out
0 . dst_msg

data ----"~

= Message data is a user-defined structure = Basic message queue operations

= Queue can hold multiple messages, allows = Putamessage in the queue

accumulation if processing is delayed " Get a message from the queue
= Priority: messages can be prioritized within
queue

NC STATE UNIVERSITY

What Do We Pass? The Data or a Pointer to Data?

Put(&src_msg) R Get(&dst_msg)
. | l‘ "ta, .,
.‘
Copy data Copy data -o’ dst_msg
src_msg ‘ee, Iz

data

= Pass the message itself?

= Pass by Value copies the data
= Takes more time to copy data.
= Does it matter to the application? Maybe, maybe not.

What Do We Pass? The Data or a Pointer to Data?

Put(&src_msg) |

Get(&dst_msg_ptr)

Copy pointer to

data (address)
src_msg

data

= Pass a pointer to the message?
= Pass by Reference: Copies data address

= Faster, copies less data.

= Will fail if the data is freed before the
corresponding get operation. Don’t pass
automatic variable (on stack) by reference
unless you’re sure it will work!

.
.
.
L

.
e,
LN
......
.......

= CMSIS-0S2 uses Pass by Value

= Putting a message in the queue copies the data
from the source object into the queue

= Getting a message from the queue copies the
data from the queue to the destination object

NC STATE UNIVERSITY

NC STATE UNIVERSITY

CMSIS-RTOS2 Message Functions

= osMessageQueueld t osMessageQueueNew = Return type osStatus_t
(msg_count, msg_size, attr) = 0sOK, osErrorTimeout, osErrorResource,
= Creates and initializes a message queue and space ostrrorParameter
for its messages = osStatus_t osMessageQueueGet(mq_id,
= msg_count: maximum number of messages to hold msg_ptr, msg_prio, timeout)
= msg_size: maximum size of a single message = Get next message from queue
= Returns ID for message queue = What if queue is empty? Depends on timeout
= osStatus_t osMessageQueuePut(mq_id, msg_ptr, * 0:return immediately (try)
msg_prio, timeout) = osWaitForever: wait until message is available
= Put message msg_ptr into queue mq_id with = other: return when message is available or timeout
. - passes

location based on priority msg_prio

= What if queue is full? Depends on timeout " Return type osStatus_t

.) = 0sOK, osErrorTimeout, osErrorResource,
= 0: return immediately (try)

osErrorParameter
= osWaitForever: wait until space is available

= other: return when space is available or timeout
passes

NC STATE UNIVERSITY

More Message Queue Functions

= osMessageQueueGetCount: number of
gueued messages

= osMessageQueueGetName

= osMessageQueueGetMsgSize: maximum
message size in bytes

= osMessageQueueReset: re-initialize
message queue

= osMessageQueueDelete: delete queue
and free up storage

NC STATE UNIVERSITY

RTX5 Demo: Message Queues

= Thread Read_Switches polls switches

= If SW2 is pressed, then upon release send Thread_
message to Thread RGB SRG?taﬂ_
- typedef struct { witches
= value: number of sequences Char letter;
int value;
= letter:LorS } MY MSG T;
Message
Queue

= Thread_RGB waits for message
= Repeats RGB sequence based on value field in

message
= Speed up sequence if received L in letter Trg%aéj_

Demo Message Code

volid Thread Read Switches (void
int count = 0;
MY MSG_T msg:

msg.value = 0;
msg.letter = ' ';
while (1) {
osDelay (100) ;
if (SWITCH PRESSED (SW2 POS))
count++;

Control RGB LEDs (0, 1, 0);

osDelay (g RGB delay/30);

Control RGB LEDs (0, 0, 0):

} else { // send message on release
if (count > 0) {
msg.value = count;
if (count > 10)
msg.letter = 'L';
else
msg.letter = "S";

osMessageQueuePut (switch msgg id,
&msg, NULL, osWaitForever);

count = 0;

{

void Thread RGB(void * arg) {

}

osStatus t result;
MY MSG T dest msg;
uint3Z t delay:s

while (1) {

NC STATE UNIVERSITY

result = osMessageQueueGet (switch msgg id,
&dest msg, NULL, osWaitForever):

if (result==0s0K) {
if (dest msg.letter == 'L'")
delay = g RGB delay/5;
else
delay = g RGB delay;
while (dest msg.value—-— > 0)
Control RGB LEDs (1, 0, 0):
osDelay(delay);
Control RGB LEDs (0, 1, 0);
osDelay (delay)
Control RGB LEDs (0, 0, 1);
osDelay(delay);
}
Control RGB LEDs(0, 0, 0):
}
}

{ // Do RGB

= Measure how long switch 2 is pressed
= Then send data to Thread_RGB in a message

NC STATE UNIVERSITY

How Long Can the Queue Get?

©
(]
= |t depends on... 3
= Event arrival rate %
S
= Service time required per event o
: : C » Time
= |s server thread in system with prioritized, Arrivals
preemptive scheduling? Then consider...
= Delay until service begins b
(%]
= Preemption during service 3
= How parameters are estimated (models) §
= Constant? Periodic? Sporadic? © > Time
= Exact, typical, worst-case bounds... Arrivals
= Queueing theory covers this in depth Server
Available?

= https://queue-it.com/blog/queuing-theory/

= https://en.wikipedia.org/wiki/Queueing theory

https://queue-it.com/blog/queuing-theory/
https://queue-it.com/blog/queuing-theory/
https://queue-it.com/blog/queuing-theory/
https://queue-it.com/blog/queuing-theory/
https://queue-it.com/blog/queuing-theory/
https://queue-it.com/blog/queuing-theory/
https://en.wikipedia.org/wiki/Queueing_theory
https://en.wikipedia.org/wiki/Queueing_theory

NC STATE UNIVERSITY

Message Queues and Memory Allocation

Where is the message data held?
Static Memory Dynamic Memory

= How much memory is needed? Allocation Allocation
= Message queue data needs up to Put
msg_count * msg_size of space Put
= Two approaches for managing this memory Put
= Static allocation: allocate enough memory for largest Get
possible queue length Get
= Always uses maximum memory. Too much? Get
= Must make consumer thread more responsive to
reduce maximum queue size needed A

= Dynamic allocation: put allocates, get deallocates

= Slower, more complex, but less memory required
(except in worst case)

Memory
Required

= Dynamic memory allocation will be discussed soon

= CMSIS-RTOS2/RTX uses dynamic memory allocation Time

= Keil vV5\ARM\PACK\ARM\CMSIS\<version>\CMSIS\
RTOS2\RTX\Source\rtx_msgqueue.c

NC STATE UNIVERSITY

Message Queues and Memory Allocation

Where is the message data held?
Static Memory Dynamic Memory

= How much memory is needed? Allocation Allocation
= Message queue data needs up to Put
msg_count * msg_size of space Put
= Two approaches for managing this memory Put
= Static allocation: allocate enough memory for largest Get
possible queue length Get
= Always uses maximum memory. Too much? Get
= Must make consumer thread more responsive to
reduce maximum queue size needed A

= Dynamic allocation: put allocates, get deallocates

= Slower, more complex, but less memory required
(except in worst case)

Memory
Required

= Dynamic memory allocation will be discussed soon

= CMSIS-RTOS2/RTX uses dynamic memory allocation Time

= Keil _v5\ARM\PACK\ARM\CMSIS\<version>\CMSIS\
RTOS2\RTX\Source\rtx_msgqueue.c

	Message Queues_v1
	Message Queues
	Message Queues
	What Do We Pass? The Data or a Pointer to Data?
	What Do We Pass? The Data or a Pointer to Data?
	CMSIS-RTOS2 Message Functions
	More Message Queue Functions
	RTX5 Demo: Message Queues
	Demo Message Code
	How Long Can the Queue Get?
	Message Queues and Memory Allocation
	Message Queues and Memory Allocation

