NC STATE UNIVERSITY

Cortex-MO+
Interrupts and Exceptions
CPU Activities

(Level 3)
7/30/2025

NC STATE UNIVERSITY

Interrupts: Where Are We (view 1)?

Car;ep_ts for Single Processj
Y

What: Implement single process ~ Design hardware Desigi-software
HW Implem. SW Implem. of
of Process Process on CPU

What: Add more processes: indepemndent, concurrent

Add mgre HW Add €PUs Shar¢ CPU === Scheduler concepts
HW Implem. Multiple Dedicated At least one ~— (big interconnected

of each Process CPUs shared CPU topic, will cover at

end of overview)
C\/\m of Process Synchronization.and Communication
e

What: Provide syfichronization and communicatiofi between processes

Y
~

L)'

Variables OS Synch &

Direct
Memory
Access

Programmed |/O: Programmed Interrupt

Dedicated
Interconnect

shared with Comm
correct primitives:
algorithms Sem, etc.

SW writes to 1/O: System: Event
peripherals SW reads/polls | | triggers SW
peripherals Handler

NC STATE UNIVERSITY

[]
. ?
Interrupts: Where Are We (view 2):
Processes and Concurrency
for Embedded Systems
Embedded Systems Processes and
Design Space(s) Concurrency
Application Requirements Cost of Process Dependences
Characteristics & Constraints Precise Timing Implementation between Processes
SR Both Hardware and Synchronization Communication
Processes Processes Software Processes
Sync. to What!? Ordering/ Mutual Data Loss & ;
Handshaking
m Cost of Precise Buffering
Timing Concepts

In
?
DIY” Code Implem@ntations

Req/Ack Double Circular mlzrl:/zllAéd
Flags Buffer Buffer g
buffer
v__ OS Mechanisms
Mutex Lock Mailbox Message
(Mu !:::J a e

Direct or
Indirect
Comm.?

Split
Receiver
Process?

Notification/

Split urgent/
deferrable work

Generic

+ Interrupts:
Fore/Back [
ground

Infinite \}
loop in |
main

Shared
Variables

Shared
Variables
RTXv5 v
RTOS Event Flagl

RTCS Run-to-
Completion
Scheduler

NC STATE UNIVERSITY

CORTEX-MO+ INTERRUPT SUPPORT:
NVIC AND PM DETAILS

NC STATE UNIVERSITY

Nested Vectored Interrupt Controller (NVIC)

Enable Priority|— 5=
. Priority
Peripheral 1 ;ﬂj_, Pending IRequest
Enable Priority|—_ 5 -—
. Priority
Peripheral 2 ;ﬂj_, pending - JRequest
—

Select Request
with Highest Priority

Enable Priority|— 5 -—
. Priority
Peripheral n ;ﬂj_, Pending]———|Request

= NVIC manages and prioritizes interrupts =|[Register fields|in NVIC
and exceptions for CPU core = Enable - Allows interrupt to be recognized. 1 bit
= Pending - Interrupt requested, not yet serviced. 1 bit
= Priority - allows program to prioritize response if both
interrupts are requested simultaneously

NC STATE UNIVERSITY

Vector Address | Vector# | IRQ___| Description |

0x0000_0004 CPU Reset

Details

= Many sources

0x0000_0008 2 NMI: Non-maskable interrupt
= CPU (Cortex-MO0+) 0x0000_000C 3 Hard fault error
= Generates requests for vectors 1-15 0x0000_002C 11 SVCall to supervisor with SVC instruction
0x0000_0038 14 PendSV: System-level service request
* MCU (KL25Z) 0x0000_003C 15 SysTick: System timer tick
= Generates requests for vectors 16-47 0x0000_0040, 44, 48, 4C 16-19 0-3 Direct Memory Access Controller
. . e ey 0x0000_0058 22 6 Power Management Controller
Exception/Interrupt Priorities 0x0000_005C 23 7 Low Leakage Wake Up
. o 0x0000_0068, 6C 26-27 10-11 SPI Communications
" Reset: -3, highest priority 0x0000_0070, 74,78 28-30 12-14 UART Communications

= NMI: -2 0x0000_007C 31 15 Analog to Digital Converter
= Hard Fault: -1 0x0000_0080 32 16 C-omparator ' .
o 0x0000_0084, 88, 8C 33-35 17-19 Timers and Pulse-Width Modulation
= Others have programmable priority 0x0000_0090, 94 36-37 20-21 Real-Time Clock alarm and seconds
= Cortex-MO+ NVIC supports four levels 0x0000_0098 38 22 Programmable Interval Timer
- T t-signifi t bits of bvt 0x0000_00AO 40 24 USB On-The-Go
WO most-sighiticant bits ot byte 0x0000_00A4 a1 25 Digital to Analog Converter
register, other bits read as zero 0x0000_00A8 42 26 Touch Sense Interface
= So, 0, 1, 2, 3 translated to 0x00, 0x40, 0x0000_00AC 43 27 Main Clock Generator
0x80, 0xCO 0x0000_00BO 44 28 Low Power Timer
| | 0x0000_00B8 46 30 Port Control Module, Port A pin detect
|| -
Cortex-M3, M4, etc. support more levels 4,6000 gosc 47 31 Port Control Module, Port D pin detect

NC STATE UNIVERSITY

CMSIS Access Functions for NVIC and PM

[cmsIS-CORE Device Files (Silicon Vendor)
D UserProgram core_cminstr.h
[[] cMSIS-CORE StandardFiles (ARM)
CPU Instruction Access
core_<cpu=.h core_cmFunc.h
CMsIS
CPU & Core Access |Core Peripheral Functions
core_cm4_simd.h
SIMD Instruction Access
{Cortex-M4 only)

__get PRIMASK()

NVIC_EnablelRQ(IRQnum) NVIC_SetPendinglRQ(IRQnum) NVIC_SetPriority(IRQnum, priority) __set_PRIMASK(x)
NVIC_DisablelRQ(IRQnum) NVIC_ClearPendinglRQ(IRQnum) NVIC_GetPriority(IRQnum) __enable_irq()
‘ ‘ __disable_irq()

I
! 1 ! |
- En Prio |—_ o
Peripheral 1] ;’f} Pend ——.:equzt

PM |
Select Highest | N|
Priority Request

NC STATE UNIVERSITY

Priority Masking Bit

= PM bit is NOT saved or restored by hardware exception response
= Implications? We'll see later

NVIC Registers and State

= Enable - Allows interrupt to be recognized
= Accessed through two registers (set bits for interrupts)

= Set enable with NVIC_ISER, clear enable with NVIC_ICER
= CMSIS Interface: NVIC_EnablelRQ(IRQnum), NVIC_DisablelRQ(IRQnum)

= Pending - Interrupt has been requested but is not yet serviced
= CMSIS: NVIC_SetPendinglRQ(IRQnum), NVIC_ClearPendinglRQ(IRQnum)

NC STATE UNIVERSITY

|
NVIC Registers and State

Bits |31:30 12924 12322 2116|154 |138 7650

m IRQ3 reserved IRQ2 reserved IRQ1 reserved IRQO0 reserved
|68 IRQ7 reserved IRQ6 reserved IRQ5 reserved IRQ4 reserved
IRQ11 reserved IRQ10 reserved IRQ9 reserved IRQ8 reserved
IRQ15 reserved IRQ14 reserved IRQ13 reserved IRQ12 reserved
IRQ19 reserved IRQ18 reserved IRQ17 reserved IRQ1l6 reserved
IRQ23 reserved IRQ22 reserved IRQ21 reserved IRQ20 reserved
IRQ27 reserved IRQ26 reserved IRQ25 reserved IRQ24 reserved
|48 IRQ31 reserved IRQ30 reserved IRQ29 reserved |IRQ28 reserved

= Priority - allows program to prioritize response if both interrupts are requested
simultaneously

= |[PRO-7 registers: two bits per interrupt source, four interrupt sources per register
= Set priority to O (highest priority), 1, 2 or 3 (lowest)
= CMSIS: NVIC_SetPriority(IRQnum, priority)

NC STATE UNIVERSITY

= Exceptions are prioritized to order the response simultaneous requests (smaller number
= higher priority)
= Priorities of some exceptions are fixed
= Reset: -3, highest priority
= NMI: -2
= Hard Fault: -1
= Priorities of other (peripheral) exceptions are adjustable
= Value is stored in the interrupt priority register (IPRO-7)
= 0x00
= 0x40
= 0Ox80
= OxCO

Prioritization

NC STATE UNIVERSITY

DETAILS:
ENTERING AN EXCEPTION HANDLER

NC STATE UNIVERSITY

Exception Processing States

" Inactive

= Pending

= Active

= Active and Pending

Active
and
Pending

What If ...? Special Cases of Prioritization

= New exception requested while current handler is executing?
= New priority higher than current priority?
= New exception handler preempts current handler

= Stacks registers, Executes new handler, unstacks registers
= Resumes current handler

= New priority lower than or equal to current priority?
= New exception held in pending state
= Current handler continues and completes execution
= New exception handler executes
= Registers unstacked
= Simultaneous exception requests with same priority?

= Lowest exception type number is serviced first
= Special features improve response time, covered later

= Late Arrival
= Tail Chaining

NC STATE UNIVERSITY

NC STATE UNIVERSITY

CPU’s Hardwired Exception Processing

1. Finish current instruction (except for lengthy instructions)

2. Push context (8 32-bit words) onto current stack (MSP or PSP)
= XPSR, Return address, LR (R14), R12, R3, R2, R1, RO

Switch to handler/privileged mode, use MSP
Load PC with address of exception handler
Load LR with EXC_RETURN code

Load IPSR with exception number

Start executing code of exception handler

N o U kAW

Usually 15 cycles from exception request to execution of first instruction in
handler (assuming fast memory without wait states)

NC STATE UNIVERSITY

1. Finish Current Instruction

= Most instructions are short and finish quickly

=Some instructions may take many cycles to execute
= Load Multiple (LDM), Store Multiple (STM), Push, Pop, MULS (32 cycles for some CPU
core implementations)
= This will delay interrupt response significantly

* |f one of these is executing when the interrupt is requested, the processor:
= abandons the instruction
= responds to the interrupt
= executes the ISR
= returns from interrupt
= restarts the abandoned instruction

2. Push Context onto Current Stack

NC STATE UNIVERSITY

<previous>

<—|SP points here before interrupt I

xPSR

PC

Decreasing

LR

memory

R12

address

R3

R2

R1

RO

<-| SP points here upon entering ISR

= Two SPs: Main (MSP), process (PSP)

= Which is active depends on operating mode, CONTROL register bit 1

= Stack

= Full: SP points to a location currently holding data
= Descending: grows toward smaller addresses

17

Context Saved on Stack

Feaqister Walue

L_—_| CﬂI"E
"""" RO 00000000
"""" R1 Qe OO00D000

00000002

SP value is reduced
since registers have
been pushed onto

stack

NC STATE UNIVERSITY

x00D00462
x077A150C
------- R6 x000006CC QS
------- R7 (xFB3DFFFD gb
------- R8 xBFFEFFEE <
------- R9 200005F0 L
------- R10 OxFFFFEBFF
------- R11 IxEAFD7FTF / , , / /
(00000000 5 Memony 1 / / /
R13(SF) OxIFFFF3FD -
R14(LR) [Address: [sp / / / Pl
R15 (PC) N 4 / 4 / .
ﬂ Ox1FFFF3ZF0: 0OOQQO000O00 Q0000000 00000001 OOCODO00Z2 Q0000000
Ox1FFFF404: 0000034F 00000352 01000000 661TBBE3 STACEZ3B
O 1FEFF2ED " Ox1FFFF418: FORREC90 4BSBECHA07 20804%4C EFC3I0BDF AROA209D
_______ PSP O<FFEFFEEC |, Ox1FFFF42C: 4EASSXEB 4093A5%3 4CEC3475 EAIADAGD TETF3BEB
- System Ox1FFFF440: 4FES0BGE TBSFTC T13C58RD ZEEZ239B ZZBE4:386 -
------- PRIMASK L] | I;&t'll:all Stack + Locals | Wa
------- CONTROL (<00 A\

=l Intemal

NC STATE UNIVERSITY

3. Switch to Handler/Privileged Mode

= Handler mode always uses Main SP

Reset

Thread
Mode.

»~IMSP or PSP
Exception Starting
Processing Exception
Completed Processing

e TP TP {
H

andler
Mode
MSP

Handler and Pr|V|Ieged Mode

20

Feqister | Value

L_—_| CﬂI"E
"""" RO 00000000
"""" R1 LALELLELE

....... Ha W
""" R4 (00000462
""" R5 M7 FATRDC
"""" R& G 000DDECC
"""" R7 (eFBIDFFFD
"""" RE (xBFFEFFEE
"""" RS Gc200005F0
"""" R10 FFFFEBFF
"""" R11 (EAFDYF7F

R13 (5P)
R14 (LR}
R1% (PC)

(00000000
Ox1FFFF3FD

Ox1FFFF3FD
O<FFBFFEEC

NC STATE UNIVERSITY

Mode changed to
Handler. Was already
using MSP and in
Privileged mode

NC STATE UNIVERSITY

Update IPSR with Exception Number

Reaqister | Value |
E‘ Cﬂl"E
------- RO (00000000
------- R1 (00000000
------ R2 (00000001
------- R3 (00000002
------ R4 (00000462
------ R5 (077A150C
------- R6 (<000006CC
------- R7 (<FB3DFFFD
------- RS (xBFFEFFEE
------- R9 B200005F0
------- R10 O<FFFFEBFF . .
....... A1 EAFDTETE PORTD_IRQ is Exception

"""" (00000000 number Ox2F
------ R13 (SP) Ox1FFFF3FD

...... R14 (LR) (interrupt number + 0x10)
------ R15 (PC)

e 01 DO002F

------- CONTROL (x00

=l Intemal
""" Mode Handler
"""" Frivilege Privileged

"""" Stack M5P

21

4. Load PC With Address Of Exception Handler

Reset Interrupt

Service Routine

Port D ISR

Port A ISR

Non-maskable Interrupt
Service Routine

Port D Interrupt Vector
Port A Interrupt Vector

Non-Maskable Interrupt Vector
Reset Interrupt Vector

22

Memory Address Memory Contents

0x0000_0125

0x0000_00BC
0x0000_00B8

0x0000_0008
0x0000_0004

PORTD_IRQHandler
0x0000_0125 (PORTA_IRQHandler)

NMI_IRQHandler
start

NC STATE UNIVERSITY

Exception
(and Interrupt)
Vector Table

NC STATE UNIVERSITY

Can Examine Vector Table With Debugger

Exception number IRQ number Vector Offset
16+n n IRQn Disassembly
0x40+4n
. _ Ox000000BO QOET DCW OXOOET
L . & . = Ox000000B2 0000 DCW 0=x0000
- : 0x000000B4 OQOET DCW Ox0OOET
18 5 RQ2 Ox000000BE 0000 DCW 0x0000
17] RQ 0x48 0x000000B8 OOET DCW Ox00ET
. 0 — Ox44 OxO00000BA 0000 DCW 00000
— 0x40 Ox000000BC 0455 DCW 0=x0455
15 -1 SysTick, if implemented
0x3C Ox0O00000BE 0000 DCW 0x0000
14 -2 PendSV L
13 0x38
1 Reserved = PORTD ISR is IRQ #31 (0x1F), so vector to
1" -5 SvCall o2C handler begins at 0x40+4*0x1F = OxBC
10 .
o = Why is the vector odd? 0x0000_0455
8 = LSB of address indicates that handler
7 Reserved
- uses Thumb code
5
4
0x10
3 -13 HardFault
0x0C
2 =14 NMI
0x08
1 Reset
0x04
Initial SP value

0x00

23

NC STATE UNIVERSITY

Upon Entry to Handler

Registers a @
= Disassembly
Reaqister Value
= Core 23: woid PORTD IEQHandler (void) {
....... RO 00000000 @DxﬂﬂDDU&E& B510 PUOSH {r4,1r}
....... R1 00000000 24: DEEUG _PORT->PSOR = MASK(DEG ISE POS)
...... 251 // clear pending interrupts
....... R3 00000002 0x00000454 2001 MOV'S r0, $0x01
------ R4 00000462]]
------ RS 077A150C
------- RE (<000DDECC
"""" R7 (FE3DFFFD
------- R8 (<BFFEFFEE
....... Hﬂ M{H:H:H]EF{'
------- R10 OxFFFFEBFF
------- R11 O<EAFDTF7F
"""" Ri2 O 0000000
R13 (5F) O 1FFFF3FD
R14(LR) OxFFFFFFF9 PC has been
R15(PC) (0000054 .
T loaded with start
address of handler
OxTFFFF3FD
------- PSP (<FFBFFEEC
(=] System
------- PRIMASK 0
------- CONTROL (<00
=l Intemal

"""" Privilege Privieged
"""" Stack MSP

24

5. Load LR With EXC_RETURN Code
ol S =

OxFFFF_FFFI 0 (Handler) 0 (MSP) Return to exception
handler

OxFFFF_FFF9 | (Thread) 0 (MSP) Return to thread with MSP

OxFFFF_FFFD | (Thread) | (PSP) Return to thread with PSP

= EXC_RETURN value generated by CPU to provide information on how to return

= Which SP to restore registers from? MSP (0) or PSP (1)
= Previous value of SPSEL
= Which mode to return to? Handler (0) or Thread (1)
= Another exception handler may have been running when this exception was requested

25

Updated LR With

26

Registers
Feqister Value
L_—_| CﬂI"E
------- RO (00000000
"""" R1 Qe OO00D000

------ R13 (SP)
------ R14 (LR)
------ R15 (PC)

"""" COMTROL
ntemal

O 0000001

0000002
(00000462
Me077A150C
e BO0DD6CC
<FE30FFFD
xBFFEFFEE
O 200005F0
O<FFFFEBFF
OcEAFDVF7F
b OO000000
Oe1FFFF3FD
OeFFFFFFFS
O DO0004 54
(e0100002F

D 1FFFF3FD
O<FFBFFEEC

0
(=00

""" Mode Handler

- .

EXC_RETURN Code
2 @

NC STATE UNIVERSITY

NC STATE UNIVERSITY

6. Start Executing Exception Handler

= Exception handler starts running, unless preempted by a higher-priority exception

= Exception handler may save additional registers on stack
= E.g. if handler may call a subroutine, LR and R4 must be saved

27

Disassembly

QGRDDGGG&E& B510
24:
251
Ox00000458 2001

23: wold PORTD IRQHandler (void) f{

PUSH {r4,1r}

DEEUG PORT->P5S0R = MASK(DEG ISR POS);

f/f clear pending interrupts
MOVS ro, #0x01

Example: Handler Instructions May Save More Contex

Disassembly
23: woid PORTD TR{QHandler (wvoid)

28

Registers a
Reqister Walue
= 1Core
"""" RO G 00000000
"""" R1 (00000000
....... HZ {b:m'l
"""" 3 00000002
....... H-‘l W
"""" R& Qe077A1R0C
"""" R& (e 000006CT
"""" R7 (cFE3DFFFD
"""" Ra EFFEFFEE
....... HH M{H:H:H]EF{'
"""" R10 (FFFFEBFF
"""" R11 (EAFDYF7F
"""" R12 00000000
(=1FFFF3ES
"""" R14 (LR} (cFFFFFFFS

F-xPSR 01 00002F
=l Banked
Ox1FFFF3ES
"""" PSP (kFFEFFEEC
=l System
"""" PRIMASE 0
....... D':'NTHD L mm
E |r.|.tema|
"""" Mode Handler
"""" Privilege Privieged
....... Stad{ MS P

SP reduced since
registers were
pushed onto stack

0x00000454 B510

ox0x00000456 2001

FUSH

{

{r4,1r}

24 DEEUG PORT->PSOR = MASK (DEG_ISE PO3)»
25: S/ glear pending interrupts
r0, #0x01

MOWS

Registers saved

by hardware

by software
Memory 1
Address: |sp /
0x1FFFF3E8: 00000462 FFFFFFFS 00000000 00000000 00000001
Ox1FFFF3FC: 00000002 00000000 0000034F 00000352 01000000
Ox1FFFF410: &6178EBE3 STACBEZZIE FOALSCH0D 4EBETEOT 2080424C
Ox1FFFF424: EFC30BDF RAAQAZIOSD 4EASS3ER 40935563 4CEC3475
Ox1FFFF438: EAIADAED TETF3IBEE 4FESUBGE TESFTCSE T13CI8BO
%-."_"mall Stack + Locals | W
N S
S g T ,
3 3 %
S V og
. O?, CKO +o
Registers saved % o O

Continue Executing Exception Handler

NC STATE UNIVERSITY

Disassembly
h 23: void PORTD IRQHandler (void) { .
= Execute user code in handler
24: DEBUG_PORT->P50R = MASK (DBG_ISR_POS5):
25: J{ clear pending interrupts
—»0x00000456 2001 MOVS ro, #0x01
0x00000458 492E LDR rl, [pc, #184] . @0x00000514
0x0000045R 3980 SUBS rl,rl, #0x80
0x0000045C 6048 STR rd, [rl, #0x04]
26: HVIC ClearPendingIRQ(PCRTD IRQmn);
0x0000045E 201F HOVS ro0, #0x1F
0x00000460 FOOOFE813 BL.W NVIC ClearPendingIRQ (Ox00000484)
27: if ((PORTD->ISFR & MASE(SW _POS))) {
0x00000464 4829 LDR ro, [pc, #164] ; @0x0000050C
0x0000046&66 3080 RADDS ro0,r0, #0x80
0x00000468 BAOOD LDR rd, [x0, #0x20]
0x0000046R 2140 MOVS rl, #0x40
0x0000046C 4208 TST rl,rl
0x0000046E DOOZ2 BEQ 0x00000476
28: done = 1;
29: ¥
30: [/ clear =status flags
0x00000470 2001 MOVS r0, #0x01
0x00000472 4923 LDR rl, [pc,#168] ; @0x0000051C
L] |_|
debug_signals.c main.c ¥ X switches.h
NVIC SetPriority(PORTD IRQn, 128); // 0, €4, 1 & 6860
NVIC ClearPendingIRQ({FORID_IEQmn); 661 \para
NVIC_EnableIRQ(PORTD IRQn); 662 | */
1 663 | _ STATIC_
22 L 664 [{
23 Hvoid PORTD IRQHandler (void) | 665 NVIC->I
=»24 || DEBUG_PORT->PSOR = MASK(DBG_ISR_POS); 666 | }
25 // clear pending interrupts 667
26 NVIC ClearPendingIRQ(PORTD IRQn): i 668 |
27 if ((PORTD->ISFR & MASK(SW FOS))) | 669 [0 /** ‘\brie
28 done = 1; 670
29 1 671 The £
30 // clear status flags E 872
31 PORID->ISFR = 0x H 673 \note
32 DEBUG FORT->PCOR = MASK(DBG ISE FOS); 674
33 |] 675 \para
34 - - 676 \para
£7n7 L - 5
1| 1 | b 4| 1 |

29

NC STATE UNIVERSITY

DETAILS:
EXITING AN EXCEPTION HANDLER

NC STATE UNIVERSITY

Exiting an Exception Handler

1. Execute instruction triggering exception return processing
2. Select return stack, restore context from that stack
3. Resume execution of code at restored address

31

NC STATE UNIVERSITY

1. Execute Instruction for Exception Return

debug_signals.c switches.c main.c ¥ X
] “ f i 7 i 18 NVIC SetPriority(PORID IRQn, 128); // 0, 64, 1, =
No “return from interrupt” instruction - "y (PORID_IRGn, 128); // 0, 64, 1
159 NVIC ClearPendingIRQ (PORTD IE{n):
. . . 20 NVIC EnableIR({PORTD IRQn);:
= Use regular instruction instead il
. . . 22 7
= BX LR - Branch to address in LR by loading PC with @23 1voia portD_1RgHand1er (void) |
24 DEBUG PORT->PSOR = MASK(DBG ISR POS);
LR ContentS 25 ff clear pending interrupts
. 26 NVIC ClearPendingIRQ(FORID IRQn);
= POP ..., PC- Pop address from stack into PC 27] if ((PORID->ISFR & MASK(SW_POS))) |
28 done = 1;
= ... with a special value EXC_RETURN loaded | 2| ! _
—_ 30 Jf clear status flags E
into the PC to trigger exception handling B | o o o TSR POS)
. =233 | |} - -
processing 8 L A
= BX LR Used |f EXC_RETU RN |S St||| |n LR Disassembly
33: }
= |[f EXC_RETURN has been saved on stack, then use 0x00000488 BD10 pOP {r4,pc)
665: NVIC->ICPR[0] = (1 << ((uint32 t) (IF
POP Dx0000048h 06C2 LSLS r2,ro,$27
0x0000048C DED2 LSRS r2,r2,4$27
0x0000048E 2101 MOVS ri, $0x01
0=x00000490 4091 L5L5S rl, rl,r2
0x00000492 4A23 LDR r2, [pc, $140]
0x00000494 6011 STR rl, [r2, $0x00]

32

NC STATE UNIVERSITY

What Will Be Popped from Stack?

= R4: 0x0000_0462
= PC: OXFFFF_FFF9

Disassembly

33: 1
o»0x00000488 BD10

Registers n |§|]
Register Value I
L_—_l CﬂfE E{
------- RO (00000001
------- Ri (4D0FFO40
------- R2 (ED00E280
------- R3 (00000002
------- R4 00000462
------- RS 077A15DC
------- R6 [000006CC
------- R7 [FB3DFFFD Memaory 1
------- RS (BFFEFFEE |
------- R9 (:200005F0 :
------- R10 OxFFFFEBFF L /
------- R11 <EAFDTFTF L
....... R12 500000000 0x1FFFF3E8: 00000462 FFFFFFFS 00000000 00000000 00000001
------- R13(5F) O 1FFFF3ER Ox1FFFF3FC: 00000002 00000000 OO000034F 00000352 01000000
"""" {L (00000465 Ox1FFFF410: 66178BE3 STAC823E FOLLECS0 4BEECEOT 2080424C
------ [R15 (PO __0x000ooies | |
B KPS x2100002F Ox1FFFF424: EFC30BDF RAOR.JO9D 4EAY93EE 4093L563 4CEC3475
=l Banked O0x1FFFF438: EAIRDAG0 TETF3BSE 4FESUBEE TEOFTCOE 713C38EO
-------- Msp O 1FFFF3ES
........ PSP FFEFFEEC I&-_‘j Call Stack = Locals W
= System AL
- PRIMASK 0 - 9 oL
- CONTROL (00 % o
=1 Intemal (o4 +
& Mode Handler e 'OJ\
- Priviege Privieged C 0
- Stack MSP

33

2. Select Stack, Restore Context

NC STATE UNIVERSITY

= Check EXC_RETURN (bit 2) to determine from which SP to pop the context

Return to exception handler with MSP

OxFFFF_FFFI
OxFFFF_FFF9
OxFFFF_FFFD

0 (MSP)
0 (MSP)
| (PSP)

= Pop the registers from that stack

34

Decreasing
memory
address

SP
SP
SP
SP
SP
SP
SP
SP

+ 4+ 4+ 4+ 4+ 4+ 4+ 4

Return to thread with MSP

Return to thread with PSP

<previous> “— SP points here after handler

0Ox1C xPSR

0x18 PC

0Ox14 LR

0x10 R12

0Ox0C R3

0x08 R2

0x04 R1

0x00 RO <— SP points here during handler |

NC STATE UNIVERSITY

= PC=0OxFFFF_FFF9, so return to thread mode with main stack pointer

Example

Memory 1

'l-”ET

Address: |zp

Ox1FFFF3FO: 00000000 Q0000000 Q0000001 OOCODO00O002 00000000

Ox1FFFF404: 0000034F 00000352 01000000 661T8BEZ STACEZ23E

" Ox1FFFF418: FORAECS0 4BEBCA0T 20804%4C EFC3IOBDF ARORZOSD
Ox1FFFF42C: 4ERSSXEE 40593A5%3 4CEC3IQ475 EAlIADAGD TETF3IBSE

T13C58R0 ZEREZ3Z5E 2Z8BE4:586 -

—i

Ox1FFFF440: 4FES0BQE TESFTC

g Call 5tack + Locals

35

NC STATE UNIVERSITY

Resume Executing Previous Main Thread Code

Registers R [@ Disassembly . g
I Value I 43: while ('!done) { P
44: count++; E

. . 0x00000000 0x00000350 1CED ADDS r5,r5, #1 i
[Exce t I O n h a n d | I n Pirmmmel | [=>0x00000352 4808 LDR r0, [pc, #32] ; BOx00000374
p g 00000001 0x00000354 6800 LDR r0, [r0, $0x00]
D0000002 0x00000356 2800 cMP r0, $0x00
. 00000462 0x00000358 DOFA BEQ 0x00000350
registers have been o |2 :
00000ECE 46: control RGE_LEDs (0, 0, 0);
OFBADFFFD 0x0D000035A 2200 MOVS r2, $#0x00
KBFFEFFEE 0x0000035C 4611 MOV ri, r2
re Sto re d B00005FD 0x0000035E 4610 MOV ro,r2
<FFFFEBEF 0x00000360 FOOOFBEZ BL.W control RGE LEDs (0x00000528)
OKEAFDTFTF 47: // =set breakpoint here
300000000 0x00000364 207D MOVS r0, #0x7D
[} RO Rl R2 R3 R12 LR - DFFEEAID 0x00000366 00CO LSLS r0,r0, #3
)))))) . D00D00ME 0x00000368 FTFFFFCE BL.W delay millisec (0x000002FC)
. x00000352 0x0000036C ETDC B 0x00000328

. 01000000 0x0000036E 0000 DCW 0x0000
) 0x00000370 2ZEE1 DCW Ox2EEL

eI FFFF410 0x00000372 0000 DCW 0x0000
. R FFBFFEEC 0x00000374 FOO4 DCW 0xF004
0x00000376 1FFF DCW O0x1FFF e
= SP is back to previous »
debug_signals.c switches.c ¥ X D switches.h B gpio_defs.h D core_cm0plus.h F X
36 é] - 660 -
Va u e 37 [while (1) { a6l ‘\param [in] IRQn External interrupt numbe
MSP 38 662 - */
39 663 | _ STATIC INLINE wvoid HVIC ClearPendingIR(Q(IRQn_Type
3 10 t = (rand{) s 0x7£) + 1000; 664 {
| Ba C k I n th rea d m Od e a1 delay millisec(t); 665 NVIC->ICPR[0] = {1 << ({uint32_t)({IRQn) & 0x1F));:
12 control RGB LEDs(1, 0, 1); 666 |]
o543 | waile (!done) { a67
. . 44 count++; 668 -
. N eXt I n St ru Ct I O n to a5 1 669 [=]/** ‘brief Set Interrupt Priority
48 contrel RGB LEDs{0, 0, 0): 670
47 // set breakpoint here = 671 The function sets the priority of an interrupt.
[} 48 delay millisec(REST_TIME); 672
eXeCute IS at 43 - } = 673 ‘note The priority cannot be set for every ccrel—l
50 | } T a74 =
51 675 ‘\param [in] IRQn Interrupt number.
O OOOO 03 2 Sl s 676 ‘param [in] priority FPriority to set. il
L enm L oas
X 5 [E] Project | B Registers < | LI} % M 4
Command o @ Memory 1
BS \\BasicUI\src/main.c\47 -
WS 1, 't,0x0R | Address: |5°
W5 1, "done H 0x1FFFF410: 66178BE3 STAC823E FORAGCO0 4BEECEQT 2080424C
W5 1, "count,O0x0R — 0x1FFFF424: EFC30EDF AAOR209D 4EA993ER 4093A563 4CEC34TS
T 0x1FFFF438: EAIADA60 TETF3BEB 4FESOB6E 7BIFTCIE T13C58E0
| n | " Ox1FFFF44C: 2EEE2398 228E4586 3474EEFL D4540D30 31FS7DE4
> Ox1FFFF460: 6EECSC20 46RBTESC €D04025F FEBCETEEB 220C13F6 -
AS5IGN BreakDisable BreakEnable BreakKill BreakList BreakSet | (&‘.‘:ICBII Stack + Locals | Watch 1 Memory 1
CMSIS-DAP Debugger t1: 0.00000000 sec

36

NC STATE UNIVERSITY

PROGRAM DESIGN WITH
INTERRUPTS

NC STATE UNIVERSITY

Program Design with Interrupts

= How much work to do in ISR?
= Should ISRs re-enable interrupts?

= How to communicate between ISR and other threads?

= Data buffering
= Data integrity and race conditions

38

NC STATE UNIVERSITY

How Much Work Is Done in ISR?

= Trade-off: Faster response for ISR code will delay completion of other code

* |In system with multiple ISRs with short deadlines, perform critical work in ISR and buffer
partial results for later processing

39

NC STATE UNIVERSITY

SHARING DATA SAFELY BETWEEN
ISRS AND OTHER THREADS

NC STATE UNIVERSITY

Overview

= Volatile data — can be updated outside of the program’s immediate control

* Non-atomic shared data — can be interrupted partway through read or write, is
vulnerable to race conditions

41

NC STATE UNIVERSITY

Volatile Data

= Compilers assume that variables in = This optimization can fail
memory do not change spontaneously, and = Example: reading from input port, polling for key
optimize based on that belief press
= Don’ load iabl] = while (SW_0) ; will read from SW_0 once and reuse that value
on‘t relogd a varia efrom memory If current = Will generate an infinite loop triggered by SW_0 being true

function hasn’t changed it

= Read variable from memory into register (faster
access)

= Write back to memory at end of the procedure,
or before a procedure call, or when compiler
runs out of free registers

= Variables for which it fails
= Memory-mapped peripheral register — register
changes on its own
= Global variables modified by an ISR — ISR changes
the variable

= Global variables in a multithreaded application —
another thread or ISR changes the variable

42

NC STATE UNIVERSITY

The Volatile Directive

= Need to tell compiler which variables may change outside of its control
= Use volatile keyword to force compiler to reload these vars from memory for each use

volatile unsigned int num_ints;
= Pointer to a volatile int

volatile int * var; // or
int volatile * var;

= Now each C source read of a variable (e.g. status register) will result in an assembly language LDR
instruction

= Good explanation in Nigel Jones’ “Volatile,” Embedded Systems Programming July 2001

43

Non-Atomic Shared Data

= Want to keep track of current time
and date

= Use 1 Hz interrupt from timer

= System

= TimerVal structure tracks time and days
since some reference event

= TimerVal’s fields are updated by periodic 1
Hz timer ISR

44

void GetDateTime (DateTimeType * DT) {
DT->day = TimerVal.day;

DT->hour = TimerVal.hour;
DT->minute = TimerVal.minute;
DT->second = TimerVal.second;

}

void DateTimelISR (void) {
TimerVal.second++;
if (TimerVal.second > 59) {
TimerVal.second = 0O;
TimerVal .minute++;
if (TimerVal.minute > 59) {
TimerVal .minute = 0;
TimerVal . hour++;
if (TimerVal.hour > 23) {
TimerVal.hour = 0;
TimerVal.day++;
.. etc.

NC STATE UNIVERSITY

Example: Checking the Time

= Problem

= An interrupt at the wrong time will lead to half-
updated data in DT

= Failure Case

= TimerVal is {10, 23, 59, 59} (10" day, 23:59:59)

= Task code calls GetDateTime(), which starts
copying the TimerVal fields to DT: day = 10, hour
=23

= A timer interrupt occurs, which updates TimerVal
to {11, 0, O, O}

= GetDateTime() resumes executing, copying the

remaining TimerVal fields to DT: minute = 0,
second =0

= DT now has a time stamp of {10, 23, 0, 0}.

= The system thinks time just jumped backwards
one hour!

45

NC STATE UNIVERSITY

= Fundamental problem — “race condition”

= Preemption enables ISR to interrupt other code
and possibly overwrite data

= Must ensure atomic (indivisible) access to the
object

= Native atomic object size depends on processor’s
instruction set and word size.

= |s 32 bits for ARM

Examining the Problem More Closely

= Must protect any data object which both
= (1) requires multiple instructions to read or write (non-atomic access),
and
= (2) is potentially written by an ISR

= How many tasks/ISRs can write to the data object?

= One? Then we have one-way communication
= Must ensure the data isn’t overwritten partway through being read
= Writer and reader don’t interrupt each other
= More than one?
= Must ensure the data isn’t overwritten partway through being read
= Writer and reader don’t interrupt each other
= Must ensure the data isn’t overwritten partway through being written
= Writers don’t interrupt each other

46

NC STATE UNIVERSITY

47

NC STATE UNIVERSITY

Definitions

= Race condition: Anomalous behavior due to unexpected critical
dependence on the relative timing of events. Result of example code
depends on the relative timing of the read and write operations.

= Critical section: A section of code which creates a possible race condition.
The code section can only be executed by one process at a time. Some
synchronization mechanism is required at the entry and exit of the critical
section to ensure exclusive use.

Solution: Briefly Disable Preemption

48

NC STATE UNIVERSITY

= Prevent preemption within critical section

= |f an ISR can write to the shared data object,
need to disable interrupts
= save current interrupt masking state in m
= disable interrupts

= Restore previous state afterwards (interrupts
may have already been disabled for another
reason)

= Use CMSIS-CORE to save, control and restore
interrupt masking state

void GetDateTime (DateTimeType *
DT) {

uint32_t m;

m = get PRIMASK();
__disable irq();

DT->day = TimerVal.day;
DT->hour = TimerVal.hour;

DT->minute = TimerVal.minute;

DT->second = TimerVal.second;
___set PRIMASK (m) ;
}

= Avoid disabling preemption if possible

= Disabling interrupts delays response to all other processing requests

= Make this time as short as possible (e.g. a few instructions)

NC STATE UNIVERSITY

Summary for Sharing Data

= In thread/ISR diagram, identify shared data = #include “extern.h” in every file which uses these

: : : shared variables
= Determine which shared data is too large

to be handled atomically by default = When using long (non-atomic) shared data,

= This needs to be protected from preemption (e.g. save, disable and restore interrupt masking

disable interrupt(s), use an RTOS synchronization Status
mechanism) = CMSIS-CORE interface: __ disable_irq(),

= Declare (and initialize) shared variables as __get_PRIMASK(), __set_PRIMASK()
volatile in main file (or globals.c)

= volatile int my_shared_var=0;

= Update extern.h to make these variables
available to functions in other files

= volatile extern int my_shared_var;

49

	Interrupts_CPU_L3_v1
	Cortex-M0+ �Interrupts and Exceptions �CPU Activities�(Level 3)
	Interrupts: Where Are We (view 1)?
	Interrupts: Where Are We (view 2)?
	Cortex-M0+ Interrupt Support: NVIC and PM Details
	Nested Vectored Interrupt Controller (NVIC)
	Details
	CMSIS Access Functions for NVIC and PM
	Priority Masking Bit
	NVIC Registers and State
	NVIC Registers and State
	Prioritization
	Details: �Entering an Exception Handler
	Exception Processing States
	What If …? Special Cases of Prioritization
	CPU’s Hardwired Exception Processing
	1. Finish Current Instruction
	2. Push Context onto Current Stack
	Context Saved on Stack
	3. Switch to Handler/Privileged Mode
	Handler and Privileged Mode
	Update IPSR with Exception Number
	4. Load PC With Address Of Exception Handler
	Can Examine Vector Table With Debugger
	Upon Entry to Handler
	5. Load LR With EXC_RETURN Code
	Updated LR With EXC_RETURN Code
	6. Start Executing Exception Handler
	Example: Handler Instructions May Save More Context
	Continue Executing Exception Handler
	Details: �Exiting an Exception Handler
	Exiting an Exception Handler
	1. Execute Instruction for Exception Return
	What Will Be Popped from Stack?
	2. Select Stack, Restore Context
	Example
	Resume Executing Previous Main Thread Code
	Program Design with INterrupts
	Program Design with Interrupts
	How Much Work Is Done in ISR?
	Sharing Data Safely between ISRs and other Threads
	Overview
	Volatile Data
	The Volatile Directive
	Non-Atomic Shared Data
	Example: Checking the Time
	Examining the Problem More Closely
	Definitions
	Solution: Briefly Disable Preemption
	Summary for Sharing Data

