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Interrupts: Where Are We (view 1)?
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Interrupts: Where Are We (view 2)?
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CORTEX-M0+ INTERRUPT SUPPORT: 
NVIC AND PM DETAILS
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Nested Vectored Interrupt Controller (NVIC)

▪ NVIC manages and prioritizes interrupts 
and exceptions for CPU core

▪ Register fields in NVIC
▪ Enable - Allows interrupt to be recognized. 1 bit
▪ Pending - Interrupt requested, not yet serviced. 1 bit
▪ Priority - allows program to prioritize response if both 

interrupts are requested simultaneously
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Details

▪ Many sources
▪ CPU (Cortex-M0+)

▪ Generates requests for vectors 1-15

▪ MCU (KL25Z)

▪ Generates requests for vectors 16-47

▪ Exception/Interrupt Priorities 
▪ Three are fixed priority

▪ Reset: -3, highest priority

▪ NMI: -2

▪ Hard Fault: -1

▪ Others have programmable priority

▪ Cortex-M0+ NVIC supports four levels

▪ Two most-significant bits of byte 
register, other bits read as zero

▪ So, 0, 1, 2, 3 translated to 0x00, 0x40, 
0x80, 0xC0

▪ Cortex-M3, M4, etc. support more levels

Vector Address Vector # IRQ Description

0x0000_0004 1 CPU Reset 

0x0000_0008 2 NMI: Non-maskable interrupt

0x0000_000C 3 Hard fault error

0x0000_002C 11 SVCall to supervisor with SVC instruction

0x0000_0038 14 PendSV: System-level service request

0x0000_003C 15 SysTick: System timer tick

0x0000_0040, 44, 48, 4C 16-19 0-3 Direct Memory Access Controller

0x0000_0058 22 6 Power Management Controller

0x0000_005C 23 7 Low Leakage Wake Up

0x0000_0060, 64 24-25 8-9 I2C Communications

0x0000_0068, 6C 26-27 10-11 SPI Communications 

0x0000_0070, 74, 78 28-30 12-14 UART Communications

0x0000_007C 31 15 Analog to Digital Converter

0x0000_0080 32 16 Comparator

0x0000_0084, 88, 8C 33-35 17-19 Timers and Pulse-Width Modulation

0x0000_0090, 94 36-37 20-21 Real-Time Clock alarm and seconds

0x0000_0098 38 22 Programmable Interval Timer

0x0000_00A0 40 24 USB On-The-Go

0x0000_00A4 41 25 Digital to Analog Converter

0x0000_00A8 42 26 Touch Sense Interface

0x0000_00AC 43 27 Main Clock Generator

0x0000_00B0 44 28 Low Power Timer

0x0000_00B8 46 30 Port Control Module, Port A pin detect

0x0000_00BC 47 31 Port Control Module, Port D pin detect
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CMSIS Access Functions for NVIC and PM

Peripheral 1

NVIC_EnableIRQ(IRQnum)

NVIC_DisableIRQ(IRQnum)

NVIC_SetPendingIRQ(IRQnum)

NVIC_ClearPendingIRQ(IRQnum)

NVIC_SetPriority(IRQnum, priority)

NVIC_GetPriority(IRQnum)

__get_PRIMASK()

__set_PRIMASK(x)

__enable_irq()

__disable_irq()
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Priority
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Priority Masking Bit

▪ PM bit is NOT saved or restored by hardware exception response

▪ Implications? We’ll see later
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NVIC Registers and State

▪ Enable - Allows interrupt to be recognized
▪ Accessed through two registers (set bits for interrupts) 

▪ Set enable with NVIC_ISER, clear enable with NVIC_ICER
▪ CMSIS Interface: NVIC_EnableIRQ(IRQnum), NVIC_DisableIRQ(IRQnum)

▪ Pending - Interrupt has been requested but is not yet serviced
▪ CMSIS: NVIC_SetPendingIRQ(IRQnum), NVIC_ClearPendingIRQ(IRQnum)
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NVIC Registers and State

▪ Priority - allows program to prioritize response if both interrupts are requested 
simultaneously

▪ IPR0-7 registers: two bits per interrupt source, four interrupt sources per register

▪ Set priority to 0 (highest priority), 1, 2 or 3 (lowest)

▪ CMSIS: NVIC_SetPriority(IRQnum, priority)

Bits 31:30 29:24 23:22 21:16 15:14 13:8 7:6 5:0

IPR0 IRQ3 reserved IRQ2 reserved IRQ1 reserved IRQ0 reserved

IPR1 IRQ7 reserved IRQ6 reserved IRQ5 reserved IRQ4 reserved

IPR2 IRQ11 reserved IRQ10 reserved IRQ9 reserved IRQ8 reserved

IPR3 IRQ15 reserved IRQ14 reserved IRQ13 reserved IRQ12 reserved

IPR4 IRQ19 reserved IRQ18 reserved IRQ17 reserved IRQ16 reserved

IPR5 IRQ23 reserved IRQ22 reserved IRQ21 reserved IRQ20 reserved

IPR6 IRQ27 reserved IRQ26 reserved IRQ25 reserved IRQ24 reserved

IPR7 IRQ31 reserved IRQ30 reserved IRQ29 reserved IRQ28 reserved

Details
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Prioritization

▪ Exceptions are prioritized to order the response simultaneous requests (smaller number 
= higher priority)

▪ Priorities of some exceptions are fixed
▪ Reset: -3, highest priority

▪ NMI: -2

▪ Hard Fault: -1

▪ Priorities of other (peripheral) exceptions are adjustable
▪ Value is stored in the interrupt priority register (IPR0-7)

▪ 0x00

▪ 0x40

▪ 0x80

▪ 0xC0



12

DETAILS: 
ENTERING AN EXCEPTION HANDLER
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Exception Processing States

▪ Inactive
▪ Pending
▪ Active
▪ Active and Pending

Active 

and 

Pending

ActivePendingInactive
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What If …? Special Cases of Prioritization

▪ New exception requested while current handler is executing?
▪ New priority higher than current priority? 

▪ New exception handler preempts current handler

▪ Stacks registers, Executes new handler, unstacks registers

▪ Resumes current handler

▪ New priority lower than or equal to current priority? 

▪ New exception held in pending state 

▪ Current handler continues and completes execution

▪ New exception handler executes

▪ Registers unstacked

▪ Simultaneous exception requests with same priority?
▪ Lowest exception type number is serviced first

▪ Special features improve response time, covered later
▪ Late Arrival

▪ Tail Chaining



15

CPU’s Hardwired Exception Processing

1. Finish current instruction (except for lengthy instructions)

2. Push context (8 32-bit words) onto current stack (MSP or PSP)
▪ xPSR, Return address, LR (R14), R12, R3, R2, R1, R0

3. Switch to handler/privileged mode, use MSP

4. Load PC with address of exception handler

5. Load LR with EXC_RETURN code

6. Load IPSR with exception number

7. Start executing code of exception handler

Usually 15 cycles from exception request to execution of first instruction in 
handler (assuming fast memory without wait states)
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1. Finish Current Instruction

▪Most instructions are short and finish quickly

▪Some instructions may take many cycles to execute
▪ Load Multiple (LDM), Store Multiple (STM), Push, Pop, MULS (32 cycles for some CPU 

core implementations)

▪This will delay interrupt response significantly

▪ If one of these is executing when the interrupt is requested, the processor:
▪ abandons the instruction

▪ responds to the interrupt

▪ executes the ISR

▪ returns from interrupt

▪ restarts the abandoned instruction
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2. Push Context onto Current Stack

▪ Two SPs: Main (MSP), process (PSP)

▪ Which is active depends on operating mode, CONTROL register bit 1

▪ Stack 
▪ Full: SP points to a location currently holding data

▪ Descending: grows toward smaller addresses

SP points here upon entering ISR
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Context Saved on Stack
SP value is reduced 
since registers have 
been pushed onto 

stack
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3. Switch to Handler/Privileged Mode

▪ Handler mode always uses Main SP

Thread
Mode. 

MSP or PSP.

Handler 
Mode
MSP

Reset

Starting 
Exception 
Processing

Exception 
Processing
Completed
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Handler and Privileged Mode

Mode changed to 
Handler. Was already 

using MSP and in 
Privileged mode
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Update IPSR with Exception Number

PORTD_IRQ is Exception 
number 0x2F 

(interrupt number + 0x10)
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4. Load PC With Address Of Exception Handler

0x0000_0004Reset Interrupt Vector

Non-Maskable Interrupt Vector

Port A Interrupt Vector

Port D Interrupt Vector

Reset Interrupt 

Service Routine

Port D ISR

Port A ISR

Non-maskable Interrupt 

Service Routine

start

start

PORTD_IRQHandler

PORTD_IRQHandler

NMI_IRQHandler

NMI_IRQHandler

0x0000_0125 (PORTA_IRQHandler)

0x0000_0008

0x0000_00B8
0x0000_00BC

PORTA_IRQHandler0x0000_0125

Memory Address Memory Contents

Exception 

(and Interrupt) 

Vector Table
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Can Examine Vector Table With Debugger

▪ PORTD ISR is IRQ #31 (0x1F), so vector to 
handler begins at 0x40+4*0x1F = 0xBC

▪ Why is the vector odd? 0x0000_0455

▪ LSB of address indicates that handler 
uses Thumb code



24

Upon Entry to Handler

PC has been 
loaded with start 

address of handler 
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5. Load LR With EXC_RETURN Code

▪ EXC_RETURN value generated by CPU to provide information on how to return
▪ Which SP to restore registers from? MSP (0) or PSP (1)

▪ Previous value of SPSEL

▪ Which mode to return to? Handler (0) or Thread (1)

▪ Another exception handler may have been running when this exception was requested

EXC_RETUR

N

Return 

Mode

Return 

Stack

Description

0xFFFF_FFF1 0 (Handler) 0 (MSP) Return to exception 

handler

0xFFFF_FFF9 1 (Thread) 0 (MSP) Return to thread with MSP

0xFFFF_FFFD 1 (Thread) 1 (PSP) Return to thread with PSP
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Updated LR With EXC_RETURN Code
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6. Start Executing Exception Handler

▪ Exception handler starts running, unless preempted by a higher-priority exception

▪ Exception handler may save additional registers on stack
▪ E.g. if handler may call a subroutine, LR and R4 must be saved
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Example: Handler Instructions May Save More Context

SP reduced since 
registers were 

pushed onto stack

Registers saved 

by hardware

Registers saved 

by software
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Continue Executing Exception Handler
▪ Execute user code in handler
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DETAILS: 
EXITING AN EXCEPTION HANDLER
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Exiting an Exception Handler

1. Execute instruction triggering exception return processing

2. Select return stack, restore context from that stack

3. Resume execution of code at restored address
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1. Execute Instruction for Exception Return

▪ No “return from interrupt” instruction

▪ Use regular instruction instead
▪ BX LR - Branch to address in LR by loading PC with 

LR contents

▪ POP …, PC - Pop address from stack into PC

▪ … with a special value EXC_RETURN loaded 
into the PC to trigger exception handling 
processing
▪ BX LR used if EXC_RETURN is still in LR

▪ If EXC_RETURN has been saved on stack, then use 
POP
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What Will Be Popped from Stack?
▪ R4: 0x0000_0462

▪ PC: 0xFFFF_FFF9
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2. Select Stack, Restore Context
▪ Check EXC_RETURN (bit 2) to determine from which SP to pop the context

▪ Pop the registers from that stack

SP points here during handler

SP points here after handler

EXC_RETURN Return Stack Description

0xFFFF_FFF1 0 (MSP) Return to exception handler with MSP

0xFFFF_FFF9 0 (MSP) Return to thread with MSP

0xFFFF_FFFD 1 (PSP) Return to thread with PSP
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Example

▪ PC=0xFFFF_FFF9, so return to thread mode with main stack pointer

▪ Pop exception stack frame from stack back into registers
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Resume Executing Previous Main Thread Code

▪ Exception handling 
registers have been 
restored
▪ R0, R1, R2, R3, R12, LR, 

PC, xPSR

▪ SP is back to previous 
value

▪ Back in thread mode

▪ Next instruction to 
execute is at 
0x0000_0352



37

PROGRAM DESIGN WITH 
INTERRUPTS
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Program Design with Interrupts

▪ How much work to do in ISR?

▪ Should ISRs re-enable interrupts?

▪ How to communicate between ISR and other threads?
▪ Data buffering

▪ Data integrity and race conditions
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How Much Work Is Done in ISR?

▪ Trade-off: Faster response for ISR code will delay completion of other code

▪ In system with multiple ISRs with short deadlines, perform critical work in ISR and buffer 
partial results for later processing
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SHARING DATA SAFELY BETWEEN 
ISRS AND OTHER THREADS
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Overview

▪ Volatile data – can be updated outside of the program’s immediate control

▪ Non-atomic shared data – can be interrupted partway through read or write, is 
vulnerable to race conditions
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Volatile Data

▪ Compilers assume that variables in 
memory do not change spontaneously, and 
optimize based on that belief
▪ Don’t reload a variable from memory if current 

function hasn’t changed it

▪ Read variable from memory into register (faster 
access)

▪ Write back to memory at end of the procedure, 
or before a procedure call, or when compiler 
runs out of free registers

▪ This optimization can fail
▪ Example: reading from input port, polling for key 

press
▪ while (SW_0) ; will read from SW_0 once and reuse that value

▪ Will generate an infinite loop triggered by SW_0 being true

▪ Variables for which it fails
▪ Memory-mapped peripheral register – register 

changes on its own

▪ Global variables modified by an ISR – ISR changes 
the variable

▪ Global variables in a multithreaded application – 
another thread or ISR changes the variable
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The Volatile Directive

▪ Need to tell compiler which variables may change outside of its control
▪ Use volatile keyword to force compiler to reload these vars from memory for each use

 volatile unsigned int num_ints;

▪ Pointer to a volatile int

 volatile int * var; // or
 int volatile * var;

▪ Now each C source read of a variable (e.g. status register) will result in an assembly language LDR 
instruction

▪ Good explanation in Nigel Jones’ “Volatile,” Embedded Systems Programming July 2001
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Non-Atomic Shared Data

▪ Want to keep track of current time 
and date

▪ Use 1 Hz interrupt from timer

▪ System
▪ TimerVal structure tracks time and days 

since some reference event

▪ TimerVal’s fields are updated by periodic 1 
Hz timer ISR 

void GetDateTime(DateTimeType * DT){

 DT->day = TimerVal.day;

 DT->hour = TimerVal.hour;

 DT->minute = TimerVal.minute;

 DT->second = TimerVal.second;

}

void DateTimeISR(void){

 TimerVal.second++;

 if (TimerVal.second > 59){

   TimerVal.second = 0;

   TimerVal.minute++;

   if (TimerVal.minute > 59) {

     TimerVal.minute = 0;

     TimerVal.hour++;

     if (TimerVal.hour > 23) {

 TimerVal.hour = 0;

       TimerVal.day++;

       … etc.

     }
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Example: Checking the Time

▪ Problem
▪ An interrupt at the wrong time will lead to half-

updated data in DT

▪ Failure Case
▪ TimerVal is {10, 23, 59, 59} (10th day, 23:59:59)

▪ Task code calls GetDateTime(), which starts 
copying the TimerVal fields to DT: day = 10, hour 
= 23

▪ A timer interrupt occurs, which updates TimerVal 
to {11, 0, 0, 0}

▪ GetDateTime() resumes executing, copying  the 
remaining TimerVal fields to DT: minute = 0, 
second = 0

▪ DT now has a time stamp of {10, 23, 0, 0}. 

▪ The system thinks time just jumped backwards 
one hour!

▪ Fundamental problem – “race condition”
▪ Preemption enables ISR to interrupt other code 

and possibly overwrite data

▪ Must ensure atomic (indivisible) access to the 
object 
▪ Native atomic object size depends on processor’s 

instruction set and word size. 

▪ Is 32 bits for ARM
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Examining the Problem More Closely

▪ Must protect any data object which both
▪ (1) requires multiple instructions to read or write (non-atomic access), 

and

▪ (2) is potentially written by an ISR

▪ How many tasks/ISRs can write to the data object?
▪ One? Then we have one-way communication 

▪ Must ensure the data isn’t overwritten partway through being read 

▪ Writer and reader don’t interrupt each other

▪ More than one? 

▪ Must ensure the data isn’t overwritten partway through being read

▪ Writer and reader don’t interrupt each other

▪ Must ensure the data isn’t overwritten partway through being written 

▪ Writers don’t interrupt each other
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Definitions

▪ Race condition: Anomalous behavior due to unexpected critical 
dependence on the relative timing of events. Result of example code 
depends on the relative timing of the read and write operations.

▪ Critical section: A section of code which creates a possible race condition. 
The code section can only be executed by one process at a time. Some 
synchronization mechanism is required at the entry and exit of the critical 
section to ensure exclusive use. 
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Solution: Briefly Disable Preemption

▪ Prevent preemption within critical section

▪ If an ISR can write to the shared data object, 
need to disable interrupts 
▪ save current interrupt masking state in m

▪ disable interrupts

▪ Restore previous state afterwards (interrupts
may have already been disabled for another 
reason)

▪ Use CMSIS-CORE to save, control and restore 
interrupt masking state

▪ Avoid disabling preemption if possible
▪ Disabling interrupts delays response to all other processing requests

▪ Make this time as short as possible (e.g. a few instructions)

void GetDateTime(DateTimeType * 

DT){

 uint32_t m;

 m = __get_PRIMASK();

 __disable_irq(); 

 DT->day = TimerVal.day;

 DT->hour = TimerVal.hour;

 DT->minute = TimerVal.minute;

 DT->second = TimerVal.second;

 __set_PRIMASK(m);

}



49

Summary for Sharing Data

▪ In thread/ISR diagram, identify shared data

▪ Determine which shared data is too large 
to be handled atomically by default

▪ This needs to be protected from preemption (e.g. 
disable interrupt(s), use an RTOS synchronization 
mechanism)

▪ Declare (and initialize) shared variables as 
volatile in main file (or globals.c)

▪ volatile int my_shared_var=0;

▪ Update extern.h to make these variables 
available to functions in other files

▪ volatile extern int my_shared_var; 

▪ #include “extern.h” in every file which uses these 
shared variables

▪ When using long (non-atomic) shared data, 
save, disable and restore interrupt masking 
status

▪ CMSIS-CORE interface: __disable_irq(), 
__get_PRIMASK(), __set_PRIMASK()
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