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In  a  digital  motion  control  system,  there  exist timing  variations  in  feedback  sampling  and  control  updat-
ing,  often  referred  to as  sampling  jitter  and  control  jitter.  Although  jitter  has  been  studied  in  prior  art,
no  equations  or quantitative  experimental  results  have  been  reported  which  relate  jitter  to  position-
ing  error  in  a  motion  control  system.  To investigate  the  effect  of  jitter  on  positioning  error,  this  paper
presents  a  simplified  discrete  model  that  captures  sampling  and  control  jitter’s  interaction  with  other
system  inputs  as disturbances  to the  control  system.  Based  on  this  model,  analyses  are  carried  out  for
ampling jitter
ontrol jitter

itter effect
ositioning error
otion control

the scenarios  of position  regulation  and  command  tracking,  each  resulting  in an  equation  to  predict  jit-
ter’s effect  on  positioning  error  using  measured  or  analytical  frequency  responses  of  the  system.  Further,
an easily  implementable  add-on  jitter  compensator  is  proposed  to mitigate  the  regulation  error  due
to  jitter  without  affecting  the  existing  controller.  Through  experiments  performed  on  a  fast-tool  servo
machine  tool,  the  model  and  analyses  are  validated  and  the  positioning  degradation  due  to jitter  is  clearly
demonstrated.
. Introduction

In a digital motion control system, there are two  periodic events
onnecting the discrete domain of a digital controller to the con-
inuous domain of the plant to be controlled: a feedback sampling
vent that samples a sensor feedback signal; and a control updating
vent that updates the controller’s output signal via a zero-order-
old (ZOH). Generally, in digital control system textbooks [1,2]
hese two events are assumed to happen simultaneously at evenly
paced intervals of sampling period T0. In reality, there are several
iming problems introduced during the implementation of digi-
al controllers [3].  First, there always exists a delay between the
ampling event and the controller output update event due to data-
cquisition conversion times and control algorithm computation
ime. Second, the sampling event intervals are not evenly spaced
ue to factors such as resource sharing and task scheduling. These
ampling event and control event temporal deviations from the
deal timing are referred to as sampling jitter and control jitter,
espectively.

Usually, sampling jitter and control jitter are assumed small

nough to have negligible effects on the closed-loop system perfor-
ance. Jitter issues have mostly received attention in networked

ontrol systems and distributed control systems, in which the
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E-mail address: XDLU@mech.ubc.ca (X. Lu).

141-6359/$ – see front matter ©  2011 Elsevier Inc. All rights reserved.
oi:10.1016/j.precisioneng.2011.09.002
© 2011 Elsevier Inc. All rights reserved.

sensor node, control calculation node, and actuator node are con-
nected via a network. Networked control can be a cost-effective
solution for systems with a large number of sensors and actuators,
such as process automation, but such networks may  experience
large variable delays. Stability and robustness can be a major con-
cern in these systems due to the large magnitudes of random delay
and jitter, and thus stability criteria for network controlled system
with jitter has been investigated extensively [4–7].

In motion control systems, although networks are widely used
for user interface communication and transferring motion trajec-
tory information, the system feedback loop (consisting of sensor
data acquisition, control calculation, and actuator update) is highly
localized and network is not part of the feedback loop. Therefore,
instability caused by sampling jitter and control jitter is rarely an
issue in motion control systems.

Measurements have shown that jitter in motion control appli-
cations typically ranges from hundreds of nanoseconds to tens
of microseconds for commercially available real-time controllers.
For example, a modern digital motion controller running real-
time Linux has shown several microseconds of jitter [8] and a
National Instruments CompactRIO has shown 40 �s of jitter for
a 1 kHz control loop [9].  Measurements performed in Appendix
A of this paper show the jitter on an xPC Target controller to

be 0.81 �s RMS, and the jitter on a dSPACE DS1103 controller to
be 0.16 �s RMS. What is of interest is how much this relatively
small amount of jitter affects the performance of a motion control
system.

dx.doi.org/10.1016/j.precisioneng.2011.09.002
http://www.sciencedirect.com/science/journal/01416359
http://www.elsevier.com/locate/precision
mailto:XDLU@mech.ubc.ca
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measurement of jitter for several real-time computers used for
implementing digital controllers is described in Appendix A. For
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To facilitate time-variant analysis and simulation of control sys-
ems, Cervin, Lincoln et al. have created True Time [10] and Jitterbug
11], which are MATLAB based tools that can be used to evaluate

 system’s sensitivity to delay and jitter [12]. Antunes and Mota
resented a True Time simulation of a system with only control jit-
er and their results showed an increase in positioning error [13].
hang et al. have also presented simulation results showing jit-
er can increase positioning error [14]. There have been very few
xperimental results reported in literature to actually demonstrate
he effect of jitter on motion system performance. One rare exam-
le is a motor speed experiment conducted by Kobayashi et al.,
hich compared a case with fixed 0.25 ms  sampling period to a

ase with varying sampling period from 0.25 ms  to 0.375 ms  [15].
heir results showed a relatively small difference in speed error
or these two cases as other error sources appear to dominate the
ystem.

Approximate modeling work has been conducted by Boje to bet-
er understand the effect of jitter on a digital control system [16]. He
resented an approximate disturbance model in the w-domain for
ampling jitter and control jitter by using a Tustin approximation
o convert discrete-time controllers to the w-domain. Based on this
pproximate model he then performed simulations to show jitter
aused a disturbance to act on the system.

In order to reduce jitter-induced problems, work has been done
n both the areas of real-time computing and control. Developments
n real-time computing have focused on task scheduling meth-
ds to directly reduce jitter magnitude [17–20].  Work in control
as focused on controller design techniques such as H∞ and LQG
ethods to improve system rejection of jitter disturbance [21,22].
Another class of jitter compensators are timestamp-based con-

rollers, which take advantage of runtime timing data (timestamps
f actual sampling events) to dynamically compensate for jitter
23–25]. The main limitation of timestamp based controllers is that
hey introduce additional complexity and overhead into the control
ask, making them impractical for systems requiring fast sampling
ates. Further, timestamps are usually unavailable in many con-
roller hardware implementations, limiting the applicability of this
ype of solution. Consequently, literature for these proposed meth-
ds only report on simulation results and not experimental results.

Given the lack of analytical predictions and experimental
emonstrations regarding jitter’s effect on motion control system
ositioning error, the contributions of this paper are: (1) establish-

ng a simplified discrete model for systems with sampling jitter and
ontrol jitter; (2) providing a formula to analytically predict jitter’s
ffect on motion control system positioning error, without requir-
ng simulation; (3) proposing a simple add-on jitter compensator
o mitigate jitter’s effect on regulation error, without requiring the
xisting motion controller to be changed; and (4) experimentally
emonstrating the effect of sampling jitter and control jitter on
ositioning error for both regulation and tracking scenarios.

This paper is organized as follows. Section 2 begins by devel-
ping a discrete model that captures the interaction between jitter
nd other signals in a motion control system. Based on this model,
nalyses are carried out in Section 3 to determine the relationship
etween jitter and positioning error for two scenarios: (1) regula-
ion error from jitter’s interaction with random measurement noise
nd (2) tracking error from jitter’s interaction with a determinis-
ic reference command. Further, with insights obtained from these
nalyses, several methods to mitigate the positioning degradation
ue to jitter are discussed, including a new jitter compensator that
an be easily added to an existing controller without affecting the
ontroller performance. Lastly, Section 4 presents experimental
esults for a high-speed precision machine tool for various jitter
onditions. These results clearly demonstrate the additional posi-

ioning error arising due to jitter and also experimentally validate
he model and analyses presented in this paper.
Fig. 1. A digital control feedback system with non-ideal sampler and ZOH.

2. Modeling of digital control systems with non-ideal
sampler and ZOH

The block diagram of a typical digitally controlled single-input
single-output system is shown in Fig. 1. The plant input signal up(t)
is related to the plant output signal yp(t) by

Yp(s)
Up(s)

= P(s), (1)

where P(s) is the plant transfer function in the s-domain, and Up(s)
and Yp(s) are the Laplace-transforms of up(t) and yp(t), respectively.
The plant output signal is subsequently sampled by a non-ideal
sampler to produce a discrete sequence

yp[k] = yp(kT0 + �s[k]), (2)

where T0 is the mean value of the digital controller sampling period,
k is the integer index of sampling events, and �s[k] is the kth sam-
pling timing deviation from an ideal sampler. In addition to the
discrete plant output signal yp[k], the discrete feedback signal y[k]
also includes the noise component n[k], which contains analog-
to-digital (ADC) conversion noise, quantization noise, and sampled
sensor measurement noise. The control error signal e[k] is then gen-
erated by subtracting y[k] from the reference command r[k]. The
control sequence signal u[k] is then calculated as

U(z)
E(z)

= C(z), (3)

where C(z) is the controller transfer function in Z-domain, and E(z)
and U(z) are the Z-transforms of the discrete signals e[k] and u[k],
respectively. The discrete control signal u[k] is finally converted by
a non-ideal ZOH to the plant input signal

up(t) = u[k], for kT0 + �d

+ �c[k] < t ≤ (k + 1)T0 + �d + �c[k + 1],  (4)

where �d represents the mean latency from the sampler sampling
instant to the ZOH update instant, and �c[k] is the update timing
deviation from an ideal uniformly spaced ZOH. In this paper, the
timing deviations �s[k] and �c[k] are referred as sampling jitter and
control jitter, respectively.

Although ideal samplers and ideal ZOHs are used almost exclu-
sively in sampled-data control textbooks [1,2], they do not exist
in reality as there is always some sampling jitter, sampling-to-
ZOH latency, and control jitter resulting from implementation. The
commercially available control hardware, jitter typically ranges
from hundreds of nanoseconds to tens of microseconds.
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Fig. 2. The sequential timing pr

In order to illustrate the sources of these non-ideal control tim-
ng effects, Fig. 2 shows an example timing process for a digital
ontroller. Each control cycle is initiated by the expiring event of a
ontrol cycle timer in the digital control hardware, which is then
ollowed by the interrupt latency TINT [k] and task switching delay
TSW [k] before the sampling of yp(t) occurs. The control process
hen needs to wait during the ADC conversion time TADC [k]. After
eading the ADC result over a short time TRD[k], the control out-
ut is computed in time TCMP[k] using the implemented control
lgorithm. This computation result is then written to the digital-
o-analog converter (DAC) in time TWR[k]. Finally, at the end of the
AC conversion time TDAC [k], the analog signal up(t) is updated,
hich corresponds to the ZOH update event.

In such a process, sampling jitter is determined by the timing
ariation between the timer event and the sampling event,

s[k] = T̃INT [k] + T̃TSW [k]. (5)

ere, the symbol T̃[k] represents the alternating (AC) component
f T[k] (i.e. T[k] subtracted by its mean value T̄). The control cycle
imer is usually a hardware device working at several hundred

egahertz and can be considered a jitter free event (i.e. the events
re perfectly spaced with a constant sampling time T0). Control jit-
er �c[k] is then determined by the accumulated timing variation

rom the timer event to the ZOH update,

c[k] = T̃INT [k] + T̃TSW [k] + T̃ADC [k] + T̃RD[k] + T̃CMP[k] + T̃WR[k]

+ T̃DAC [k]. (6)

Fig. 3. Equivalent model of a digital control feedba
of a typical digital control cycle.

Based on this analysis, both sampling jitter �s[k] and control jitter
�c[k] are zero-mean variables. Lastly, the sampling-to-ZOH latency
can be expressed as the mean delay from the sampler sampling to
the ZOH update,

�d = T̄ADC + T̄RD + T̄CMP + T̄WR + T̄DAC . (7)

This latency can be separated from the non-ideal ZOH in Fig. 1,
resulting in a pure delay element and a zero-latency ZOH  with jitter
as shown in Fig. 3. The expression for the continuous control output
u(t) and plant input up(t) is then

u(t) = u[k] for kT0 + �c[k] < t ≤ (k  + 1) T0 + �c[k + 1] (8)

up(t) = u(t − �d). (9)

The digital control system model in Fig. 3 is time-variant and thus
cannot be analyzed using classical sampled-data control theory.
In order to investigate digital control systems with sampling jitter
and control jitter, simplified models to approximate the non-ideal
sampler and ZOH are developed below.

2.1. Modeling of ZOH with control jitter
In Fig. 4(a), the non-ideal ZOH output signal u(t) is compared
with the signal

u∗(t) = u[k], for kT0 < t ≤ (k + 1)T0, (10)

ck system with non-ideal sampler and ZOH.
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hich is the result of control sequence u[k] passing through an ideal
OH (i.e. the update times are evenly spaced with no variation). The
ifference between u(t) and u∗(t) due to control jitter is represented
y a disturbance signal

(t) = u(t) − u∗(t). (11)
s shown in Fig. 4(b), the g(t) waveform is composed of a pulse
rain, which is zero everywhere except in the regions when the
on-ideal ZOH with jitter leads or lags the ideal ZOH. While
l ZOH with control jitter.

jitter is a discrete phenomenon, this disturbance g(t) is a continu-
ous time signal with sub-sample dynamics. Assuming the sampling
rate is much greater than the highest plant dynamics, which is typ-
ical for control systems, the disturbance g(t) can be approximated
as a piecewise-constant signal
g∗(t) = (u[k − 1] − u[k])
�c[k]

T0
= (u[k − 1] − u[k])�[k],

for kT0 < t ≤ (k + 1)T0, (12)
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here �[k] is referred to as the normalized control jitter

[k] = �c[k]
T0

. (13)

his selection for g∗(t) conserves the signal momentum (ampli-
ude integration over time) within each sampling period. Further,
∗(t) can now be represented as the output of a discrete signal g[k]
assing through an ideal ZOH, as shown in Fig. 4(c), where

(k) = u[k](z−1 − 1)�[k]. (14)

he two ideal ZOHs from Fig. 4(c) can be combined together as
hown in Fig. 4(d). Consequently, the non-ideal ZOH with con-
rol jitter in Fig. 3 can be replaced by this disturbance model with
n ideal ZOH, thus allowing the analysis to proceed without sub-
ampling dynamics.

.2. Modeling of sampler with sampling jitter

In Fig. 5(a), the non-ideal sampled plant output signal yp[k] is
ompared with the signal
∗
p[k] = yp(kT), (15)

hich is the result of yp(t) going through an ideal sampler (i.e. the
ampling times are evenly spaced). The difference between yp[k]
mpler with sampling jitter.

and y∗
p[k] due to sampling jitter is represented by a disturbance

signal

h[k] = yp[k] − y∗
p[k]. (16)

Fig. 5(b) shows the sampled discrete sequences of yp[k] and y∗
p[k]. As

the sampling rate is usually much greater than the plant’s highest
frequency of interest, the difference h[k] can be approximated by a
linear interpolated prediction expressed as

h[k] ≈ �s[k]

(
y∗

p[k] − y∗
p[k − 1]

T0

)
= �[k](y∗

p[k] − y∗
p[k − 1]),  (17)

where

�[k] = �s[k]
T0

. (18)

�[k] is defined as the normalized sampling jitter. Using this approxi-
mation, the discrete sequence yp[k] sampled by a non-ideal sampler
can be modeled by the block diagram in Fig. 5(c), which incorpo-

rates the sampling jitter as a disturbance with no sub-sampling
dynamics, and uses an ideal sampler. This sampling model is very
similar to the control jitter model from Fig. 4(d), with the only
difference being where the disturbance enters the control system.
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(reference command) minus the actual plant output sampled by an
ideal sampler,

ε[k] = r[k] − y∗
p[k]. (21)
Fig. 6. Jitter disturbance model of a digital contr

.3. Simplified model of realistic digital control systems

Replacing the non-ideal sampler and the non-ideal ZOH in Fig. 3
ith the models developed in Sections 2.1 and 2.2,  results in the

verall digital control system model shown in Fig. 6. The effects of
itter are incorporated as two disturbances h[k] and g[k] injected
nto the system at the ideal sampler and ideal ZOH, respectively.
urther, applying ZOH equivalence [1],  the dynamic process from
z[k] through the plant to y∗

p[k] can be represented as

z(z) = Y∗
p (z)

Uz(z)
= (1 − z−1)Z

{
P(s) e−�ds

s

}
, (19)

here Z{·} is the Z-transform of the continuous system impulse
esponse sampled with period T0, and Uz(z) and Y∗

p (z) are the
-transforms of uz[k] and y∗

p[k], respectively. Assuming a proper
nti-aliasing filter is implemented, the discrete domain frequency
esponse of P(s) can be calculated as

z(ejωT0 ) = P(jω)e−jω�d (1 − e−jωT0 )
jωT0

= P(jω)e−jω(�d+T0/2) sinc
(

ωT0

2

)
. (20)

s a result, the time-variant digital control system model from
ig. 1 has been converted to the entirely discrete, time-invariant
odel in Fig. 7. This discrete-time model can enable an intuitive

nderstanding of jitter’s effects on control performance. In the next
ection jitter’s effect on positioning error is analyzed using this
odel.
At this point some insights can be obtained regarding jitter’s

ffects on control performance. First, the magnitude of the jitter
isturbances are proportional to the ratio of absolute jitter over the
ampling period, and thus high-speed systems that require faster
ampling rates will be more susceptible to jitter. Second, the jit-

er disturbances are a result of derivative interactions with other
ystem signals, such as the reference command and measurement
oise, thus the higher frequency content of these other inputs will
ontribute most to the jitter disturbances. Lastly, the time domain
dback system with non-ideal sampler and ZOH.

multiplication that occurs as part of each jitter disturbance can also
be viewed in the frequency domain as modulation, thus high fre-
quency interactions between jitter and the other system inputs can
result in low frequency disturbances.

3. Analysis of jitter’s effect on positioning error

As shown from modeling, the normalized sampling and control
jitter �[k] and �[k] disturb the digital control system by modulating
the discrete derivatives of the feedback signal and control output
signal, respectively. Using the discrete model from Fig. 7, this sec-
tion analyzes the effects of the jitter disturbances for two scenarios:
(1) regulation error resulting from jitter’s interaction with mea-
surement noise n[k] and (2) tracking error resulting from jitter’s
interaction with a reference command r[k]. The positioning error
(regulation or tracking) ε[k] is defined as the desired plant output
Fig. 7. Fully discrete jitter disturbance model of a digital control system with non-
ideal sampler and ZOH.
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t should be noted that this definition of positioning error ε[k] is
ifferent from the control error e[k] = r[k] − y[k] (the desired plant
utput minus the sampled sensor feedback), due to the presence
f measurement noise and sampling jitter. Positioning error ε[k]
as been selected for evaluation because it represents the control
ystem performance with more fidelity than the feedback error e[k].

As jitter and measurement noise signals are primarily random,
ormalized jitters, �[k] and �[k], and measurement noise, n[k], are
ssumed to be stationary white noise with variances �2

�
, �2

� , and �2
n ,

espectively. Accordingly, their auto-correlation functions are.

nn[k] = �2
n ı[k] (22)

��[k] = �2
�ı[k] (23)

�� [k] = �2
� ı[k]. (24)

here ı[k] is the Dirac delta function, �xx[k] is the autocorrelation
f signal x[k], as used for stochastic signal analysis in [26].

.1. Regulation error analysis

For position regulation, the reference command can be assumed
o be zero without loss of generality: r[k] = 0 ∀ k. Consequently,
he positioning error in the regulation case (regulation error)
educes to

[k] = −y∗
p[k]. (25)

y decomposing the regulation error into components of measure-
ent noise n[k], control jitter disturbance g[k], and sampling jitter

isturbance h[k], it can be expressed as

[k] = εn[k] + εg[k] + εh[k], (26)

here

n[k] = n[k] ∗ Z−1
(

Pz(z)C(z)
1 + Pz(z)C(z)

)
(27)

g[k] = g[k] ∗ Z−1
( −Pz(z)

1 + Pz(z)C(z)

)
(28)

h[k] = h[k] ∗ Z−1
(

Pz(z)C(z)
1 + Pz(z)C(z)

)
. (29)

ere, * is the convolution operation, and Z−1(·) is the inverse Z-
ransform operation. Considering that �[k] and �[k] are typically
nly a few percent, second-order and higher interactions are neg-
igible. This simplifies the expressions for the jitter disturbances
o

[k] = �[k]

[
n[k] ∗ Z−1

(
C(z)

(
1 − z−1

)
1 + Pz(z)C(z)

)]
(30)

[k] = �[k]

[
n[k] ∗ Z−1

(
Pz(z)C(z)

(
z−1 − 1

)
1 + Pz(z)C(z)

)]
. (31)

herefore, g[k] and h[k] are white noises with variances equal to

˚g
εε(ejωT0 ) = �2

n �2
�

(
1

2	

∫ 	

−	

∣∣∣∣ C(e
1 +

˚h
εε(ejωT0 ) = �2

n �2
�

(
1

2	

∫ 	

−	

∣∣∣∣Pz(e
1

2
g = E(g2[k]) = �2

� �2
n

1
2	

∫ 	

−	

∣∣∣∣∣C(ej˝)
(

1 − e−j˝
)

1 + Pz(ej˝)C(ej˝)

∣∣∣∣∣
2

d  ̋ (32)
ering 36 (2012) 175– 192 181

�2
h = E(h2[k]) = �2

��2
n

1
2	

∫ 	

−	

∣∣∣∣Pz(ej˝)C(ej˝)(e−j˝ − 1)
1 + Pz(ej˝)C(ej˝)

∣∣∣∣
2

d˝,  (33)

where E(·) is the expected value operation and ˝ is frequency in
rad/sample. The power spectrum density function (PSD), which is
the Fourier transform of a signal’s auto-correlation, can be com-
puted for each regulation error components in Eq. (26). Accordingly,
the PSD of εn[k], εg[k], and εh[k] are

˚n
εε(ejωT0 ) = �n

2
∣∣∣ Pz(ejωT0 )C(ejωT0 )

1 + Pz(ejωT0 )C(ejωT0 )

∣∣∣2 (34)

 − e−j˝)
˝)C(ej˝)

∣∣∣∣
2

d˝

)∣∣∣ Pz(ejωT0 )
1 + Pz(ejωT0 )C(ejωT0 )

∣∣∣2 (35)

(ej˝)(e−j˝ − 1)

z(ej˝)C(ej˝)

∣∣∣∣
2

d˝

)∣∣∣ Pz(ejωT0 )C(ejωT0 )
1 + Pz(ejωT0 )C(ejωT0 )

∣∣∣2. (36)

εn[k] and εh[k]’s PSDs can thus be compared as,

˚h
εε(ejωT0 )

˚n
εε(ejωT0 )

= �2
�

(
1

2	

∫ 	

−	

∣∣∣∣Pz(ej˝)C(ej˝)(e−j˝ − 1)
1 + Pz(ej˝)C(ej˝)

∣∣∣∣
2

d˝

)
. (37)

For a properly designed control system,∣∣(Pz(ej˝)C(ej˝)(e−j˝ − 1))/(1 + Pz(ej˝)C(ej˝))
∣∣ is much less than 2

for all frequencies. As a result,

1
2	

∫ 	

−	

∣∣∣∣Pz(ej˝)C(ej˝)(e−j˝ − 1)
1 + Pz(ej˝)C(ej˝)

∣∣∣∣
2

d  ̋ < 4. (38)

Considering that the normalized sampling jitter standard deviation
�� in most digital control systems is less than 0.1, εn[k] and εh[k]’s
PSDs ratio is approximately

˚h
εε(ejωT0 )

˚n
εε(ejωT0 )

< 4�2
� < 0.04. (39)

Therefore, sampling jitter has a negligible effect on regulation error,
and the total regulation error reduces to ε[k] = εn[k] + εg[k]. As
control jitter �[k] and measurement noise n[k] are generally uncor-
related, the PSD of the regulation error can be expressed as

˚εε(ejωT0 ) = ˚n
εε(ejωT0 ) + ˚g

εε(ejωT0 ). (40)

From expression of ˚g
εε(ejωT0 ) in Eq. (35), it can be seen that con-

trol jitter operates primarily on the high frequency controller gain
to produce a low frequency disturbance, which is counteracted by
the controller’s disturbance rejection response. Consequently, the
presence of control jitter will contribute additional regulation error
to the digital control system. Integrating the PSD, the root-mean-
square (RMS) regulation error can be calculated as

�2
ε = �2

n

(
1

2	

∫ 	

−	

∣∣∣∣ Pz(ej˝)C(ej˝)
1 + Pz(ej˝)C(ej˝)

∣∣∣∣
2

d˝

)

+ �2
n �2

�

⎛
⎝ 1

2	

∫ 	

−	

∣∣∣∣∣C(ej˝)
(

1 − e−j˝
)

1 + Pz(ej˝)C(ej˝)

∣∣∣∣∣
2

d˝

⎞
⎠

×
(

1
2	

∫ 	

−	

∣∣∣∣ Pz(ej˝)
1 + Pz(ej˝)C(ej˝)

∣∣∣∣
2

d˝

)
(41)

In this result, the first term is the regulation error contribution from

measurement noise and the second term is the contribution from
control jitter. The overall regulation error magnitude is dependent
on the measurement noise, normalized control jitter, controller
gain, and controller disturbance rejection.
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ig. 8. Frequency response of the jitter compensator for mitigating control jitter
isturbance on regulation error. ωN is the system’s Nyquist frequency.

.1.1. Solutions to jitter effect on regulation error
There are several methods that can be used to miti-

ate control jitter’s effect on the regulation error. Since the
itter disturbance enters the closed-loop as a disturbance
t the plant input, one method is to increase the con-
roller disturbance rejection capability. This attenuates the term
1

2	

∫ 	

−	

∣∣Pz(ej˝)/(1 + Pz(ej˝)C(ej˝))
∣∣2d  ̋ from Eq. (41); however,

tability constraints will impose limits on the attainable distur-
ance rejection of the controller. A second method is to reduce
he jitter magnitude by improving task handling in operation sys-
em or switching to better controller hardware with less jitter.

 third method is to attenuate the controller gain near the sys-
em Nyquist frequency ωN = 	/T0. This greatly attenuates the term
1

2	

∫ 	

−	

∣∣(C(ej˝)(1 − e−j˝))/(1 + Pz(ej˝)C(ej˝))
∣∣2d  ̋ in Eq. (41), as

ts magnitude is primarily determined by high frequency signal
ontent due to the high-pass filtering effect of 1 − e−j˝. This can
e done by cascading a jitter compensator Cg(z), which consists of

 zero at the Nyquist frequency, with the existing controller. The
xpression for this jitter compensator is

g(z) = 1 + z−1

2
. (42)

ig. 8 shows the frequency response of Cg(z) as a function of normal-
zed frequency. Cg(z) has little effect on controller gain and phase
or frequencies less than one-tenth of the Nyquist frequency, but
reatly attenuates controller gain near the Nyquist frequency. As

 result, this jitter compensator can be directly cascaded with an
xisting controller, largely mitigating the effect of control jitter on
egulation without requiring redesign of the existing controller.

.2. Tracking error analysis

In the tracking case the measurement noise is assumed to be
ero (n[k] = 0) and the reference command r[k] is a deterministic
ignal. By decomposing the positioning error (tracking error) into
omponents from reference signal r[k], control jitter disturbance
[k], and sampling jitter disturbance h[k], it can be expressed as

[k] = r[k] − y∗
p[k] = εr[k] + εg[k] + εh[k], (43)
here

r[k] = r[k] ∗ Z−1
(

1
1 + Pz(z)C(z)

)
(44)
ering 36 (2012) 175– 192

εg[k] = g[k] ∗ Z−1
( −Pz(z)

1 + Pz(z)C(z)

)
(45)

εh[k] = h[k] ∗ Z−1
(

Pz(z)C(z)
1 + Pz(z)C(z)

)
. (46)

εr[k] is the tracking error when there is no jitter, εg[k] is the tracking
error contributed by the control jitter disturbance, and εh[k] is the
tracking error contributed by the sampling jitter disturbance. In
motion control applications, repetitive command signals are widely
used and can be viewed as the sum of M distinctive single-tone
signals,

r[k] =
M∑

m=1

Rm sin(ωmkT0 + ϕm), (47)

where Rm, ωm, and ϕm are the mth signal component’s amplitude,
frequency in rad/s, and phase in rad, respectively. The tracking error
for non-repetitive finite-energy deterministic command tracking is
analyzed in Appendix B.

In accordance with the discrete model in Fig. 7, the control jitter
disturbance signal g[k] can be represented as

g[k] = �[k]u�[k], (48)

where u�[k] = u[k − 1] − u[k]. By ignoring second-order and
higher interactions, u�[k] can be expressed as

u�[k] = r[k] ∗ Z−1

(
C(z)(z−1 − 1)
1 + Pz(z)C(z)

)
. (49)

The auto-correlation function of g[k] is then

�gg[k, m]  = E(g[k]g[m]) = u2
�[k]�2

� ı[m − k]. (50)

Therefore, g[k] is a non-stationary white noise signal and its result-
ing tracking error contribution εg[k] is a non-stationary stochastic
signal. Although εg[k]’s variance is time-varying, its mean value can
be used to evaluate the effect of the control jitter disturbance on
positioning error. This is calculated as

E(ε2
g [k]) = E(g2[k])

1
2	

∫ 	

−	

∣∣∣∣ Pz(ej˝)
1 + Pz(ej˝)C(ej˝)

∣∣∣∣
2

d˝

= �2
� u2

�
[k]

1
2	

∫ 	

−	

∣∣∣∣ Pz(ej˝)
1 + Pz(ej˝)C(ej˝)

∣∣∣∣
2

d˝

= �2
�

(
M∑

m=1

R2
m

2

∣∣∣ C(ejωmT0 )[e−jωmT0 − 1]
1 + Pz(ejωmT0 )C(ejωmT0 )

∣∣∣2
)

×
(

1
2	

∫ 	

−	

∣∣∣∣ Pz(ej˝)
1 + Pz(ej˝)C(ej˝)

∣∣∣∣
2

d˝

)
, (51)

where (·) represents the temporal averaging operation.
Similarly, the sampling jitter disturbance h[k] can be expressed

as

h[k] = �[k]y�[k], (52)

where y�[k] = y∗
p[k] − y∗

p[k − 1]. Ignoring second-order and higher
terms this can be expressed as

y�[k] = r[k] ∗ Z−1

(
Pz(z)C(z)(1 − z−1)

1 + Pz(z)C(z)

)
. (53)

The auto-correlation function of h[k] is then
�hh[k, m] = E(h[k]h[m]) = y2
�[k]�2

�ı[m − k]. (54)
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>100 ns jitter. It should be noted that experimental measurement
of jitters’ effect on positioning error is very difficult on most com-
mercial control hardware, because they do not provide the option
Fig. 9. Experimental setup consisting of a 

gain, h[k] is a non-stationary white noise signal and its resulting
racking error contribution εh[k] is a non-stationary stochastic sig-
al. Thus the mean value of its variance is used to evaluate the effect
f the sampling jitter on positioning error, which can be calculated
s

(ε2
h
[k]) = �2

�y2
�

[k]
1

2	

∫ 	

−	

∣∣∣∣ Pz(ej˝)C(ej˝)
1 + Pz(ej˝)C(ej˝)

∣∣∣∣
2

d˝

= �2
�

(
M∑

m=1

R2
m

2

∣∣∣Pz(ejωmT0 )C(ejωmT0 )[1 − e−jωmT0 ]
1 + Pz(ejωmT0 )C(ejωmT0 )

∣∣∣2
)

×
(

1
2	

∫ 	

−	

∣∣∣∣ Pz(ej˝)C(ej˝)
1 + Pz(ej˝)C(ej˝)

∣∣∣∣
2

d˝

)
. (55)

Lastly, as εr[k] is a deterministic signal, its mean variance is
imply its mean-square value,

2
r [k] =

M∑
m=1

R2
m

2

∣∣∣ 1
1 + Pz(ejωmT0 )C(ejωmT0 )

∣∣∣2. (56)

enerally, εr[k] can be completely eliminated by designing infinite
ontroller gain at frequency ωm, therefore the remaining tracking
rror is a result of jitter’s interaction with the reference command.
he overall tracking error magnitude is then dependent on the ref-
rence command, control jitter, sampling jitter, controller gain, and
ontroller disturbance rejection.

In order to mitigate jitter-contributed tracking error εg[k] and
h[k], the most effective way is to reduce the jitter magnitude, either
y software or operating system improvement or by switching to
etter controller hardware with less jitter. It should be noted that
he previously discussed jitter compensator Cg(z) in Eq. (42) is gen-
rally not helpful in reducing jitter’s effect on tracking error because
he frequencies of the reference command are usually far less than
he system Nyquist frequency.

Using Eqs. (41), (51) and (55), jitter’s effect on positioning error
an be predicted without simulation. A key property of these rela-
ions is that they do not require analytical models of the system
such as state space and transfer functions) and an experimentally

easured plant frequency response is sufficient to calculate the
ffect of jitter.

. Experimental results
Experiments are performed to validate the model and analy-
is of the jitter disturbance effect presented in this paper. They
re conducted on an improved version of the fast-tool servo (FTS)
ol servo and custom real-time computer.

presented in [27], which is a high-bandwidth electro-magnetically
actuated precision machine tool that uses a capacitive probe for
position feedback. This FTS, shown in Fig. 9(a), can achieve 50 �m
stroke, 1.4 nm positioning error, and 750 g acceleration in contin-
uous operation. The digital control hardware is a custom real-time
computer made of high-performance digital signal processors and
a field programmable gate array [28]. This computer, shown in
Fig. 9(b), can achieve a sampling period of 1 �s for floating-point
calculation of digital controllers with jitter less than 6 ns RMS.
This performance is significantly better than commercial controller
hardware, which typically is limited to <100 kHz sampling rate and
Fig. 10. 8% RMS  normalized jitter data used for the experiments.



184 K. Smeds, X. Lu / Precision Engineering 36 (2012) 175– 192

 fast-t

t
u
e
c
e

e
r
(
e
e

4

a

Fig. 11. Frequency responses of the

o add extra amount of jitters in input and output timing and are
nable to achieve very low jitter (such as a few nano-seconds) to
stablish a benchmark performance without jitter. The real-time
ontroller in Fig. 9(b) is a key enabling tool to investigate jitters’
ffect experimentally.

Two experimental cases are conducted to demonstrate the
ffect of jitter on motion control performance: (1) regulation error
esulting from jitter’s interaction with measurement noise and
2) tracking error resulting from jitter’s interaction with refer-
nce command. For each case, the sampling jitter and control jitter
ffects are tested separately.
.1. Experiment setup

Since the custom control hardware has nearly zero jitter, vari-
ble delays is inserted into the real-time controller execution to
ool servo feedback control system.

achieve a deterministic amount of sampling jitter or control jitter.
The added jitter uses pre-generated arrays of delay values to pro-
duce random white jitter with RMS  magnitude ranging from 0 to
400 ns. Fig. 10 shows the added jitter data and histogram for the
case of 320 ns RMS. For experiments at other jitter magnitudes, the
jitter data in Fig. 10 is scaled accordingly. Although execution of
the control algorithm takes less than 1 �s on the custom control
hardware, a sampling period of T0 = 4 �s is used throughout all
experiments to accommodate additional jitter. Note that the jit-
ter percentage referred to throughout this section is relative to the
sampling period, as it refers to the normalized jitter from Eqs. (13)
and (18). For example, 160 ns RMS  jitter for a 4 �s sampling period

is 4% jitter.

The experimentally measured frequency response of the FTS is
shown in Fig. 11(a), from u[k] (input current in Amperes) to y[k]
(plant output in �m).  Accordingly, a loop-shaping based controller
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Fig. 12. System block diagram of the experimental setup.
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B(z) is designed to control the FTS, as follows:

B(z) = 6.5702 × (z − 0.9698)
(z − 1)

× (z  − 0.9606)(z − 0.9352)
(z − 0.3659)(z − 0.5471)(z − 0.081)

× (z2 − 1.3449z − 0.9917)
(z2 − 0.8726z − 0.1904)

. (57)

his controller has three components: (1) an integrator that acts
rom 0 to 1.2 kHz; (2) a double-lead compensator to add phase
rom 1 kHz to 20 kHz; and (3) a notch filter at 33 kHz to attenu-
te the plant resonance at this frequency. The controller frequency
esponse is shown in Fig. 10(b). The resulting closed-loop fre-
uency response is shown in Fig. 10(c) and has a −3 dB bandwidth
f 15 kHz. Unless otherwise specified, the implemented controller
n all the experiments is the loop-shaping base controller, that is
(z) = CB(z).

Referring to Fig. 7, it is the positioning error ε[k] = r[k] − y∗
p[k]

nd not the control error e[k] = r[k] − y[k] that represents the
ontrol system performance. One challenge faced when attempt-
ng to experimentally measure jitter’s effect is that y∗

p[k] is not
eadily available due to the presence of measurement noise n[k]
nd sampling jitter disturbance h[k]. To overcome h[k], a double
ampling scheme is implemented in the custom real-time com-
uter, as shown in Fig. 12.  In each control cycle, there are two
DC sampling events of the plant output yp(t): one ADC with sam-
ling jitter is used to acquire y[k] for the controller calculation;
nother ADC with zero sampled jitter is used to acquire y∗

m[k] for
ositioning performance evaluation. However, y∗

m[k] still contains
easurement noise n∗[k] (the combination of ADC noise and sen-

or noise, 1.4 nm RMS). In the regulation experiment an additional
hite noise na[k] of 8 nm RMS  is added, as shown in Fig. 12,  in order

o make n∗[k]’s contribution negligible, and therefore y∗
m[k] can be

sed to approximate y∗
p[k]. In the tracking experiment the refer-

nce signal r[k] amplitude is set at 2 �m,  which results in large
nough tracking error to dominate the contribution from n∗[k],
herefore y∗

m[k] can again be used to approximate y∗
p[k]. Still, in

oth cases there will be a slight difference between the experi-
entally recorded positioning error and the true plant regulation
rror due to n∗[k]. It follows that the approximated expression for
he positioning error used for evaluating the effect of jitter in all
he experiments is ε[k] ≈ r[k] − y∗

m[k].
Fig. 13. Regulation error experimental results for no jitter.

4.2. Regulation error experimental results with white
measurement noise

For the regulation error experiment, the reference command
r[k] is set at zero and the added measurement noise na[k] is
a white stochastic 8 nm RMS  signal. As a reference benchmark,
Fig. 13 shows the measured regulation error for zero sampling jit-
ter and zero control jitter. The measured 4.0 nm RMS  regulation
error is smaller than the added noise na[k] (8 nm RMS) because

much of the high frequency noise content is filtered by the plant
dynamics. As shown in Fig. 13(b), the regulation error PSD is
shaped similarly to the system’s closed-loop frequency response



186 K. Smeds, X. Lu / Precision Engineering 36 (2012) 175– 192

menta

o
T
(

4

p
t
l
i
0
a
a
t
n
o
e
s
e

4

t
p
e
I
i

error to increase by 90%, from 4.0 nm to 7.7 nm.  Comparing
their PSDs, the major difference in the frequency domain occurs
around 1 kHz, which corresponds to the controller’s minimum
disturbance rejection region. This result is consistent with the
Fig. 14. Regulation error experi

f Fig. 11(c), as predicted by the analytical PSD in Fig. 13(c).
he analytical PSD response in Fig. 13(c) is calculated using Eq.
34).

.2.1. Effect of sampling jitter on regulation error
In this experiment the control jitter is set to zero and the sam-

ling jitter is varied from 0% to 10% of the sampling period using
he jitter data from Fig. 10.  Fig. 14(a) shows the measured regu-
ation error for 8% sampling jitter. There is no noticeable increase
n both the measured error waveform and PSD compared to the
% jitter reference case from Fig. 13(b). This is consistent with the
nalytically predicted PSD in Fig. 14(c), calculated from Eqs. (34)
nd (36). As discussed in Section 3, the sampling jitter contribution
o regulation error εh[k] is much less than the measurement
oise contribution to regulation error εn[k]. For other magnitudes
f sampling jitter, the measured and analytical RMS  regulation
rror is plotted in Fig. 15,  again confirming the earlier conclu-
ion that the sampling jitter has a negligible effect on regulation
rror.

.2.2. Effect of control jitter on regulation error
In this experiment the sampling jitter is set at zero and

he control jitter is varied from 0% to 10% of the sampling

eriod using the jitter data from Fig. 10.  Fig. 16(a) shows the
xperimental measured regulation error for 8% control jitter.
n comparison with the zero control jitter benchmark result
n Fig. 13(a), the 8% control jitter causes the RMS regulation
l results for 8% sampling jitter.
Fig. 15. Measured and analytical RMS  regulation error comparison for various
amounts of sampling jitter.
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Fig. 16. Regulation error experimental results for 8% control jitter without jitter compensator.
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nalytically predicted PSD in Fig. 16(c), which is calculated from
qs. (35) and (36). The analytical PSD shows that the control
itter contribution to regulation error εg[k] is dominant over
he measurement noise contribution to regulation error εn[k] in
he frequency range from 100 Hz to 10 kHz, thus causing the
otal regulation error to increase. This result clearly indicates
hat control jitter’s interaction with measurement noise produces

 low frequency disturbance that degrades position regulation
erformance.

When the proposed jitter compensator Cg(z) is added to the
ase controller, C(z) = CB(z)Cg(z), the RMS  regulation error greatly
ecreases from 7.7 nm to 4.7 nm,  despite the 8% control jitter. This
esult is shown in Fig. 17(a). A comparison between Figs. 16 and 17
hows that the proposed jitter compensator successfully sup-
resses the control jitter disturbance at low frequencies, and
hus most of the regulation error contributed by control jitter is
liminated.

The control jitter regulation error results are extended in Fig. 18,
hich compares the analytical and measured RMS  regulation error

or control jitter ranging from 0% to 10% RMS, with and with-

ut the jitter compensator implemented. The analytical prediction
atches the experiment results very well and the jitter com-

ensator significantly attenuates the effect of control jitter on
egulation error.
4.3. Tracking error experimental results for a single harmonic
reference command

For the tracking error experiment there is no added mea-
surement noise, na[k] = 0 ∀ k, and the reference command is
a 6 kHz sinusoidal signal with a 4 �m peak-to-valley amplitude:
r[k] = 2 sin(2	  × 6000 × kT0) �m. Generally, tracking at such a high
frequency will result in the dominant tracking error contribu-
tion coming from the reference command component εr[k], as
expressed in Eq. (56). In order to show the tracking error con-
tributed by jitter, εr[k] should be eliminated by increasing the
controller gain at 6 kHz to infinity. This can be done by adding an
adaptive feed-forward cancelation (AFC) controller [29]

C(z) = CB(z)(1 + CAFC (z)). (58)

Here, CAFC (z) contains four compensated frequencies at 6 kHz,
12 kHz, 18 kHz, and 24 kHz, each with a gain of 200. The AFC com-
pensation at higher order harmonics of the reference command is
used to attenuate tracking error caused by the non-linearity of the
FTS actuator. Fig. 19 shows the tracking experiment results for no

jitter, with and without CAFC (z). After implementing the AFC con-
troller, the tracking error was  reduced by a factor of nearly 1000,
from 1.4 �m RMS  to 1.6 nm RMS, which is close to the measure-
ment noise floor. From the tracking PSD comparison in Fig. 19(c),
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Fig. 17. Regulation error experimental results for 8% control jitter with the jitter compensator included in controller.

Fig. 18. Measured and analytical RMS  regulation error comparison for various amount of control jitter, with and without the jitter compensator.
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Fig. 19. Tracking error experimental

he AFC effectively removes all error components at the reference
ignal frequency as well as at its higher frequency harmonics. In

ll the following tracking experiments the AFC controller is imple-
ented and the 1.6 nm RMS  tracking error with no jitter is used as

 benchmark.

Fig. 20. Tracking error experimental
s for no jitter with and without AFC.

4.3.1. Effect of sampling jitter on tracking error
In this experiment the control jitter is set at zero and the
sampling jitter is varied from 0% to 10% of the sampling period
using the jitter data from Fig. 10.  Fig. 20 shows the experimen-
tal measured tracking error and its PSD for 8% RMS sampling

 results for 8% sampling jitter.
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Fig. 21. Measured and predicted tracking error comparison for various amounts of
sampling jitter.
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Fig. 23. Measured and predicted tracking error comparison for various amounts of
itter. In comparison with the zero sampling jitter benchmark
esults in Fig. 19,  the tracking error RMS  value increased by

 times, from 1.6 nm to 10 nm.  From the tracking error PSD
n Fig. 20(b) it can be seen that the major increase in track-
ng error from sampling jitter occurs in the low frequency
egion.

The tracking error results with various amounts of sampling
itter are shown in Fig. 21,  which compares the analytical RMS
racking error, calculated from Eq. (55), to the experimentally mea-
ured RMS  tracking error for sampling jitter ranging from 0% to
0%. Notice that as sampling jitter approaches zero, the measured
rror approaches 1.6 nm RMS, nearly the measurement noise floor
or the FTS system. In all cases, the analytical results predict the
rend of the experimental results with a small amount of mis-

atch. This is believed to be related to the FTS plant non-linearity
hich was not modeled in Fig. 7 and included in the analysis of

q. (55). These experimental results also indicate that the sampling
itter disturbance h[k] can become the dominant source of position-

ng error, particularly for high-bandwidth precision motion control
ystems.

Fig. 22. Tracking error experimenta
control jitter.

4.3.2. Effect of control jitter on tracking error
In this experiment the sampling jitter is set at zero and the con-

trol jitter is varied from 0% to 10% of the sampling period using the
jitter data from Fig. 10.  Fig. 22 shows the experimental measured
tracking error and its PSD with 8% RMS  control jitter. In comparison
with the zero control jitter benchmark results in Fig. 19,  the track-
ing error RMS  increased by 6 times, from 1.6 nm to 9.9 nm.  From
the tracking error PSD in Fig. 22(b) it can be seen that the major
increase in tracking error due to control jitter occurs in the low fre-
quency region, particularly in the frequency range 100 Hz–10 kHz
where the controller’s disturbance rejection is lowest.

Fig. 23 extends the tracking error results for control jitter, com-
paring the analytically predicted RMS  tracking error, calculated
from Eq. (51), to the experimentally measured RMS  tracking error
for control jitter ranging from 0% to 10%. In all cases the results
match very well, validating the presented models and analyti-
cal results for control jitter. In addition, the experimental results
also demonstrate that control jitter can significantly degrade

positioning performance, particularly for high-speed precision
motion control systems.

l results for 8% control jitter.
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Fig. 24. Control jitter measurements for various Real-Time computers.

. Conclusions

A  new simplified discrete model (Fig. 7) was  developed that
ncorporates the effect of sampling jitter and control jitter as distur-
ances to the control system. Using this simplified model, analytical
ormulas (Eqs. (41), (51) and (55)) are derived to predict jitter’s
ffect on positioning error for both regulation and tracking sce-

arios. These analytical relations, which can be solved using either
easured or analytical frequency responses of a control system,

re then experimentally demonstrated on a fast-tool servo machine
ool.
ering 36 (2012) 175– 192 191

In  the case of position regulation, sampling jitter generally has a
negligible effect on positioning error. In comparison, control jitter
can significantly degrade regulation performance, with positioning
error increasing from 4.0 nm RMS  at zero control jitter to 7.7 nm
RMS  at 8% control jitter in the experiments performed. Adding a
simple jitter compensator to the existing motion controller, con-
sisting of a zero at the Nyquist frequency, is shown to greatly
mitigate the position regulation error contributed by control jit-
ter, reducing the error to 4.7 nm RMS  despite the presence of 8%
control jitter.

In the case of position tracking, both sampling jitter and control
jitter can significantly increase positioning error. When tracking
a 4 �m peak-to-valley 6 kHz sinusoidal signal with the fast-tool
servo, sampling jitter increased the tracking error from 1.6 nm RMS
at zero jitter to 10 nm RMS  at 8% jitter. Similarly, control jitter also
increased the tracking error to 10 nm RMS  at 8% jitter. To attenu-
ate this additional tracking error, either the controller disturbance
rejection should be increased via controller redesign or a better
control system (hardware and operating system) with less jitter
should be utilized.

The close match between the analytical results and the exper-
imental results confirmed that the presented model and analysis
can be used to predict jitters’ effect on motion control performance,
and this is useful to do error budget in motion control system design
process.

Appendix A. Jitter measurement

Sampling jitter and control jitter can vary greatly in different
real-time computer implementations. It is mainly affected by fac-
tors such as task scheduling, input–output device synchronization,
interrupt handling, cache misses, and resource sharing.

The simplest way to measure sampling jitter and control jitter is
with an input timestamp and output timestamp, respectively; how-
ever, many real-time control implementations do not provide this
data. Further, even if timestamps are available, their definition and
exact implementation can vary from system to system, providing
misleading results. To guarantee a fair comparison between differ-
ent controller implementation, an external time-stamping setup is
used here to capture control jitter. The control jitter measurement
setup introduces an additional function at the end of a conven-
tional control cycle that switches a secondary DAC output between
0 V and 2.5 V. This output is then sent through a comparator and
into an FPGA, which captures the signal edges with 5 ns resolution
and stores the control output update timestamps TS[k]. To extract
the control jitter from these timestamps TS[k], a least square linear
fitting is performed to minimize the following sum∑

k

(TS[k] − Ak + B)2, (59)

where A and B are the least squares fitting coefficients and k is the
control cycle index. The control jitter is then calculated as

�c[k] = TS[k] − Ak − B. (60)

Control jitter measurements are made for the following three con-
troller implementations:

• xPC Target on a P3 800 MHz  processor with a NI-6036E DAQ card;
• dSPACE 1103;
• UBC’s custom control platform [28].
As shown by Fig. 24,  the xPC Target implementation has 810 ns
RMS  of control jitter, the dSPACE 1103 implementation has 155 ns
RMS  of control jitter, and the custom UBC platform has 5.2 ns RMS
of control jitter. While there are some deterministic components
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o the control jitter, most of the signal energy comes from the
hite random component. These results clearly demonstrate how

reatly control jitter can vary depending on the real-time com-
uting hardware. Other general purpose platforms exhibit several
icroseconds of jitter [8,9].

ppendix B. Tracking error analysis for non-repetitive
eference command

Repetitive command tracking error is analyzed in Section 3.2.
ere only non-repetitive finite-energy reference command is con-

idered, as non-repetitive infinite-energy gives infinite-energy
rror. When a non-repetitive reference command has finite energy

∞
k=−∞r2[k] < ∞,  its Fourier transform exists and can be expressed

s

(ej˝) =
∞∑

k=−∞
r[k]e−jk˝. (61)

he total summed square of εr[k] is calculated as from the discrete
odel in Fig. 7

∞∑
=−∞

ε2
r [k] = 1

2	

∫ 	

−	

∣∣∣∣ R(ej˝)
1 + Pz(ej˝)C(ej˝)

∣∣∣∣
2

d˝.  (62)

lthough εg[k]’s variance is time-varying, the summed variance of
g[k] can be derived as follows:

∞∑
=−∞

E(ε2
g [k]) =

∞∑
k=−∞

E(g2[k])
1

2	

∫ 	

−	

∣∣∣∣ Pz(ej˝)
1 + Pz(ej˝)C(ej˝)

∣∣∣∣
2

d˝

= �2
�

∞∑
k=−∞

u2
�[k]

1
2	

∫ 	

−	

∣∣∣∣ Pz(ej˝)
1 + Pz(ej˝)C(ej˝)

∣∣∣∣
2

d˝. (63)

ccording to Parseval’s identity [30],

∞∑
=−∞

u2
�[k] = 1

2	

∫ 	

−	

∣∣∣∣R(ej˝)C(ej˝)(e−j˝ − 1)
1 + Pz(ej˝)C(ej˝)

∣∣∣∣
2

d˝.  (64)

s a result, the summed variance of εg[k] is

∞∑
=−∞

E(ε2
g [k]) = �2

�

(
1

2	

∫ 	

−	

∣∣∣∣R(ej˝)C(ej˝)(e−j˝ − 1)
1 + Pz(ej˝)C(ej˝)

∣∣∣∣
2

d˝

)

×
(

1
2	

∫ 	

−	

∣∣∣∣ Pz(ej˝)
1 + Pz(ej˝)C(ej˝)

∣∣∣∣
2

d˝

)
. (65)

imilarly, the summed variance of εh[k] for non-repetitive refer-
nce command is derived as
∞∑

=−∞
E(ε2

h[k]) =
∞∑

k=−∞
E(h2[k])

1
2	

∫ 	

−	

∣∣∣∣ Pz(ej˝)C(ej˝)
1 + Pz(ej˝)C(ej˝)

∣∣∣∣
2

d˝

= �2
�

∞∑
k=−∞

y2
�[k]

1
2	

∫ 	

−	

∣∣∣∣ Pz(ej˝)C(ej˝)
1 + Pz(ej˝)C(ej˝)

∣∣∣∣
2

d˝

= �2
�

(
1

2	

∫ 	

−	

∣∣∣∣R(ej˝)Pz(ej˝)C(ej˝)(1 − e−j˝)
1 + Pz(ej˝)C(ej˝)

∣∣∣∣
2

d˝

)

×
(

1
2	

∫ 	

−	

∣∣∣∣ Pz(ej˝)C(ej˝)
1 + Pz(ej˝)C(ej˝)

∣∣∣∣
2

d˝

)
. (66)
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