
1

Embedded Communication Networks

2

Section 1:
Communication Concepts

3

Overview of Embedded System Communications
How far does the message go?

Within Chip

Within Board

Within System External

Image courtesy of AVX, Inc.

Image courtesy of Emerson Electric, Inc.

4

Communication Scenarios

▪ Within chip
▪ Speed most important

▪ Minor area constraints

▪ Typical solution: use parallel buses to send data 8,
16 or 32 bits at a time.

▪ Within board, board-to-board
▪ More signals -> more pins on IC package ($$) ->

larger, heavier board ($$)

▪ If too slow, use parallel bus or wider serial bus, or
raise clock speed

▪ Typical solutions: serial buses to send data one bit
at a time. SPI, I2S, I2C, UART

Different constraints for different system sizes

5

Communication Scenarios

▪ External – box-to-box, or system-to-system
▪ More signals -> larger cable ($$) -> heavier, larger

system

▪ Going outside the box makes communications more
vulnerable to noise
▪ Add error control: detection, acknowledgment, correction

▪ Typical wired solutions: serial buses to send data one
bit at a time.
▪ USB (Universal Serial Bus), I2C, UART, CAN, FlexRay

▪ If fast communications are important, use more bits
or raise clock speed
▪ Ethernet, USB 1.2/2.0, USB 3.0

▪ If portability is important, use wireless transmission
▪ WiFi (802.11), LTE (cellphone network), 802.15.4

Different constraints for different system sizes

Image courtesy of AVX, Inc.

Image courtesy of Emerson Electric, Inc.

6

Protocol Stack Concepts

▪ Helpful to group these rules into layers in a
stack

▪ Example: Open System Interconnection (OSI)
model

1. Physical layer: Defines how 1s and 0s are
represented. Voltage, current,
electromagnetic field, light. Amplitude,
duration, etc.

2. Data Link layer: Has two layers

▪ Media Access Control layer: How nodes share the
communication medium. When does a node get to
talk on the wire?

▪ Logical Link Control layer: How data is framed how
receiver is synchronized (when does the data start?),
and how errors are detected

3. Network layer: How to route data between
nodes, including addressing, handling data too
large to fit into one packet, congestion
control, and error handling

4. Transport layer: How to provide complete,
correct data transfer between nodes (called
hosts)

5. Session layer: How to provide connections
between application programs on different
nodes

6. Presentation layer: Translates data (e.g.
encryption and decryption)

7. Application layer: Consists of application
programs

▪ OSI model defined for large networks of
computing systems (e.g. Internet), not
targeted to embedded systems

▪ Protocols for embedded systems often merge
or omit layers/features if not needed

All nodes must follow the same or compatible rules

Application

Presentation

Session

Transport

Network

Data Link

Physical

7

Communication Basics

▪ Communication systems
usually serialize data

▪ Don’t send all the bits at once

▪ Why?

▪ Reduce number of data signals
needed (1, 2, or 4 vs. 8, 32)

▪ Reduces package or connector
size, weight

▪ Simplifies circuit design

Start with the foundation – the physical layer

MCU

Peripheral
Data

Select

Clk

Peripheral
Data

Select

Clk

Peripheral
Data

Select

Clk

Peripheral
Data

Select

Clk

Parallel data bus

Serial data bus

MCU

Peripheral
DataRdWr

Select

Peripheral
DataRdWr

Select

Peripheral
DataRdWr

Select

Peripheral
DataRdWr

Select

MCU

Peripheral
Data

Select

Clk

Peripheral
Data

Select

Clk

Peripheral
Data

Select

Clk

Peripheral
Data

Select

Clk

8

When is the Data Valid?

▪ Two approaches

▪ Synchronous: Transmitter sends a control signal to tell
receiver when to sample data

▪ Asynchronous: Receiver has to determine when data is
valid

▪ Parallel communications typically use synchronous
communication

▪ Already have multiple signals for data (8, 16, 32)

▪ Can usually afford an extra signal or two (e.g. Write
Enable (Wr), Read Enable(Rd))

▪ Serial communications

▪ Goal is to reduce number of signals, so synchronous is
less attractive because of extra signals

When should receiver sample the data? Data link layer

What does this bit stream mean?

0 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 0 0 0?

0 1 1 1 0 1 0 1 1 0 0?

0 1 1 0 1 0 1 0?
0

1
Data

9

Sampling Data

▪ Synchronous

▪ Use separate clock signal to define bit times

▪ Example: Sample data on clock’s rising edge

▪ Asynchronous

▪ Infer bit times based on fixed delays from
reference event

▪ Example

▪ Reference event is leading edge of start bit (0 to 1
transition)

▪ Sample input data at n+1/2 bit times after beginning of
start bit

0 1 1 0 1 0 1 0 0

What does this bit stream mean?

0

1

0

1

Clock

Data

Data

Start

Bit

S 1 0 1 0 1 0 0

10

Tools for Serial Communications Development

▪ Tedious and slow to debug serial protocols with just
an oscilloscope

▪ Instead use a logic analyzer to decode bus traffic

▪ Worth its weight in gold!

▪ Saelae 8-Channel Logic Analyzer

▪ $150 (www.saelae.com)

▪ Plugs into PC’s USB port

▪ Decodes SPI, asynchronous serial, I2C, 1-Wire, CAN, etc.

http://www.saelae.com/

11

Section 2:
Serial Peripheral Interconnect (SPI)

12

SPI Basics

▪ “Ring of shift registers” which
exchange data

▪ Master device generates clock
signal (SCKx) which…

▪ Shifts data from master to slave
one bit at a time

▪ Shifts data from slave to master
one bit at a time

▪ Optional Slave Select signal
(SSx)

▪ Used to identify which slave is
being accessed

▪ SPI defines parts of physical
and data link layers

13

SPI Data Transmission

▪ Clock signal SCKx

▪ Generated by master

▪ Defines communication timing

▪ SCKx generated by SPI module’s baud rate
generator by dividing down a reference clock

▪ Data signal

▪ Generated by master on data output pin SDOx

▪ D7 (most-significant bit) sent first

▪ Sampled by slave when clock rises*

▪ * Other versions of SPI use falling clock edge

SPI Data Format for OLED Controller (SSD1306, Solomon Systech)

Clock edge tells receiver when to sample the data line

14

Section 4:
Asynchronous Communication

15

Asynchronous Serial Basics

▪ Similar to SPI, but no external
clock signal used

▪ Peripheral is called a UART

▪ Universal = configurable

▪ Asynchronous = no clock signal
used for communication

▪ Receiver/Transmitter = contains
both receiver and transmitter

▪ Defines parts of physical and
data link layers

IC 1

UART

RX Shift

Register

TX Shift

Register

TX Data

Buffer

RX Data

Buffer

B
a
u
d
 R

a
te

G
e

n
e
ra

to
r

IC 2

UART

RX Shift

Register

TX Shift

Register

TX Data

Buffer

RX Data

Buffer

B
a

u
d
 R

a
te

G
e
n
e
ra

to
r

16

Reminder: Sampling Data

▪ Synchronous

▪ Use separate clock signal to define bit times

▪ Example: Sample data on clock’s rising edge

▪ Asynchronous

▪ Infer bit times based on fixed delays from
reference event

▪ Example

▪ Reference event is leading edge of start bit (0 to 1
transition)

▪ Sample input data at n+1/2 bit times after beginning of
start bit

0 1 1 0 1 0 1 0 0

What does this bit stream mean?

0

1

0

1

Clock

Data

Data

Start

Bit

S 1 0 1 0 1 0 0

17

Send Message

Framing

▪ Transmitter in Idle state:
▪ Send another stop bit (1)

▪ Transmitter in Send Message state
▪ Send Start bit (0),

▪ Send data bits, starting with LSB

▪ Send Stop bit (1)

Transmitter inserts framing information to signal data start and end

0

1
Idle Message Idle

stop stop start d0 d1 d2 d3 d4 d5 d6 d7 stop stop stop stop

Idle, send
stop bit (1)

Send
start bit

(0)

Send 8
data bits

Send
stop bit

(1)

Repeat if no

message to send

Message

to send

Message

sent

18

Major Asynchronous Communication Options

▪ May have 1 or 2 stop bits

▪ May have 7, 8 or 9 data bits

▪ Transmitter may add parity bit for error detection

▪ Using Even Parity? Set parity bit to make total number of
1s even.

▪ Using Odd Parity? Make total number of 1s odd.

▪ Receiver calculates parity based on received data bits and
parity bit (not start or stop bits)

▪ If parity doesn’t match specification (even or odd), then signal
an error

▪ Can detect an odd number of bit errors, but not an even
number

Data # of 1’s Parity bit for…

Hex Binary Even

Parity

Odd

Parity

00 0000 0000 0 0 1

3f 0111 1111 7 1 0

a5 1010 0101 4 0 1

16 0001 0110 3 1 0

Idle Message Idle

stop stop start d0 d1 d2 d3 d4 d5 d6 d7 parity stop stop stop

19

Section 7:
Advanced Communication Concepts

and Example Protocols

20

Review: Protocol Stack Concepts

▪ Helpful to group these rules into layers in a
stack

▪ Example: Open System Interconnection (OSI)
model

1. Physical layer: Defines how 1s and 0s are
represented. Voltage, current,
electromagnetic field, light. Amplitude,
duration, etc.

2. Data Link layer: Has two layers

▪ Media Access Control layer: How nodes share the
communication medium. When does a node get to
talk on the wire?

▪ Logical Link Control layer: How data is framed, how
receiver is synchronized (when does the data start?),
and how errors are detected

3. Network layer: How to route data between
nodes, including addressing, handling data too
large to fit into one packet, congestion
control, and error handling

4. Transport layer: How to provide complete,
correct data transfer between nodes (called
hosts)

5. Session layer: How to provide connections
between application programs on different
nodes

6. Presentation layer: Translates data (e.g.
encryption and decryption)

7. Application layer: Consists of application
programs

▪ OSI model defined for large networks of
computing systems (e.g. Internet), not
targeted to embedded systems

▪ Protocols for embedded systems often merge
or omit layers/features if not needed

All nodes must follow the same or compatible rules

Application

Presentation

Session

Transport

Network

Data Link

Physical

21

Key Concepts

▪ How do we detect data transmission errors?

▪ What’s in a message besides data?

▪ How can we make the communication system scale up to large sizes easily?

▪ How can we increase the communication speed?

▪ How can we transmit data wirelessly?

22

How Do We Detect Errors?

▪ Approach
▪ Transmitter sends extra error-detection information

along with data
▪ Receiver recalculates the error-detection information

based on received data,
▪ Receiver compares recalculated version with received

version
▪ If these don’t match, then the message was corrupted

and should be discarded

▪ Examples:
▪ Parity: There is an odd number of ones in this message
▪ Checksum: If you add up all the bytes in this message,

the sum ends in 0x38
▪ CRC: If you process all the bytes in this message this way

(e.g. by shifting and exclusive-oring them together), the
result ends in 0x68

▪ Acknowledgements used?
▪ Positive: Transmitter expects OK response, else it

retransmits
▪ Negative: Transmitter only retransmits if it gets an error

response

▪ Multiple receivers, or even broadcast?
▪ Common for distributed system to share system state

(e.g. vehicle speed)
▪ Want message to be received correctly by ALL nodes, or

NONE. Not just some.
▪ Need quick way for any receiver to be able to force

retransmission by sending negative acknowledgement

start d0 d1 d2 d3 d4 d5 d6 d7 parity stop

23

What’s in a Message Besides Data?

▪ Message holds data and other information

▪ Data: May multiple bytes per message

▪ Other information

▪ Framing information: When message starts, stops

▪ Error detection information: Parity or CRC

▪ Acknowledgement: Received correctly?

▪ More (discussed soon): Device address, operation (read,
write), data length, etc.

▪ Example: I2C (Inter-integrated circuit bus)

▪ Start condition

▪ Device address

▪ Read or write command

▪ Acknowledgement(s) from slave

▪ Multiple bytes of data

There’s more than just data

Data 1 Data 2Device
Address

Example of I2C message

24

How Can we Make Scaling Up Easier?

▪ Dedicated communication links

▪ Each pair of communicating devices
has a dedicated set of wires and a pair
of communication modules

▪ Problem

▪ We need many ports and sets of wires
to talk with multiple devices

▪ Doesn’t work well for systems with
many devices

▪ Instead, can multiple devices share
same the communication signals
and wires?

Supporting many communication devices

MCU

Device
4

Device
3

Device
1

Device
2

SPI Module

SPI Module

S
P

I
M

o
d

u
le

S
P

I
M

o
d

u
le

S
P

I
M

o
d

u
le

S
P

I
M

o
d

u
le

S
P

I
M

o
d

u
le

S
P

I
M

o
d

u
le

Serial clock
Data from master
Data from slave

25

Sharing: Who Gets to Talk When?

▪ Now each node needs just one
communication interface

▪ All nodes share the bus (communication
medium)

▪ Need a media access control method

▪ Determines which node talks when

▪ Categories

▪ Master/Slave: master tells each node when it
can talk

▪ Multiple access: no master needed, nodes
decide on their own when to talk

Data link layer and media access control

MCU

S
P

I
M

o
d

u
le Device

4

S
P

I
M

o
d

u
le

Device
1

S
P

I
M

o
d

u
le

Device
2

S
P

I
M

o
d

u
le

Device
3

S
P

I
M

o
d

u
le

26

Duplexing

▪ Full-Duplex

▪ Node can transmit and receive simultaneously

▪ Half-Duplex

▪ Node cannot transmit and receive
simultaneously

MCU
S

P
I
M

o
d
u

le Device
4

S
P

I
M

o
d
u

le

Device
1

S
P

I
M

o
d
u

le

Device
2

S
P

I
M

o
d
u

le

Device
3

S
P

I
M

o
d
u

le

Data

Out

Data

In

MCU

S
P

I
M

o
d
u

le Device
4

S
P

I
M

o
d
u

le

Device
1

S
P

I
M

o
d
u

le

Device
2

S
P

I
M

o
d
u

le

Device
3

S
P

I
M

o
d
u

le

Data

(In or Out)

27

Master/Slave with Select Signals

▪ Multiple SPI slave devices can share clock
and data lines

▪ Master only needs one SPI module

▪ Select slave by asserting its slave select
line (SS1, SS2, SS3)

▪ Only one slave select line will be active at
a time

Master

SCKx

SDOx

SDIx

SS1

Slave 1

Slave 2

Slave 3

SS2

SS3

S
P

I
M

o
d

u
le

S
P

I
M

o
d

u
le

S
P

I
M

o
d

u
le

SPI Module

28

MODBUS: Master/Slave

▪ Master periodically requests data from slave
▪ Message

▪ Slave device address (0: master broadcast, no
response)

▪ Function Code
▪ [Read or write] [one or multiple data items] [single bit

or 16-bit word]. Plus others, and user-defined
▪ CRC/LRC used to detect errors

▪ Data model: “registers”
▪ Coils: Binary outputs
▪ Input bits: Binary inputs (read-only)
▪ Input registers: analog inputs (read-only)
▪ Holding registers: modifiable analog parameters

▪ Versions and variations
▪ Serial

▪ ASCII (text data) vs. RTU (binary data)
▪ Point-to-Point (EIA-232C) vs. Multipoint (EIA-485)
▪ Half-duplex vs. full-duplex

▪ TCP/IP (on Ethernet)
Source: Contemporary Controls, https://www.ccontrols.com/pdf/Extv9n5.pdf

https://www.ccontrols.com/pdf/Extv9n5.pdf

29

I2C: Master/Slave with Address in Message

▪ Use data line for both address and data

▪ Protocol explicitly defines address location in
message

▪ Master sends slave device address

▪ Data is sent by master (if write operation) or

slave (if read operation)

▪ Slave device only processes messages with
its own address, ignores other messages

▪ Typically also have broadcast address to
send data to all slaves

Data 1 Data 2Device
Address

Example of I2C message

30

Protocols Based on Asynchronous Serial

RS232 RS422 RS485

Signals Single-ended Differential Differential

Data Direction One-way One-way Two-way

Multidrop No Yes Yes

Maximum

Transmitters

1 1 32

Maximum

Receivers

1 10 32

Maximum

Data Rate

over 50 ft.

20 kpbs 10 Mbps 10 Mbps

Maximum

Cable Length

50 ft 4000 ft 4000 ft

31

Getting Rid of the Master

▪ For some systems, not practical to have one
node coordinate all communications

▪ Slaves usually wait longer than necessary to send
data

▪ Throughput limited by overhead of coordinating
communications

▪ Hard to write and maintain software for master to
control everything

▪ Can we make a network with no master?

▪ When does a node get to transmit, if there is no
master giving permission?

▪ If multiple nodes transmit at same time, messages
will collide on bus

▪ One or both messages will be corrupted

▪ Circuits may also be damaged if not designed
correctly to handle conflicts

▪ “1!” + “No, 0!” = short circuit and burned out transistors

Short circuit – Transistors Q3 and Q6

may overheat and fail

Supply Voltage

Ground

Too much current!

Send 1 Send 0
On

Off On

Off

32

Lossy Arbitration

▪ Basic approach for node with data to send
▪ Wait for bus to be idle
▪ Send data

▪ Called CSMA (carrier sense multiple access):
▪ Works well with light traffic, but doesn’t scale up

well due to collisions
▪ Collision → retransmission attempts → more collisions

→ more retransmission attempts
▪ Available throughput is fraction of bit rate

▪ Improve by letting transmitters detect collisions
▪ Monitor bus signal with Collision Detection circuit to

compare bus against what was expected (CSMA/CD)
▪ Give up transmission as soon as collision is detected
▪ After a collision, wait a random time before trying to

transmit again
▪ If another collision occurs, repeat but double the

maximum random time (to reduce odds of another
collision)

Try and hope for the best

33

Example Protocol: Ethernet

▪ Key features

▪ 10 Mbps/100 Mbps/1 Gbps/10 Gbps data rates

▪ 48 bit (6 byte) addresses for source, destination

▪ Broadcast, multicast, and unicast message addressing

▪ 46 to 1500 bytes of data per message

▪ 32-bit CRC (frame check sequence) for error detection

▪ Improvements

▪ Standard Ethernet: Devices share the media (wires) by connecting to a
hub.

▪ Switched Ethernet: Devices don’t share the media. Switch (not hub) has
an Ethernet controller and dedicated media for each device.

▪ Raises throughput and eliminates collisions

IEEE 802.3

34

Use Bit Dominance to get Lossless Arbitration

▪ Want a system where messages never collide

▪ Never lose messages (even with heavy traffic)

▪ Start with circuit providing bit dominance

▪ Example: 0 dominates 1

▪ If any node is transmitting a 0, that overrides any
nodes transmitting a 1.

▪ All nodes on the bus see the 0 (even the nodes trying to
transmit a 1)

▪ Simple circuit (open drain with pull-up)

▪ Can now design protocol to prioritize access
using this feature

Messages never collide

No Short Circuit, bus is read as 0

Supply Voltage

Ground

Small current

Send 1 Send 0

Off On

35

Binary Countdown

▪ Each message starts with a priority field
▪ Used to arbitrate medium access
▪ Can be transmitter address, receiver address, message

type, etc.

▪ Basic approach for node to transmit a message
▪ Wait for idle bus

▪ Start transmitting message
▪ If bus value doesn’t match what is being sent, then another

node is sending a higher priority message, so stop
transmitting immediately. Go to start again (wait for idle bus)

▪ If able to transmit priority field without any bus
mismatches, then have won arbitration and can
continue to send rest of message

Uses bit dominance

Priority Data

bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7 bit 8

Node A: Priority 4 (1000) 1 0 0 0 1 1 1 0

Node B: Priority 1 (0011) 0 0 1 1 0 1 0 1

Node C: Priority 2 (0100) 0 1 0 0 1 1 0 0

Bus 0 0 1 1 0 1 0 1

Node B wins arbitration,
keeps transmitting

Transmitter loses
arbitration: tries to send
1, but sees 0. Gives up.

36

Binary Countdown

▪ Each message starts with a priority field

▪ Used to arbitrate medium access

▪ Can be transmitter address, receiver address, message
type, etc.

▪ Basic approach for node to transmit a message

▪ Wait for idle bus

▪ Start transmitting message

▪ If bus value doesn’t match what is being sent, then another
node is sending a higher priority message, so stop
transmitting immediately. Go to start again (wait for idle bus)

▪ If able to transmit priority field without any bus
mismatches, then have won arbitration and can
continue to send rest of message

Uses bit dominance

Priority Data

bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7

Node A: Priority 4 (100) 1 0 0 1 1 1 0

Node B: Priority 1 (001) 0 0 1 0 1 0 1

Node C: Priority 2 (010) 0 1 0 1 1 0 0

Bus 0 0 1 0 1 0 1

Bus doesn’t match node’s data, so have lost

arbitration. Stop transmitting, retry later.

Node B wins

arbitration, can

transmit rest of

its message.

37

Example Protocol: CAN

▪ Key features
▪ Up to (and beyond) 1 Mbps bit rate. Bit time is

limited by signal propagation delay.
▪ Differential bus used for noise immunity
▪ 11 or 29 bit message identifiers (message-based

addressing) for lossless arbitration
▪ Up to 8 bytes of data per message
▪ Bit-stuffing used for clock synchronization, error

detection/signaling
▪ 15-bit CRC for error detection
▪ ACK field for receiver acknowledgements
▪ Remote transmit (read) request

▪ Easy to analyze responsiveness
▪ Highest priority message always wins arbitration
▪ Worst case: have to wait for longest other

message before sending highest priority message
▪ Given set of all possible messages, can calculate

maximum time for any message to get through
▪ Just like a prioritized, non-preemptive task

scheduler

▪ Widely used in automotive and industrial
control networks

Controller Area Network

38

Modulation Motivation

▪ Input data spectrum

▪ Most of energy concentrated in low
frequencies and DC

▪ Called the “baseband signal”

▪ Higher frequencies

▪ From sharp edges on signals

▪ Not necessary to convey information

▪ Could remove these and still communicate the
data correctly

Goal: Use available spectrum better

Frequency

Spectrum of input signal

0 Hz High

Frequency
High

Frequency

Filter out the signal’s

high-frequency components

39

Modulation

▪ We’ve freed up space in the
spectrum

▪ Just using the baseband portion

▪ Multiple devices can use different parts
of the spectrum

▪ Share spectrum by moving
(modulating) baseband portions of
signals up to free parts of the
spectrum

▪ Used for cable TV and other wired
communications

Goal: Use available spectrum better

Frequency

Spectrum of bandwidth-limited

input signal

0 Hz High

Frequency
High

Frequency

Can now support three

communication channels on same wire

40

Common Types of Modulation

▪ Amplitude

▪ Frequency

▪ Phase

▪ Quadrature Amplitude (phase and
amplitude)

Many others exist

41

Radio Communications

▪ Use electromagnetic signals to send information
without a physical connection

▪ Requires modulation to be practical

▪ Low frequency radio signals require enormous
antennas to work!

▪ Transmitter modulates a radio-frequency (RF)
carrier signal with the data

▪ RF carrier signal is high frequency sine wave, uses small
antenna

▪ Translate data bits into RF symbols (modulate the
carrier signal), then send those RF symbols

▪ Receiver demodulates signal and extracts data

▪ MAC often uses Carrier Sense

▪ Wait for media to be idle before transmitting

▪ Issue: Transmitter can’t detect a collision!

▪ Transmitter must wait for receiver to acknowledge
receiving the message correctly

“Wireless”

Transmitter Receiver
Data

bits in
Data

bits out

42

▪ Targets low-rate wireless personal area networks
(LR-WPANs)

▪ Designed for low-cost, low-speed, short-range
communication for low-power systems

▪ 10 meter range, ≤ 250 kbps data rate

▪ High carrier frequencies (868 MHz to 2.4 GHz) allow use
of small antennas, can even fit onto PCB)

▪ Beacon mode allows scheduled communications, so
nodes save power by sleeping when possible, but will
still get messages through reliably

▪ Configurable time delays built into protocol to support
sleeping or slower processors

▪ Protocol

▪ Defines physical layer and MAC

▪ Used in other protocols which define upper layers

Example Protocol: IEEE 802.15.4

7. Application

6. Presentation

5. Session

4. Transport

3. Network

2. Data Link
LLC

MAC

1. Physical
802.15.4

ZigBee, MiWi,

WirelessHART,

6LoWPAN,

ISA100.11a, etc.

43

Superframe

IEEE 802.15.4 MAC

▪ Beacon mode

▪ Requires node to be coordinator (master)

▪ Allows tailoring of protocol to reduce power
consumption and improve timeliness

▪ Coordinator defines superframes by sending out
beacon messages

▪ Contention access period (CAP) follows beacon

▪ Nodes send data using CSMA/CA

▪ Contention-free period (CFP) follows CAP

▪ Nodes can request guaranteed time slots (GTSs) from
coordinator

▪ Inactive portion – no communication occurs

▪ Nodes may turn off radios, sleep here

▪ Non-beacon mode

▪ No superframe, no beacon

▪ Nodes send data using CSMA/CA, backing off after
collisions

Offers two modes: beacon and non-beacon

Beacon Contention Access Period Contention-Free Period Inactive

44

Increasing Data Rates

▪ Reduce protocol overheads

▪ Acknowledge faster, etc.

▪ Send symbols faster

▪ Also need to use more bandwidth and higher frequencies

▪ Eventually gets very hard to go faster

▪ Send more data per symbol by changing phase, amplitude or
frequency of carrier. Example: QAM (quadrature amplitude
modulation)

▪ Constellation plots show in-phase (sine) and quadrature (cosine)
components of modulated signal

▪ More points = higher data throughput

▪ Closer points = harder for receiver to distinguish

▪ QAM packs in more data points than just modulating only phase
or amplitude

Several ways
Phase

Modulation

Amplitude

Modulation

Quadrature

Amplitude

Modulation

45

Example Protocol: IEEE 802.11 (Wi-Fi)

▪ Very fast local area network

▪ Up to 1.7 Gbps throughput

▪ Range up to 300 ft with standard antennas, much
farther with directional antennas

▪ Very popular: used for computers,
smartphones, printers, thermostats, cameras,
smart televisions, security systems, IoT devices,
etc.

▪ CSMA/CA used for media access control

▪ Physical layer is the key to its speed:

▪ Each symbol transmits multiple data bits
simultaneously

Overview

Year Standard Frequency

Band

Bandwidth Maximum

Data Rate

1997 802.11 2.4 GHz 20 MHz 2 Mb/s

1999 802.11b 2.4 GHz 20 MHz 11 Mb/s

2000 802.11a 5 GHz 20 MHz 54 Mb/s

2003 802.11g 2.4 GHz 20 MHz 54 Mb/s

2009 802.11n 2.4 GHz, 5

GHz

20 MHz, 40

MHz

600 Mb/s

2014 802.11ac 5 GHz 20 – 160 MHz 1733 Mb/s

46

Example Protocol: IEEE 802.11 (Wi-Fi)

▪ Physical layer optimized to tolerate reflected signals,
moving devices (Doppler shift), dead frequencies,
bursts of noise, clock drift, etc.

▪ Transmitter sends packet made of multiple symbols

▪ Preamble symbols synchronize and help train receiver
(delays, weak frequencies), and define protocol options
used

▪ Data symbols carry actual data

▪ Each symbol lasts 4 µs

▪ Creating a data symbol

▪ Transmitter groups input data bits to define the desired
output spectrum for each symbol

▪ Spectrum has up to 128 sub-carriers

▪ Subcarriers will be modulated based on input data bits
or protocol support (e.g. pilot tones)

▪ Spectrum (frequency-domain) is converted to time-
domain signal with Inverse Discrete Fourier Transform
(IDFT)

▪ Resulting signal is transmitted out antenna

802.11a/g/n OFDM Physical Layer

Input Data

Spectrum

Subcarriers

Inverse Discrete

Fourier Transform

……………………...

	Embedded Communication Networks_v1
	�Embedded Communication Networks
	Section 1:�Communication Concepts
	Overview of Embedded System Communications
	Communication Scenarios
	Communication Scenarios
	Protocol Stack Concepts
	Communication Basics
	When is the Data Valid?
	Sampling Data
	Tools for Serial Communications Development
	Section 2:�Serial Peripheral Interconnect (SPI)
	SPI Basics
	SPI Data Transmission
	Section 4:�Asynchronous Communication
	Asynchronous Serial Basics
	Reminder: Sampling Data
	Framing
	Major Asynchronous Communication Options
	Section 7:�Advanced Communication Concepts �and Example Protocols
	Review: Protocol Stack Concepts
	Key Concepts
	How Do We Detect Errors?
	What’s in a Message Besides Data?
	How Can we Make Scaling Up Easier?
	Sharing: Who Gets to Talk When?
	Duplexing
	Master/Slave with Select Signals
	MODBUS: Master/Slave
	I2C: Master/Slave with Address in Message
	Protocols Based on Asynchronous Serial
	Getting Rid of the Master
	Lossy Arbitration
	Example Protocol: Ethernet
	Use Bit Dominance to get Lossless Arbitration
	Binary Countdown
	Binary Countdown
	Example Protocol: CAN
	Modulation Motivation
	Modulation
	Common Types of Modulation
	Radio Communications
	Example Protocol: IEEE 802.15.4
	IEEE 802.15.4 MAC
	Increasing Data Rates
	Example Protocol: IEEE 802.11 (Wi-Fi)
	Example Protocol: IEEE 802.11 (Wi-Fi)

