
1

Cortex-M0+
Interrupts and Exceptions

CPU Activities
(Level 3)

7/30/2025

2

Interrupts: Where Are We (view 1)?

Concepts of Process Synchronization and Communication

Concepts for Single Process

HW Implem.

of Process

SW Implem. of

Process on CPU

What: Add more processes: independent, concurrent

What: Implement single process

HW Implem.

of each Process

Multiple Dedicated

CPUs

Design hardware

Add more HW

Design software

Add CPUs Share CPU

At least one

shared CPU

What: Provide synchronization and communication between processes

Scheduler concepts

(big interconnected

topic, will cover at

end of overview)

HW→HW SW→HW HW→SW SW→SW

Dedicated

Interconnect

Direct

Memory

Access

Programmed I/O:

SW writes to

peripherals

Programmed

I/O:

SW reads/polls

peripherals

Interrupt

System: Event

triggers SW

Handler

Variables

shared with

correct

algorithms

OS Synch &

Comm

primitives:

Sem, etc.

3

Interrupts: Where Are We (view 2)?

Process

Implementation

Synchronization

Dependences

between Processes

Hardware

Processes

Software

Processes

Share

CPU

Time

Ordering/

Triggering

Communication

Mutual

Exclusion

Concepts

Elevator

Example

“DIY” Code Implementations

Both Hardware and

Software Processes

Shared

Variables

How?

Generic

OS Mechanisms

Event Flag Semaphore

Shared

Variables

Mutex Lock

Mem-

Mapped

Periph.

Access

Concepts

Elevator

Example

How?

Generic

Embedded Systems

Design Space(s)

DMA

Ctlr

Sync. to What?

Do or Don’t?
How?

Polling

(Prog’d

I/O)

Intrpt

System

Example: 101st

Input -> Output

Notification/

Flow Ctl./

Handshaking

Data Loss &

Duplication

In

Order?

Buffering

Cost of Precise

Timing

Buffering

Concepts

HW Periph.

Examples

Split

Receiver

Process?

Why?

Split urgent/

deferrable work

Direct or

Indirect

Comm.?

SW?

Why

use…?

HW?

+ Interrupts:

Fore/Back

ground

+ Coop.

Sched. Tasks

Infinite

loop in

main

+ Task

Priorities

+ Task

Preemption

RTCS Run-to-

Completion

Scheduler

RTXv5

RTOS

FSMs for

Responsiveness Message

Queue

How?

Double

Buffer

Circular

Buffer

Req/Ack

Flags

DMA-

managed

buffer

How?

Mailbox

How?

Cost of

Precise Timing

CPU

per

Process

Application

Characteristics

Requirements

& Constraints

Processes and Concurrency

for Embedded Systems

Processes and

Concurrency

Peri-

pherals

Dedic. HW

Interconn.

DMA

Ctlr

4

CORTEX-M0+ INTERRUPT SUPPORT:
NVIC AND PM DETAILS

5

Nested Vectored Interrupt Controller (NVIC)

▪ NVIC manages and prioritizes interrupts
and exceptions for CPU core

▪ Register fields in NVIC
▪ Enable - Allows interrupt to be recognized. 1 bit
▪ Pending - Interrupt requested, not yet serviced. 1 bit
▪ Priority - allows program to prioritize response if both

interrupts are requested simultaneously

Select Request
with Highest Priority

Peripheral 1
Priority

Pending

Enable

Request

Priority

NVIC
Arm Cortex-M0+

Core

Peripheral n
Priority

Pending

Enable

Request

Priority

Peripheral 2
Priority

Pending

Enable

Request

Priority

6

Details

▪ Many sources
▪ CPU (Cortex-M0+)

▪ Generates requests for vectors 1-15

▪ MCU (KL25Z)

▪ Generates requests for vectors 16-47

▪ Exception/Interrupt Priorities
▪ Three are fixed priority

▪ Reset: -3, highest priority

▪ NMI: -2

▪ Hard Fault: -1

▪ Others have programmable priority

▪ Cortex-M0+ NVIC supports four levels

▪ Two most-significant bits of byte
register, other bits read as zero

▪ So, 0, 1, 2, 3 translated to 0x00, 0x40,
0x80, 0xC0

▪ Cortex-M3, M4, etc. support more levels

Vector Address Vector # IRQ Description

0x0000_0004 1 CPU Reset

0x0000_0008 2 NMI: Non-maskable interrupt

0x0000_000C 3 Hard fault error

0x0000_002C 11 SVCall to supervisor with SVC instruction

0x0000_0038 14 PendSV: System-level service request

0x0000_003C 15 SysTick: System timer tick

0x0000_0040, 44, 48, 4C 16-19 0-3 Direct Memory Access Controller

0x0000_0058 22 6 Power Management Controller

0x0000_005C 23 7 Low Leakage Wake Up

0x0000_0060, 64 24-25 8-9 I2C Communications

0x0000_0068, 6C 26-27 10-11 SPI Communications

0x0000_0070, 74, 78 28-30 12-14 UART Communications

0x0000_007C 31 15 Analog to Digital Converter

0x0000_0080 32 16 Comparator

0x0000_0084, 88, 8C 33-35 17-19 Timers and Pulse-Width Modulation

0x0000_0090, 94 36-37 20-21 Real-Time Clock alarm and seconds

0x0000_0098 38 22 Programmable Interval Timer

0x0000_00A0 40 24 USB On-The-Go

0x0000_00A4 41 25 Digital to Analog Converter

0x0000_00A8 42 26 Touch Sense Interface

0x0000_00AC 43 27 Main Clock Generator

0x0000_00B0 44 28 Low Power Timer

0x0000_00B8 46 30 Port Control Module, Port A pin detect

0x0000_00BC 47 31 Port Control Module, Port D pin detect

7

CMSIS Access Functions for NVIC and PM

Peripheral 1

NVIC_EnableIRQ(IRQnum)

NVIC_DisableIRQ(IRQnum)

NVIC_SetPendingIRQ(IRQnum)

NVIC_ClearPendingIRQ(IRQnum)

NVIC_SetPriority(IRQnum, priority)

NVIC_GetPriority(IRQnum)

__get_PRIMASK()

__set_PRIMASK(x)

__enable_irq()

__disable_irq()

Prio

Pend

En

Select Highest
Priority Request

Request

Priority

PM

NVIC

Arm Cortex-M0+

Core

8

Priority Masking Bit

▪ PM bit is NOT saved or restored by hardware exception response

▪ Implications? We’ll see later

9

NVIC Registers and State

▪ Enable - Allows interrupt to be recognized
▪ Accessed through two registers (set bits for interrupts)

▪ Set enable with NVIC_ISER, clear enable with NVIC_ICER
▪ CMSIS Interface: NVIC_EnableIRQ(IRQnum), NVIC_DisableIRQ(IRQnum)

▪ Pending - Interrupt has been requested but is not yet serviced
▪ CMSIS: NVIC_SetPendingIRQ(IRQnum), NVIC_ClearPendingIRQ(IRQnum)

10

NVIC Registers and State

▪ Priority - allows program to prioritize response if both interrupts are requested
simultaneously

▪ IPR0-7 registers: two bits per interrupt source, four interrupt sources per register

▪ Set priority to 0 (highest priority), 1, 2 or 3 (lowest)

▪ CMSIS: NVIC_SetPriority(IRQnum, priority)

Bits 31:30 29:24 23:22 21:16 15:14 13:8 7:6 5:0

IPR0 IRQ3 reserved IRQ2 reserved IRQ1 reserved IRQ0 reserved

IPR1 IRQ7 reserved IRQ6 reserved IRQ5 reserved IRQ4 reserved

IPR2 IRQ11 reserved IRQ10 reserved IRQ9 reserved IRQ8 reserved

IPR3 IRQ15 reserved IRQ14 reserved IRQ13 reserved IRQ12 reserved

IPR4 IRQ19 reserved IRQ18 reserved IRQ17 reserved IRQ16 reserved

IPR5 IRQ23 reserved IRQ22 reserved IRQ21 reserved IRQ20 reserved

IPR6 IRQ27 reserved IRQ26 reserved IRQ25 reserved IRQ24 reserved

IPR7 IRQ31 reserved IRQ30 reserved IRQ29 reserved IRQ28 reserved

Details

11

Prioritization

▪ Exceptions are prioritized to order the response simultaneous requests (smaller number
= higher priority)

▪ Priorities of some exceptions are fixed
▪ Reset: -3, highest priority

▪ NMI: -2

▪ Hard Fault: -1

▪ Priorities of other (peripheral) exceptions are adjustable
▪ Value is stored in the interrupt priority register (IPR0-7)

▪ 0x00

▪ 0x40

▪ 0x80

▪ 0xC0

12

DETAILS:
ENTERING AN EXCEPTION HANDLER

13

Exception Processing States

▪ Inactive
▪ Pending
▪ Active
▪ Active and Pending

Active

and

Pending

ActivePendingInactive

14

What If …? Special Cases of Prioritization

▪ New exception requested while current handler is executing?
▪ New priority higher than current priority?

▪ New exception handler preempts current handler

▪ Stacks registers, Executes new handler, unstacks registers

▪ Resumes current handler

▪ New priority lower than or equal to current priority?

▪ New exception held in pending state

▪ Current handler continues and completes execution

▪ New exception handler executes

▪ Registers unstacked

▪ Simultaneous exception requests with same priority?
▪ Lowest exception type number is serviced first

▪ Special features improve response time, covered later
▪ Late Arrival

▪ Tail Chaining

15

CPU’s Hardwired Exception Processing

1. Finish current instruction (except for lengthy instructions)

2. Push context (8 32-bit words) onto current stack (MSP or PSP)
▪ xPSR, Return address, LR (R14), R12, R3, R2, R1, R0

3. Switch to handler/privileged mode, use MSP

4. Load PC with address of exception handler

5. Load LR with EXC_RETURN code

6. Load IPSR with exception number

7. Start executing code of exception handler

Usually 15 cycles from exception request to execution of first instruction in
handler (assuming fast memory without wait states)

16

1. Finish Current Instruction

▪Most instructions are short and finish quickly

▪Some instructions may take many cycles to execute
▪ Load Multiple (LDM), Store Multiple (STM), Push, Pop, MULS (32 cycles for some CPU

core implementations)

▪This will delay interrupt response significantly

▪ If one of these is executing when the interrupt is requested, the processor:
▪ abandons the instruction

▪ responds to the interrupt

▪ executes the ISR

▪ returns from interrupt

▪ restarts the abandoned instruction

17

2. Push Context onto Current Stack

▪ Two SPs: Main (MSP), process (PSP)

▪ Which is active depends on operating mode, CONTROL register bit 1

▪ Stack
▪ Full: SP points to a location currently holding data

▪ Descending: grows toward smaller addresses

SP points here upon entering ISR

18

Context Saved on Stack
SP value is reduced
since registers have
been pushed onto

stack

19

3. Switch to Handler/Privileged Mode

▪ Handler mode always uses Main SP

Thread
Mode.

MSP or PSP.

Handler
Mode
MSP

Reset

Starting
Exception
Processing

Exception
Processing
Completed

20

Handler and Privileged Mode

Mode changed to
Handler. Was already

using MSP and in
Privileged mode

21

Update IPSR with Exception Number

PORTD_IRQ is Exception
number 0x2F

(interrupt number + 0x10)

22

4. Load PC With Address Of Exception Handler

0x0000_0004Reset Interrupt Vector

Non-Maskable Interrupt Vector

Port A Interrupt Vector

Port D Interrupt Vector

Reset Interrupt

Service Routine

Port D ISR

Port A ISR

Non-maskable Interrupt

Service Routine

start

start

PORTD_IRQHandler

PORTD_IRQHandler

NMI_IRQHandler

NMI_IRQHandler

0x0000_0125 (PORTA_IRQHandler)

0x0000_0008

0x0000_00B8
0x0000_00BC

PORTA_IRQHandler0x0000_0125

Memory Address Memory Contents

Exception

(and Interrupt)

Vector Table

23

Can Examine Vector Table With Debugger

▪ PORTD ISR is IRQ #31 (0x1F), so vector to
handler begins at 0x40+4*0x1F = 0xBC

▪ Why is the vector odd? 0x0000_0455

▪ LSB of address indicates that handler
uses Thumb code

24

Upon Entry to Handler

PC has been
loaded with start

address of handler

25

5. Load LR With EXC_RETURN Code

▪ EXC_RETURN value generated by CPU to provide information on how to return
▪ Which SP to restore registers from? MSP (0) or PSP (1)

▪ Previous value of SPSEL

▪ Which mode to return to? Handler (0) or Thread (1)

▪ Another exception handler may have been running when this exception was requested

EXC_RETUR

N

Return

Mode

Return

Stack

Description

0xFFFF_FFF1 0 (Handler) 0 (MSP) Return to exception

handler

0xFFFF_FFF9 1 (Thread) 0 (MSP) Return to thread with MSP

0xFFFF_FFFD 1 (Thread) 1 (PSP) Return to thread with PSP

26

Updated LR With EXC_RETURN Code

27

6. Start Executing Exception Handler

▪ Exception handler starts running, unless preempted by a higher-priority exception

▪ Exception handler may save additional registers on stack
▪ E.g. if handler may call a subroutine, LR and R4 must be saved

28

Example: Handler Instructions May Save More Context

SP reduced since
registers were

pushed onto stack

Registers saved

by hardware

Registers saved

by software

29

Continue Executing Exception Handler
▪ Execute user code in handler

30

DETAILS:
EXITING AN EXCEPTION HANDLER

31

Exiting an Exception Handler

1. Execute instruction triggering exception return processing

2. Select return stack, restore context from that stack

3. Resume execution of code at restored address

32

1. Execute Instruction for Exception Return

▪ No “return from interrupt” instruction

▪ Use regular instruction instead
▪ BX LR - Branch to address in LR by loading PC with

LR contents

▪ POP …, PC - Pop address from stack into PC

▪ … with a special value EXC_RETURN loaded
into the PC to trigger exception handling
processing
▪ BX LR used if EXC_RETURN is still in LR

▪ If EXC_RETURN has been saved on stack, then use
POP

33

What Will Be Popped from Stack?
▪ R4: 0x0000_0462

▪ PC: 0xFFFF_FFF9

34

2. Select Stack, Restore Context
▪ Check EXC_RETURN (bit 2) to determine from which SP to pop the context

▪ Pop the registers from that stack

SP points here during handler

SP points here after handler

EXC_RETURN Return Stack Description

0xFFFF_FFF1 0 (MSP) Return to exception handler with MSP

0xFFFF_FFF9 0 (MSP) Return to thread with MSP

0xFFFF_FFFD 1 (PSP) Return to thread with PSP

35

Example

▪ PC=0xFFFF_FFF9, so return to thread mode with main stack pointer

▪ Pop exception stack frame from stack back into registers

36

Resume Executing Previous Main Thread Code

▪ Exception handling
registers have been
restored
▪ R0, R1, R2, R3, R12, LR,

PC, xPSR

▪ SP is back to previous
value

▪ Back in thread mode

▪ Next instruction to
execute is at
0x0000_0352

37

PROGRAM DESIGN WITH
INTERRUPTS

38

Program Design with Interrupts

▪ How much work to do in ISR?

▪ Should ISRs re-enable interrupts?

▪ How to communicate between ISR and other threads?
▪ Data buffering

▪ Data integrity and race conditions

39

How Much Work Is Done in ISR?

▪ Trade-off: Faster response for ISR code will delay completion of other code

▪ In system with multiple ISRs with short deadlines, perform critical work in ISR and buffer
partial results for later processing

40

SHARING DATA SAFELY BETWEEN
ISRS AND OTHER THREADS

41

Overview

▪ Volatile data – can be updated outside of the program’s immediate control

▪ Non-atomic shared data – can be interrupted partway through read or write, is
vulnerable to race conditions

42

Volatile Data

▪ Compilers assume that variables in
memory do not change spontaneously, and
optimize based on that belief
▪ Don’t reload a variable from memory if current

function hasn’t changed it

▪ Read variable from memory into register (faster
access)

▪ Write back to memory at end of the procedure,
or before a procedure call, or when compiler
runs out of free registers

▪ This optimization can fail
▪ Example: reading from input port, polling for key

press
▪ while (SW_0) ; will read from SW_0 once and reuse that value

▪ Will generate an infinite loop triggered by SW_0 being true

▪ Variables for which it fails
▪ Memory-mapped peripheral register – register

changes on its own

▪ Global variables modified by an ISR – ISR changes
the variable

▪ Global variables in a multithreaded application –
another thread or ISR changes the variable

43

The Volatile Directive

▪ Need to tell compiler which variables may change outside of its control
▪ Use volatile keyword to force compiler to reload these vars from memory for each use

 volatile unsigned int num_ints;

▪ Pointer to a volatile int

 volatile int * var; // or
 int volatile * var;

▪ Now each C source read of a variable (e.g. status register) will result in an assembly language LDR
instruction

▪ Good explanation in Nigel Jones’ “Volatile,” Embedded Systems Programming July 2001

44

Non-Atomic Shared Data

▪ Want to keep track of current time
and date

▪ Use 1 Hz interrupt from timer

▪ System
▪ TimerVal structure tracks time and days

since some reference event

▪ TimerVal’s fields are updated by periodic 1
Hz timer ISR

void GetDateTime(DateTimeType * DT){

 DT->day = TimerVal.day;

 DT->hour = TimerVal.hour;

 DT->minute = TimerVal.minute;

 DT->second = TimerVal.second;

}

void DateTimeISR(void){

 TimerVal.second++;

 if (TimerVal.second > 59){

 TimerVal.second = 0;

 TimerVal.minute++;

 if (TimerVal.minute > 59) {

 TimerVal.minute = 0;

 TimerVal.hour++;

 if (TimerVal.hour > 23) {

 TimerVal.hour = 0;

 TimerVal.day++;

 … etc.

 }

45

Example: Checking the Time

▪ Problem
▪ An interrupt at the wrong time will lead to half-

updated data in DT

▪ Failure Case
▪ TimerVal is {10, 23, 59, 59} (10th day, 23:59:59)

▪ Task code calls GetDateTime(), which starts
copying the TimerVal fields to DT: day = 10, hour
= 23

▪ A timer interrupt occurs, which updates TimerVal
to {11, 0, 0, 0}

▪ GetDateTime() resumes executing, copying the
remaining TimerVal fields to DT: minute = 0,
second = 0

▪ DT now has a time stamp of {10, 23, 0, 0}.

▪ The system thinks time just jumped backwards
one hour!

▪ Fundamental problem – “race condition”
▪ Preemption enables ISR to interrupt other code

and possibly overwrite data

▪ Must ensure atomic (indivisible) access to the
object
▪ Native atomic object size depends on processor’s

instruction set and word size.

▪ Is 32 bits for ARM

46

Examining the Problem More Closely

▪ Must protect any data object which both
▪ (1) requires multiple instructions to read or write (non-atomic access),

and

▪ (2) is potentially written by an ISR

▪ How many tasks/ISRs can write to the data object?
▪ One? Then we have one-way communication

▪ Must ensure the data isn’t overwritten partway through being read

▪ Writer and reader don’t interrupt each other

▪ More than one?

▪ Must ensure the data isn’t overwritten partway through being read

▪ Writer and reader don’t interrupt each other

▪ Must ensure the data isn’t overwritten partway through being written

▪ Writers don’t interrupt each other

47

Definitions

▪ Race condition: Anomalous behavior due to unexpected critical
dependence on the relative timing of events. Result of example code
depends on the relative timing of the read and write operations.

▪ Critical section: A section of code which creates a possible race condition.
The code section can only be executed by one process at a time. Some
synchronization mechanism is required at the entry and exit of the critical
section to ensure exclusive use.

48

Solution: Briefly Disable Preemption

▪ Prevent preemption within critical section

▪ If an ISR can write to the shared data object,
need to disable interrupts
▪ save current interrupt masking state in m

▪ disable interrupts

▪ Restore previous state afterwards (interrupts
may have already been disabled for another
reason)

▪ Use CMSIS-CORE to save, control and restore
interrupt masking state

▪ Avoid disabling preemption if possible
▪ Disabling interrupts delays response to all other processing requests

▪ Make this time as short as possible (e.g. a few instructions)

void GetDateTime(DateTimeType *

DT){

 uint32_t m;

 m = __get_PRIMASK();

 __disable_irq();

 DT->day = TimerVal.day;

 DT->hour = TimerVal.hour;

 DT->minute = TimerVal.minute;

 DT->second = TimerVal.second;

 __set_PRIMASK(m);

}

49

Summary for Sharing Data

▪ In thread/ISR diagram, identify shared data

▪ Determine which shared data is too large
to be handled atomically by default

▪ This needs to be protected from preemption (e.g.
disable interrupt(s), use an RTOS synchronization
mechanism)

▪ Declare (and initialize) shared variables as
volatile in main file (or globals.c)

▪ volatile int my_shared_var=0;

▪ Update extern.h to make these variables
available to functions in other files

▪ volatile extern int my_shared_var;

▪ #include “extern.h” in every file which uses these
shared variables

▪ When using long (non-atomic) shared data,
save, disable and restore interrupt masking
status

▪ CMSIS-CORE interface: __disable_irq(),
__get_PRIMASK(), __set_PRIMASK()

	Interrupts_CPU_L3_v1
	Cortex-M0+ �Interrupts and Exceptions �CPU Activities�(Level 3)
	Interrupts: Where Are We (view 1)?
	Interrupts: Where Are We (view 2)?
	Cortex-M0+ Interrupt Support: NVIC and PM Details
	Nested Vectored Interrupt Controller (NVIC)
	Details
	CMSIS Access Functions for NVIC and PM
	Priority Masking Bit
	NVIC Registers and State
	NVIC Registers and State
	Prioritization
	Details: �Entering an Exception Handler
	Exception Processing States
	What If …? Special Cases of Prioritization
	CPU’s Hardwired Exception Processing
	1. Finish Current Instruction
	2. Push Context onto Current Stack
	Context Saved on Stack
	3. Switch to Handler/Privileged Mode
	Handler and Privileged Mode
	Update IPSR with Exception Number
	4. Load PC With Address Of Exception Handler
	Can Examine Vector Table With Debugger
	Upon Entry to Handler
	5. Load LR With EXC_RETURN Code
	Updated LR With EXC_RETURN Code
	6. Start Executing Exception Handler
	Example: Handler Instructions May Save More Context
	Continue Executing Exception Handler
	Details: �Exiting an Exception Handler
	Exiting an Exception Handler
	1. Execute Instruction for Exception Return
	What Will Be Popped from Stack?
	2. Select Stack, Restore Context
	Example
	Resume Executing Previous Main Thread Code
	Program Design with INterrupts
	Program Design with Interrupts
	How Much Work Is Done in ISR?
	Sharing Data Safely between ISRs and other Threads
	Overview
	Volatile Data
	The Volatile Directive
	Non-Atomic Shared Data
	Example: Checking the Time
	Examining the Problem More Closely
	Definitions
	Solution: Briefly Disable Preemption
	Summary for Sharing Data

