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In a digital motion control system, there exist timing variations in feedback sampling and control updat-
ing, often referred to as sampling jitter and control jitter. Although jitter has been studied in prior art,
no equations or quantitative experimental results have been reported which relate jitter to position-
ing error in a motion control system. To investigate the effect of jitter on positioning error, this paper
presents a simplified discrete model that captures sampling and control jitter's interaction with other
system inputs as disturbances to the control system. Based on this model, analyses are carried out for
the scenarios of position regulation and command tracking, each resulting in an equation to predict jit-
ter’s effect on positioning error using measured or analytical frequency responses of the system. Further,
an easily implementable add-on jitter compensator is proposed to mitigate the regulation error due
to jitter without affecting the existing controller. Through experiments performed on a fast-tool servo
machine tool, the model and analyses are validated and the positioning degradation due to jitter is clearly
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1. Introduction

In a digital motion control system, there are two periodic events
connecting the discrete domain of a digital controller to the con-
tinuous domain of the plant to be controlled: a feedback sampling
event that samples a sensor feedback signal; and a control updating
event that updates the controller’s output signal via a zero-order-
hold (ZOH). Generally, in digital control system textbooks [1,2]
these two events are assumed to happen simultaneously at evenly
spaced intervals of sampling period Ty. In reality, there are several
timing problems introduced during the implementation of digi-
tal controllers [3]. First, there always exists a delay between the
sampling event and the controller output update event due to data-
acquisition conversion times and control algorithm computation
time. Second, the sampling event intervals are not evenly spaced
due to factors such as resource sharing and task scheduling. These
sampling event and control event temporal deviations from the
ideal timing are referred to as sampling jitter and control jitter,
respectively.

Usually, sampling jitter and control jitter are assumed small
enough to have negligible effects on the closed-loop system perfor-
mance. Jitter issues have mostly received attention in networked
control systems and distributed control systems, in which the
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sensor node, control calculation node, and actuator node are con-
nected via a network. Networked control can be a cost-effective
solution for systems with a large number of sensors and actuators,
such as process automation, but such networks may experience
large variable delays. Stability and robustness can be a major con-
cern in these systems due to the large magnitudes of random delay
and jitter, and thus stability criteria for network controlled system
with jitter has been investigated extensively [4-7].

In motion control systems, although networks are widely used
for user interface communication and transferring motion trajec-
tory information, the system feedback loop (consisting of sensor
data acquisition, control calculation, and actuator update) is highly
localized and network is not part of the feedback loop. Therefore,
instability caused by sampling jitter and control jitter is rarely an
issue in motion control systems.

Measurements have shown that jitter in motion control appli-
cations typically ranges from hundreds of nanoseconds to tens
of microseconds for commercially available real-time controllers.
For example, a modern digital motion controller running real-
time Linux has shown several microseconds of jitter [8] and a
National Instruments CompactRIO has shown 40 s of jitter for
a 1kHz control loop [9]. Measurements performed in Appendix
A of this paper show the jitter on an XxPC Target controller to
be 0.81 ws RMS, and the jitter on a dSPACE DS1103 controller to
be 0.16 ws RMS. What is of interest is how much this relatively
small amount of jitter affects the performance of a motion control
system.
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To facilitate time-variant analysis and simulation of control sys-
tems, Cervin, Lincoln et al. have created True Time [10] and Jitterbug
[11], which are MATLAB based tools that can be used to evaluate
a system’s sensitivity to delay and jitter [12]. Antunes and Mota
presented a True Time simulation of a system with only control jit-
ter and their results showed an increase in positioning error [13].
Zhang et al. have also presented simulation results showing jit-
ter can increase positioning error [14]. There have been very few
experimental results reported in literature to actually demonstrate
the effect of jitter on motion system performance. One rare exam-
ple is a motor speed experiment conducted by Kobayashi et al.,
which compared a case with fixed 0.25ms sampling period to a
case with varying sampling period from 0.25 ms to 0.375ms [15].
Their results showed a relatively small difference in speed error
for these two cases as other error sources appear to dominate the
system.

Approximate modeling work has been conducted by Boje to bet-
ter understand the effect of jitter on a digital control system [16]. He
presented an approximate disturbance model in the w-domain for
sampling jitter and control jitter by using a Tustin approximation
to convert discrete-time controllers to the w-domain. Based on this
approximate model he then performed simulations to show jitter
caused a disturbance to act on the system.

In order to reduce jitter-induced problems, work has been done
inboth the areas of real-time computing and control. Developments
in real-time computing have focused on task scheduling meth-
ods to directly reduce jitter magnitude [17-20]. Work in control
has focused on controller design techniques such as Hy, and LQG
methods to improve system rejection of jitter disturbance [21,22].

Another class of jitter compensators are timestamp-based con-
trollers, which take advantage of runtime timing data (timestamps
of actual sampling events) to dynamically compensate for jitter
[23-25]. The main limitation of timestamp based controllers is that
they introduce additional complexity and overhead into the control
task, making them impractical for systems requiring fast sampling
rates. Further, timestamps are usually unavailable in many con-
troller hardware implementations, limiting the applicability of this
type of solution. Consequently, literature for these proposed meth-
ods only report on simulation results and not experimental results.

Given the lack of analytical predictions and experimental
demonstrations regarding jitter’s effect on motion control system
positioning error, the contributions of this paper are: (1) establish-
ing a simplified discrete model for systems with sampling jitter and
control jitter; (2) providing a formula to analytically predict jitter’s
effect on motion control system positioning error, without requir-
ing simulation; (3) proposing a simple add-on jitter compensator
to mitigate jitter’s effect on regulation error, without requiring the
existing motion controller to be changed; and (4) experimentally
demonstrating the effect of sampling jitter and control jitter on
positioning error for both regulation and tracking scenarios.

This paper is organized as follows. Section 2 begins by devel-
oping a discrete model that captures the interaction between jitter
and other signals in a motion control system. Based on this model,
analyses are carried out in Section 3 to determine the relationship
between jitter and positioning error for two scenarios: (1) regula-
tion error from jitter’s interaction with random measurement noise
and (2) tracking error from jitter’s interaction with a determinis-
tic reference command. Further, with insights obtained from these
analyses, several methods to mitigate the positioning degradation
due to jitter are discussed, including a new jitter compensator that
can be easily added to an existing controller without affecting the
controller performance. Lastly, Section 4 presents experimental
results for a high-speed precision machine tool for various jitter
conditions. These results clearly demonstrate the additional posi-
tioning error arising due to jitter and also experimentally validate
the model and analyses presented in this paper.
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Fig. 1. A digital control feedback system with non-ideal sampler and ZOH.

2. Modeling of digital control systems with non-ideal
sampler and ZOH

The block diagram of a typical digitally controlled single-input
single-output system is shown in Fig. 1. The plant input signal u(t)
is related to the plant output signal y,(t) by
Yp(s)

—= =P(s), 1
o =" (M
where P(s) is the plant transfer function in the s-domain, and Up(s)
and Yp(s) are the Laplace-transforms of up(t) and y,(t), respectively.
The plant output signal is subsequently sampled by a non-ideal
sampler to produce a discrete sequence

Yplk] = yp(kTo + T5[K]), (2)

where Ty is the mean value of the digital controller sampling period,
k is the integer index of sampling events, and tg[k] is the kth sam-
pling timing deviation from an ideal sampler. In addition to the
discrete plant output signal y,[k], the discrete feedback signal y[k]
also includes the noise component n[k], which contains analog-
to-digital (ADC) conversion noise, quantization noise, and sampled
sensor measurement noise. The control error signal e[ k] is then gen-
erated by subtracting y[k] from the reference command r[k]. The
control sequence signal u[k] is then calculated as

U(z)

ﬁ = ((2), (3)
where C(z) is the controller transfer function in Z-domain, and E(z)
and U(z) are the Z-transforms of the discrete signals e[k] and u[k],
respectively. The discrete control signal u[k] is finally converted by
a non-ideal ZOH to the plant input signal

up(t) = ulk], for kTo+ 74

+Tc[k] <t <(k+1)To+ 7g + Tc[k + 1], (4)

where 7, represents the mean latency from the sampler sampling
instant to the ZOH update instant, and t.[k] is the update timing
deviation from an ideal uniformly spaced ZOH. In this paper, the
timing deviations ts[k] and t.[k] are referred as sampling jitter and
control jitter, respectively.

Although ideal samplers and ideal ZOHs are used almost exclu-
sively in sampled-data control textbooks [1,2], they do not exist
in reality as there is always some sampling jitter, sampling-to-
ZOH latency, and control jitter resulting from implementation. The
measurement of jitter for several real-time computers used for
implementing digital controllers is described in Appendix A. For
commercially available control hardware, jitter typically ranges
from hundreds of nanoseconds to tens of microseconds.
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Fig. 2. The sequential timing process of a typical digital control cycle.

In order to illustrate the sources of these non-ideal control tim-
ing effects, Fig. 2 shows an example timing process for a digital
controller. Each control cycle is initiated by the expiring event of a
control cycle timer in the digital control hardware, which is then
followed by the interrupt latency T;yr[k] and task switching delay
Trsw|k] before the sampling of y,(t) occurs. The control process
then needs to wait during the ADC conversion time Tapc[k]. After
reading the ADC result over a short time Tgp[k], the control out-
put is computed in time T¢yp|k] using the implemented control
algorithm. This computation result is then written to the digital-
to-analog converter (DAC) in time Tyg[k]. Finally, at the end of the
DAC conversion time Tpac[k], the analog signal u,(t) is updated,
which corresponds to the ZOH update event.

In such a process, sampling jitter is determined by the timing
variation between the timer event and the sampling event,

(k] = Tinr[K] + Trsw [K]. (5)

Here, the symbol T[k] represents the alternating (AC) component
of T[k] (i.e. T[k] subtracted by its mean value T). The control cycle
timer is usually a hardware device working at several hundred
megahertz and can be considered a jitter free event (i.e. the events
are perfectly spaced with a constant sampling time Ty). Control jit-
ter t.[k] is then determined by the accumulated timing variation
from the timer event to the ZOH update,

e[k] = Tinr[k] + Trsw k] + Tapclk] + Tro[k] + Temp[k] + Twrlk]
+ Tpaclk)- (6)

Based on this analysis, both sampling jitter s[k] and control jitter
Tc[k] are zero-mean variables. Lastly, the sampling-to-ZOH latency
can be expressed as the mean delay from the sampler sampling to
the ZOH update,

74 = Tapc + Tro + Temp + Twr + Tpac - (7)

This latency can be separated from the non-ideal ZOH in Fig. 1,
resulting in a pure delay element and a zero-latency ZOH with jitter
as shown in Fig. 3. The expression for the continuous control output
u(t) and plant input u,(t) is then

u(t) =ulk] for kTo+ tc[k] <t <(k+1)To+ tc[k+1] (8)

up(t) = u(t — 7g). 9)

The digital control system model in Fig. 3 is time-variant and thus
cannot be analyzed using classical sampled-data control theory.
In order to investigate digital control systems with sampling jitter
and control jitter, simplified models to approximate the non-ideal
sampler and ZOH are developed below.

2.1. Modeling of ZOH with control jitter

In Fig. 4(a), the non-ideal ZOH output signal u(t) is compared
with the signal

u*(t)=ulk], for kTy <t < (k+ 1)Ty, (10)
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Fig. 3. Equivalent model of a digital control feedback system with non-ideal sampler and ZOH.
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Fig. 4. Modeling of a non-ideal ZOH with control jitter.

which s the result of control sequence u[k] passing through an ideal
ZOH (i.e. the update times are evenly spaced with no variation). The
difference between u(t) and u*(t) due to control jitter is represented
by a disturbance signal

g(t) = u(t) — u*(t). (11)

As shown in Fig. 4(b), the g(t) waveform is composed of a pulse
train, which is zero everywhere except in the regions when the
non-ideal ZOH with jitter leads or lags the ideal ZOH. While

jitter is a discrete phenomenon, this disturbance g(t) is a continu-
ous time signal with sub-sample dynamics. Assuming the sampling
rate is much greater than the highest plant dynamics, which is typ-
ical for control systems, the disturbance g(t) can be approximated
as a piecewise-constant signal

Tc[k]
To
for kTop <t < (k+ 1Ty,

g (t) = (ulk — 1] — u[k]) = (u[k — 1] — u[k])y[k],

(12)
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Fig. 5. Modeling of a non-ideal sampler with sampling jitter.

where y[k] is referred to as the normalized control jitter

Tclk]
vIk] = Ty (13)

This selection for g*(t) conserves the signal momentum (ampli-
tude integration over time) within each sampling period. Further,
g*(t) can now be represented as the output of a discrete signal g[k]
passing through an ideal ZOH, as shown in Fig. 4(c), where

g(k) = ulkl(z™" = 1)ylk]. (14)

The two ideal ZOHs from Fig. 4(c) can be combined together as
shown in Fig. 4(d). Consequently, the non-ideal ZOH with con-
trol jitter in Fig. 3 can be replaced by this disturbance model with
an ideal ZOH, thus allowing the analysis to proceed without sub-
sampling dynamics.

2.2. Modeling of sampler with sampling jitter

In Fig. 5(a), the non-ideal sampled plant output signal yp[k] is
compared with the signal

yplk]l = yp(kT), (15)

which is the result of y,(t) going through an ideal sampler (i.e. the
sampling times are evenly spaced). The difference between y,[k]

and y;[k] due to sampling jitter is represented by a disturbance
signal

h[k] = yp[k] - ypk]. (16)

Fig. 5(b) shows the sampled discrete sequences of y,[k] and y;[k]. As
the sampling rate is usually much greater than the plant’s highest
frequency of interest, the difference h[k] can be approximated by a
linear interpolated prediction expressed as

[kl — ik — 1
it ~ o (YT e - yae- 1. (1)
To
where
Mu:ﬁ?. (18)

Mlk]is defined as the normalized sampling jitter. Using this approxi-
mation, the discrete sequence y,[k] sampled by a non-ideal sampler
can be modeled by the block diagram in Fig. 5(c), which incorpo-
rates the sampling jitter as a disturbance with no sub-sampling
dynamics, and uses an ideal sampler. This sampling model is very
similar to the control jitter model from Fig. 4(d), with the only
difference being where the disturbance enters the control system.
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Fig. 6. Jitter disturbance model of a digital control feedback system with non-ideal sampler and ZOH.

2.3. Simplified model of realistic digital control systems

Replacing the non-ideal sampler and the non-ideal ZOH in Fig. 3
with the models developed in Sections 2.1 and 2.2, results in the
overall digital control system model shown in Fig. 6. The effects of
jitter are incorporated as two disturbances h[k] and g[k] injected
into the system at the ideal sampler and ideal ZOH, respectively.
Further, applying ZOH equivalence [1], the dynamic process from
u[k] through the plant to y;[k] can be represented as

Y* —T4S
Py(z) = Uiz; :(1_24)2{13(5)#}’ (19)

where Z{-} is the Z-transform of the continuous system impulse
response sampled with period To, and U(z) and Y;(z) are the
Z-transforms of u.[k] and yj[k], respectively. Assuming a proper
anti-aliasing filter is implemented, the discrete domain frequency
response of P(s) can be calculated as

, P(ja))e_jwrd(l _ e—ijo)
wlgy _
P,(e®0) = T,

= P(jw)e®(TatTo/2) sinc <wTTO> . (20)

As a result, the time-variant digital control system model from
Fig. 1 has been converted to the entirely discrete, time-invariant
model in Fig. 7. This discrete-time model can enable an intuitive
understanding of jitter’s effects on control performance. In the next
section jitter’s effect on positioning error is analyzed using this
model.

At this point some insights can be obtained regarding jitter’s
effects on control performance. First, the magnitude of the jitter
disturbances are proportional to the ratio of absolute jitter over the
sampling period, and thus high-speed systems that require faster
sampling rates will be more susceptible to jitter. Second, the jit-
ter disturbances are a result of derivative interactions with other
system signals, such as the reference command and measurement
noise, thus the higher frequency content of these other inputs will
contribute most to the jitter disturbances. Lastly, the time domain

multiplication that occurs as part of each jitter disturbance can also
be viewed in the frequency domain as modulation, thus high fre-
quency interactions between jitter and the other system inputs can
result in low frequency disturbances.

3. Analysis of jitter’s effect on positioning error

As shown from modeling, the normalized sampling and control
jitter A[k] and y[k] disturb the digital control system by modulating
the discrete derivatives of the feedback signal and control output
signal, respectively. Using the discrete model from Fig. 7, this sec-
tion analyzes the effects of the jitter disturbances for two scenarios:
(1) regulation error resulting from jitter’s interaction with mea-
surement noise n[k] and (2) tracking error resulting from jitter’s
interaction with a reference command r[k]. The positioning error
(regulation or tracking) ¢[k] is defined as the desired plant output
(reference command) minus the actual plant output sampled by an
ideal sampler,

e[k] = r{k] - yp[k]. (21)

e[k] o | u[k]
YAy’
v [K] LEQl) u,[K]

Fig. 7. Fully discrete jitter disturbance model of a digital control system with non-
ideal sampler and ZOH.
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It should be noted that this definition of positioning error g[k] is
different from the control error e[k] = r[k] — y[k] (the desired plant
output minus the sampled sensor feedback), due to the presence
of measurement noise and sampling jitter. Positioning error &[k]
has been selected for evaluation because it represents the control
system performance with more fidelity than the feedback error e[k].

As jitter and measurement noise signals are primarily random,
normalized jitters, A[k] and y[k], and measurement noise, n[k], are

assumed to be stationary white noise with variances o7, 02, and o3,

2
ds2, (33)

| Pe)c(@? e ~ 1)

1 + P,(e/$2)C(ei$?)

1
orle =E(h?[k]) = ofo,zl—ﬂ

-7

where E(-) is the expected value operation and §2 is frequency in
rad/sample. The power spectrum density function (PSD), which is
the Fourier transform of a signal’s auto-correlation, can be com-
puted foreachregulation error componentsin Eq.(26). Accordingly,
the PSD of en[k], &¢[k], and &p[k] are

2

respectively. Accordingly, their auto-correlation functions are. n (aoToy _ ~ 2| _P 2(e/To)C(eTo)
qjes(el 0) =O0n 1 + Pz(eijO )C(eijO) (34)
. . 2 .
4 1 (7] Ce®)(1 - ed2) P,(ef*To) 2
g (ai0T0) — 5242 | - _J 2 g
Pee(€0) = 0oy <2n [ﬂ 14 P;(e/2)C(e%?) 1+ P,(e/To)C(e/To) =
, ™| p,(ei2)C(ef2) e T2 — 1) | JoTo\C(ei@Toy |2
Dl (6T0) = 0207 1 P(e77)C(e™ (e ™ — 1) ‘ P(e/0)C(e0) |© (36)
2 [ 1 1+ Py(ei$2)C(ei$?) 1+ P,(ef“To)C(ef*T0)
en[k] and ep,[k]’s PSDs can thus be compared as,
Gunlk] = 26[K] (2 fdandaldd b 2
h ( pi@T, JT i2\C( i) 0—if2
$12.[K] = 0Z3[K] (23)  Pele®0) _ o 1[0\ PAEEIC(ENe T =) o) (37
) D (e/@To) 2 _x 1+ P,(e/2)C(ei?)
Gyylkl = o38[K]. (24)
For a properly designed control system,

where §[k] is the Dirac delta function, ¢xx[k] is the autocorrelation
of signal x[k], as used for stochastic signal analysis in [26].

3.1. Regulation error analysis

For position regulation, the reference command can be assumed
to be zero without loss of generality: r[k] =0 V k. Consequently,
the positioning error in the regulation case (regulation error)
reduces to

e[k] = —ypk]. (25)

By decomposing the regulation error into components of measure-
ment noise n[k], control jitter disturbance g[k], and sampling jitter
disturbance h[k], it can be expressed as

elk] = enlk] + eg[k] + &plk], (26)
where

enlk] = n[k] + 2! (%) (27)
eglk] = glk] + 2! (%Zé(z)) (28)

(29)

enlk] = hik] « 2! ( P;(2)C(2) )

1+ P,(2)C(2)

Here, * is the convolution operation, and Z~!(.) is the inverse Z-
transform operation. Considering that y[k] and A[k] are typically
only a few percent, second-order and higher interactions are neg-
ligible. This simplifies the expressions for the jitter disturbances
to

_ -1
glk] = yIk] [n[kl w71 (W”)] (30)

1+ P;(z2)C(z)
_, [ P2)C2) (271 - 1)
hk] = A[k] [n[k]*z 1 <1+Pz(z)C(z)>] . (31)

Therefore, g[k] and h[k] are white noises with variances equal to
2

aQ (32)

¥

C(e?) (1-e79)

1
2 1 ooV TET)
1+ P,(e/2)C(ei52)

o = E(g?[K]) = 0}07 5
-7

|(P2(ei2)C(ei?)(e 2 — 1))/(1 + P,(e/?)C(e/2))| is much less than 2
for all frequencies. As a result,
2

de < 4. (38)

¥

1
2
-7

P,(e2)C(e?) (e — 1)
1+ P,(e12)C(ei%)

Considering that the normalized sampling jitter standard deviation
o, in most digital control systems is less than 0.1, ex[k] and & [k]’s
PSDs ratio is approximately

@28 ( eijo )

2
@I (eoTo) < 403 < 0.04. (39)

Therefore, sampling jitter has a negligible effect on regulation error,
and the total regulation error reduces to &[k] = en[k] + gg[k]. As
control jitter y[k] and measurement noise n[k] are generally uncor-
related, the PSD of the regulation error can be expressed as

Dee(T0) = P (e19T0) + P, (eT0). (40)

From expression of @%,(e/“To) in Eq. (35), it can be seen that con-
trol jitter operates primarily on the high frequency controller gain
to produce a low frequency disturbance, which is counteracted by
the controller’s disturbance rejection response. Consequently, the
presence of control jitter will contribute additional regulation error
to the digital control system. Integrating the PSD, the root-mean-
square (RMS) regulation error can be calculated as

17 2
0?2 =o? (271/ .Q)
-7
- 2
1
2.2
+ 050 —_— — = s
v 2w /_ 1+ P,(eif2)C(ei$?)

]
1 [ 2
— ds? 41
(2 / (41)
-7
In this result, the first term is the regulation error contribution from
measurement noise and the second term is the contribution from
control jitter. The overall regulation error magnitude is dependent

on the measurement noise, normalized control jitter, controller
gain, and controller disturbance rejection.

P,(e/)C(e*?)
1 + P,(e/$2)C(ei$?)

C(e?) (1-e79)

Pz(ejg)
1 + P,(e/$2)C(e/$?)
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Fig. 8. Frequency response of the jitter compensator for mitigating control jitter
disturbance on regulation error. wy is the system’s Nyquist frequency.

3.1.1. Solutions to jitter effect on regulation error

There are several methods that can be used to miti-
gate control jitter's effect on the regulation error. Since the
jitter disturbance enters the closed-loop as a disturbance
at the plant input, one method is to increase the con-
troller disturbance rejection capability. This attenuates the term
%ffn |Pz(ef9)/(1 +Pz(ef‘3)C(ef9))|2dQ from Eq. (41); however,
stability constraints will impose limits on the attainable distur-
bance rejection of the controller. A second method is to reduce
the jitter magnitude by improving task handling in operation sys-
tem or switching to better controller hardware with less jitter.
A third method is to attenuate the controller gain near the sys-
tem Nyquist frequency wy = 7/ Ty. This greatly attenuates the term
A 7 |(C@2)(1 - e2))/(1 + P(ei?)C(e12))|*dS2 in Eq. (41), as
its magnitude is primarily determined by high frequency signal
content due to the high-pass filtering effect of 1 — e, This can
be done by cascading a jitter compensator Cg(z), which consists of
a zero at the Nyquist frequency, with the existing controller. The
expression for this jitter compensator is

C142z7!
=

Fig. 8 shows the frequency response of Cg(z) as a function of normal-
ized frequency. C¢(2) has little effect on controller gain and phase
for frequencies less than one-tenth of the Nyquist frequency, but
greatly attenuates controller gain near the Nyquist frequency. As
a result, this jitter compensator can be directly cascaded with an
existing controller, largely mitigating the effect of control jitter on
regulation without requiring redesign of the existing controller.

Cg(2) (42)

3.2. Tracking error analysis

In the tracking case the measurement noise is assumed to be
zero (n[k] = 0) and the reference command r[k] is a deterministic
signal. By decomposing the positioning error (tracking error) into
components from reference signal r[k], control jitter disturbance
glk], and sampling jitter disturbance h[k], it can be expressed as

elk] = r[k] —yplk] = er[k] + eg[k] + ep[K], (43)
where

er[k] = r[k] + 2! ( (44)

1
1+ PZ(Z)C(Z))

esli] = gkl +2 " (et s ) (45)
enlk] = h[k] + 2! (%) . (46)

er|k]is the tracking error when there is no jitter, eg[k] is the tracking
error contributed by the control jitter disturbance, and &,[k] is the
tracking error contributed by the sampling jitter disturbance. In
motion control applications, repetitive command signals are widely
used and can be viewed as the sum of M distinctive single-tone
signals,

M
rkl = " Rm sin(@mkTo + ¢m), (47)

m=1

where Ry, wm, and ¢, are the mth signal component’s amplitude,
frequency inrad/s, and phase in rad, respectively. The tracking error
for non-repetitive finite-energy deterministic command tracking is
analyzed in Appendix B.

In accordance with the discrete model in Fig. 7, the control jitter
disturbance signal g[k] can be represented as

glk] = ylklua[k], (48)

where ua[k] =u[k —1]—u[k]. By ignoring second-order and
higher interactions, u[k] can be expressed as

_ Sz -1)
Uplk] = r[k] x 2 (H—PZ(Z)C(Z)> . (49)

The auto-correlation function of g[k] is then
bgglk, m] = E(g[klg[m]) = u [kloZ8[m — k]. (50)

Therefore, g[k] is a non-stationary white noise signal and its result-
ing tracking error contribution &g[k] is a non-stationary stochastic
signal. Although &¢[k]'s variance is time-varying, its mean value can
be used to evaluate the effect of the control jitter disturbance on
positioning error. This is calculated as

b4 2

E(s§[1<])=E(g2[l<l)%[ %
il i PZ(ejQ)
-y | |

M , )
o2 SRR | Cleinyeionts - 1) 12
14 2 |1+ P;(eiomTo)C(ei®wmTo)
m=1

1 [ 2
x <2n / d.Q> , (51)
-7
where (-) represents the temporal averaging operation.
Similarly, the sampling jitter disturbance h[k] can be expressed

Pz(ejg)
1 + P,(e/$2)C(e/$?)

as
h[k] = A[kly a[K], (52)

where ya [k] = y5[k] — y3[k — 1]. Ignoring second-order and higher
terms this can be expressed as

Po(2)C(z)(1 —z*)) . (53)

yalkl=rlk]« 2! ( 1+ P;(2)C(2)

The auto-correlation function of h[k] is then

Gnnlk, m] = E(h[k]h[m]) = y2 [klo28[m — k]. (54)
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(a) Fast tool servo.

(b) Real-time computer.

Fig. 9. Experimental setup consisting of a fast-tool servo and custom real-time computer.

Again, h[k] is a non-stationary white noise signal and its resulting
tracking error contribution &,[k] is a non-stationary stochastic sig-
nal. Thus the mean value of its variance is used to evaluate the effect
of the sampling jitter on positioning error, which can be calculated
as

g

P,(e/)C(el?)

2
1+ P,(ei2)C(ei®)

EE2IKT) = 022 [kl /
M
R, 2
=} (Zz )
m=1
1 [T 2
x (27( [ﬂ .Q) . (55)

Lastly, as &;[k] is a deterministic signal, its mean variance is
simply its mean-square value,

Py(e/mTo)C(e/mTo)[1 — e FomTo]
1 4 P,(e/emTo)C(e/wmTo)

P,(e/)C(e%?)
1+ P,(ei?)C(ei)

2

L ) (56)

R2
21k] = _m
Er[k] = Z p) ‘ 1 +Pz(ejme0 )C(ejmeo)
1

Generally, &;[k] can be completely eliminated by designing infinite
controller gain at frequency wm, therefore the remaining tracking
error is a result of jitter’s interaction with the reference command.
The overall tracking error magnitude is then dependent on the ref-
erence command, control jitter, sampling jitter, controller gain, and
controller disturbance rejection.

In order to mitigate jitter-contributed tracking error &g[k] and
en[k], the most effective way is to reduce the jitter magnitude, either
by software or operating system improvement or by switching to
better controller hardware with less jitter. It should be noted that
the previously discussed jitter compensator Cg(z) in Eq. (42) is gen-
erally not helpful inreducing jitter’s effect on tracking error because
the frequencies of the reference command are usually far less than
the system Nyquist frequency.

Using Eqs. (41), (51) and (55), jitter’s effect on positioning error
can be predicted without simulation. A key property of these rela-
tions is that they do not require analytical models of the system
(such as state space and transfer functions) and an experimentally
measured plant frequency response is sufficient to calculate the
effect of jitter.

4. Experimental results
Experiments are performed to validate the model and analy-

sis of the jitter disturbance effect presented in this paper. They
are conducted on an improved version of the fast-tool servo (FTS)

presented in [27], which is a high-bandwidth electro-magnetically
actuated precision machine tool that uses a capacitive probe for
position feedback. This FTS, shown in Fig. 9(a), can achieve 50 pm
stroke, 1.4 nm positioning error, and 750 g acceleration in contin-
uous operation. The digital control hardware is a custom real-time
computer made of high-performance digital signal processors and
a field programmable gate array [28]. This computer, shown in
Fig. 9(b), can achieve a sampling period of 1 s for floating-point
calculation of digital controllers with jitter less than 6 ns RMS.
This performance is significantly better than commercial controller
hardware, which typically is limited to <100 kHz sampling rate and
>100 ns jitter. It should be noted that experimental measurement
of jitters’ effect on positioning error is very difficult on most com-
mercial control hardware, because they do not provide the option
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Fig. 10. 8% RMS normalized jitter data used for the experiments.
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Fig. 11. Frequency responses of the fast-tool servo feedback control system.

to add extra amount of jitters in input and output timing and are
unable to achieve very low jitter (such as a few nano-seconds) to
establish a benchmark performance without jitter. The real-time
controller in Fig. 9(b) is a key enabling tool to investigate jitters’
effect experimentally.

Two experimental cases are conducted to demonstrate the
effect of jitter on motion control performance: (1) regulation error
resulting from jitter’s interaction with measurement noise and
(2) tracking error resulting from jitter's interaction with refer-
ence command. For each case, the sampling jitter and control jitter
effects are tested separately.

4.1. Experiment setup

Since the custom control hardware has nearly zero jitter, vari-
able delays is inserted into the real-time controller execution to

achieve a deterministic amount of sampling jitter or control jitter.
The added jitter uses pre-generated arrays of delay values to pro-
duce random white jitter with RMS magnitude ranging from 0 to
400 ns. Fig. 10 shows the added jitter data and histogram for the
case of 320 ns RMS. For experiments at other jitter magnitudes, the
jitter data in Fig. 10 is scaled accordingly. Although execution of
the control algorithm takes less than 1 s on the custom control
hardware, a sampling period of To = 4 s is used throughout all
experiments to accommodate additional jitter. Note that the jit-
ter percentage referred to throughout this section is relative to the
sampling period, as it refers to the normalized jitter from Eqs. (13)
and (18). For example, 160 ns RMS jitter for a 4 s sampling period
is 4% jitter.

The experimentally measured frequency response of the FTS is
shown in Fig. 11(a), from u[k] (input current in Amperes) to y[k]
(plant output in wm). Accordingly, a loop-shaping based controller
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Fig. 12. System block diagram of the experimental setup.

Cp(z) is designed to control the FTS, as follows:
(z—-0.9698)
(z-1)

5 (z — 0.9606)(z — 0.9352)
(z—0.3659)(z — 0.5471)(z — 0.081)

(22 —1.34492 - 0.9917)
(22 —0.8726z — 0.1904)

Cs(z) = 6.5702 x

(57)

This controller has three components: (1) an integrator that acts
from O to 1.2kHz; (2) a double-lead compensator to add phase
from 1kHz to 20kHz; and (3) a notch filter at 33 kHz to attenu-
ate the plant resonance at this frequency. The controller frequency
response is shown in Fig. 10(b). The resulting closed-loop fre-
quency response is shown in Fig. 10(c) and has a —3 dB bandwidth
of 15 kHz. Unless otherwise specified, the implemented controller
in all the experiments is the loop-shaping base controller, that is
C(z) = Cp(2).

Referring to Fig. 7, it is the positioning error e[k] = r[k] — y;[k]
and not the control error e[k] = r[k] —y[k] that represents the
control system performance. One challenge faced when attempt-
ing to experimentally measure jitter's effect is that yj[k] is not
readily available due to the presence of measurement noise n[k]
and sampling jitter disturbance h[k]. To overcome h[k], a double
sampling scheme is implemented in the custom real-time com-
puter, as shown in Fig. 12. In each control cycle, there are two
ADC sampling events of the plant output y,(t): one ADC with sam-
pling jitter is used to acquire y[k] for the controller calculation;
another ADC with zero sampled jitter is used to acquire y},[k] for
positioning performance evaluation. However, y},[k] still contains
measurement noise n*[k] (the combination of ADC noise and sen-
sor noise, 1.4 nm RMS). In the regulation experiment an additional
white noise ny[k] of 8 nm RMS is added, as shown in Fig. 12, in order
to make n*[k]'s contribution negligible, and therefore y},[k] can be
used to approximate y;[k]. In the tracking experiment the refer-
ence signal r[k] amplitude is set at 2 wm, which results in large
enough tracking error to dominate the contribution from n*[k],
therefore y},[k] can again be used to approximate yj[k]. Still, in
both cases there will be a slight difference between the experi-
mentally recorded positioning error and the true plant regulation
error due to n*[k]. It follows that the approximated expression for
the positioning error used for evaluating the effect of jitter in all
the experiments is g[k] ~ r[k] — y&,[k].
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(a) Measured regulation error in time domain.
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Fig. 13. Regulation error experimental results for no jitter.

4.2. Regulation error experimental results with white
measurement noise

For the regulation error experiment, the reference command
r[k] is set at zero and the added measurement noise ng[k]| is
a white stochastic 8 nm RMS signal. As a reference benchmark,
Fig. 13 shows the measured regulation error for zero sampling jit-
ter and zero control jitter. The measured 4.0 nm RMS regulation
error is smaller than the added noise ng[k] (8 nm RMS) because
much of the high frequency noise content is filtered by the plant
dynamics. As shown in Fig. 13(b), the regulation error PSD is
shaped similarly to the system’s closed-loop frequency response
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Fig. 14. Regulation error experimental results for 8% sampling jitter.

of Fig. 11(c), as predicted by the analytical PSD in Fig. 13(c).
The analytical PSD response in Fig. 13(c) is calculated using Eq.
(34).

4.2.1. Effect of sampling jitter on regulation error

In this experiment the control jitter is set to zero and the sam-
pling jitter is varied from 0% to 10% of the sampling period using
the jitter data from Fig. 10. Fig. 14(a) shows the measured regu-
lation error for 8% sampling jitter. There is no noticeable increase
in both the measured error waveform and PSD compared to the
0% jitter reference case from Fig. 13(b). This is consistent with the
analytically predicted PSD in Fig. 14(c), calculated from Egs. (34)
and (36). As discussed in Section 3, the sampling jitter contribution
to regulation error gy[k] is much less than the measurement
noise contribution to regulation error &,[k]. For other magnitudes
of sampling jitter, the measured and analytical RMS regulation
error is plotted in Fig. 15, again confirming the earlier conclu-
sion that the sampling jitter has a negligible effect on regulation
error.

4.2.2. Effect of control jitter on regulation error

In this experiment the sampling jitter is set at zero and
the control jitter is varied from 0% to 10% of the sampling
period using the jitter data from Fig. 10. Fig. 16(a) shows the
experimental measured regulation error for 8% control jitter.
In comparison with the zero control jitter benchmark result
in Fig. 13(a), the 8% control jitter causes the RMS regulation

error to increase by 90%, from 4.0nm to 7.7nm. Comparing
their PSDs, the major difference in the frequency domain occurs
around 1kHz, which corresponds to the controller’'s minimum
disturbance rejection region. This result is consistent with the
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Fig. 15. Measured and analytical RMS regulation error comparison for various
amounts of sampling jitter.



K. Smeds, X. Lu / Precision Engineering 36 (2012) 175-192 187

30
20
10
0
-10
=20
-30t

Measured
Regulation Error (nm)

RMS =7.7nm

0 50

100 150 200

Time (ms)

(a) Measured regulation error in time domain.

-
O[
8]

1
H

Measured
Regulation Error PSD (nmlez)

10’ 10° 10° 10* 10°
Frequency (Hz)

(b) Measured regulation error power spectral density.

-
OI
(=]

Analytical
Regulation Error PSD (nmlez)

10" 10° 10° 10* 10°
Frequency (Hz)

(c) Predicted regulation error power spectral density.

Fig. 16. Regulation error experimental results for 8% control jitter without jitter compensator.

analytically predicted PSD in Fig. 16(c), which is calculated from
Egs. (35) and (36). The analytical PSD shows that the control
jitter contribution to regulation error &g[k] is dominant over
the measurement noise contribution to regulation error e[k] in
the frequency range from 100Hz to 10kHz, thus causing the
total regulation error to increase. This result clearly indicates
that control jitter’s interaction with measurement noise produces
a low frequency disturbance that degrades position regulation
performance.

When the proposed jitter compensator Cg(z) is added to the
base controller, C(z) = Cp(z)C¢(z), the RMS regulation error greatly
decreases from 7.7 nm to 4.7 nm, despite the 8% control jitter. This
result is shown in Fig. 17(a). A comparison between Figs. 16 and 17
shows that the proposed jitter compensator successfully sup-
presses the control jitter disturbance at low frequencies, and
thus most of the regulation error contributed by control jitter is
eliminated.

The control jitter regulation error results are extended in Fig. 18,
which compares the analytical and measured RMS regulation error
for control jitter ranging from 0% to 10% RMS, with and with-
out the jitter compensator implemented. The analytical prediction
matches the experiment results very well and the jitter com-
pensator significantly attenuates the effect of control jitter on
regulation error.

4.3. Tracking error experimental results for a single harmonic
reference command

For the tracking error experiment there is no added mea-
surement noise, ny[k] =0 V k, and the reference command is
a 6kHz sinusoidal signal with a 4 wm peak-to-valley amplitude:
r[k] = 2 sin(2m x 6000 x kTy) um. Generally, tracking at such a high
frequency will result in the dominant tracking error contribu-
tion coming from the reference command component &:[k], as
expressed in Eq. (56). In order to show the tracking error con-
tributed by jitter, &-[k] should be eliminated by increasing the
controller gain at 6 kHz to infinity. This can be done by adding an
adaptive feed-forward cancelation (AFC) controller [29]

C(z) = Cp(2)(1 + Capc(2)). (58)

Here, Carc(z) contains four compensated frequencies at 6kHz,
12 kHz, 18 kHz, and 24 kHz, each with a gain of 200. The AFC com-
pensation at higher order harmonics of the reference command is
used to attenuate tracking error caused by the non-linearity of the
FTS actuator. Fig. 19 shows the tracking experiment results for no
jitter, with and without Carc(z). After implementing the AFC con-
troller, the tracking error was reduced by a factor of nearly 1000,
from 1.4 pm RMS to 1.6 nm RMS, which is close to the measure-
ment noise floor. From the tracking PSD comparison in Fig. 19(c),
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Fig. 17. Regulation error experimental results for 8% control jitter with the jitter compensator included in controller.
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Fig. 19. Tracking error experimental results for no jitter with and without AFC.

the AFC effectively removes all error components at the reference
signal frequency as well as at its higher frequency harmonics. In
all the following tracking experiments the AFC controller is imple-
mented and the 1.6 nm RMS tracking error with no jitter is used as
a benchmark.
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0 50 100 150
Time (ms)

(a) Measured tracking error in time domain.
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4.3.1. Effect of sampling jitter on tracking error

In this experiment the control jitter is set at zero and the
sampling jitter is varied from 0% to 10% of the sampling period
using the jitter data from Fig. 10. Fig. 20 shows the experimen-
tal measured tracking error and its PSD for 8% RMS sampling
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Tracking Error PSD (nmszz)

0
Frequency (Hz)

(b) Measured tracking error power spectral density.

Fig. 20. Tracking error experimental results for 8% sampling jitter.
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Fig. 21. Measured and predicted tracking error comparison for various amounts of
sampling jitter.

jitter. In comparison with the zero sampling jitter benchmark
results in Fig. 19, the tracking error RMS value increased by
6 times, from 1.6nm to 10nm. From the tracking error PSD
in Fig. 20(b) it can be seen that the major increase in track-
ing error from sampling jitter occurs in the low frequency
region.

The tracking error results with various amounts of sampling
jitter are shown in Fig. 21, which compares the analytical RMS
tracking error, calculated from Eq. (55), to the experimentally mea-
sured RMS tracking error for sampling jitter ranging from 0% to
10%. Notice that as sampling jitter approaches zero, the measured
error approaches 1.6 nm RMS, nearly the measurement noise floor
for the FTS system. In all cases, the analytical results predict the
trend of the experimental results with a small amount of mis-
match. This is believed to be related to the FTS plant non-linearity
which was not modeled in Fig. 7 and included in the analysis of
Eq. (55). These experimental results also indicate that the sampling
jitter disturbance h[k] can become the dominant source of position-
ing error, particularly for high-bandwidth precision motion control
systems.
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Fig. 23. Measured and predicted tracking error comparison for various amounts of
control jitter.

4.3.2. Effect of control jitter on tracking error

In this experiment the sampling jitter is set at zero and the con-
trol jitter is varied from 0% to 10% of the sampling period using the
jitter data from Fig. 10. Fig. 22 shows the experimental measured
tracking error and its PSD with 8% RMS control jitter. In comparison
with the zero control jitter benchmark results in Fig. 19, the track-
ing error RMS increased by 6 times, from 1.6 nm to 9.9 nm. From
the tracking error PSD in Fig. 22(b) it can be seen that the major
increase in tracking error due to control jitter occurs in the low fre-
quency region, particularly in the frequency range 100 Hz-10 kHz
where the controller’s disturbance rejection is lowest.

Fig. 23 extends the tracking error results for control jitter, com-
paring the analytically predicted RMS tracking error, calculated
from Eq. (51), to the experimentally measured RMS tracking error
for control jitter ranging from 0% to 10%. In all cases the results
match very well, validating the presented models and analyti-
cal results for control jitter. In addition, the experimental results
also demonstrate that control jitter can significantly degrade
positioning performance, particularly for high-speed precision
motion control systems.
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(b) Measured tracking error power spectral density.

Fig. 22. Tracking error experimental results for 8% control jitter.
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Fig. 24. Control jitter measurements for various Real-Time computers.
5. Conclusions

A new simplified discrete model (Fig. 7) was developed that
incorporates the effect of sampling jitter and control jitter as distur-
bances to the control system. Using this simplified model, analytical
formulas (Eqgs. (41), (51) and (55)) are derived to predict jitter’s
effect on positioning error for both regulation and tracking sce-
narios. These analytical relations, which can be solved using either
measured or analytical frequency responses of a control system,
are then experimentally demonstrated on a fast-tool servo machine
tool.

In the case of position regulation, sampling jitter generally has a
negligible effect on positioning error. In comparison, control jitter
can significantly degrade regulation performance, with positioning
error increasing from 4.0 nm RMS at zero control jitter to 7.7 nm
RMS at 8% control jitter in the experiments performed. Adding a
simple jitter compensator to the existing motion controller, con-
sisting of a zero at the Nyquist frequency, is shown to greatly
mitigate the position regulation error contributed by control jit-
ter, reducing the error to 4.7 nm RMS despite the presence of 8%
control jitter.

In the case of position tracking, both sampling jitter and control
jitter can significantly increase positioning error. When tracking
a 4 pm peak-to-valley 6kHz sinusoidal signal with the fast-tool
servo, sampling jitter increased the tracking error from 1.6 nm RMS
at zero jitter to 10 nm RMS at 8% jitter. Similarly, control jitter also
increased the tracking error to 10 nm RMS at 8% jitter. To attenu-
ate this additional tracking error, either the controller disturbance
rejection should be increased via controller redesign or a better
control system (hardware and operating system) with less jitter
should be utilized.

The close match between the analytical results and the exper-
imental results confirmed that the presented model and analysis
can be used to predict jitters’ effect on motion control performance,
and this is useful to do error budget in motion control system design
process.

Appendix A. Jitter measurement

Sampling jitter and control jitter can vary greatly in different
real-time computer implementations. It is mainly affected by fac-
tors such as task scheduling, input-output device synchronization,
interrupt handling, cache misses, and resource sharing.

The simplest way to measure sampling jitter and control jitter is
with an input timestamp and output timestamp, respectively; how-
ever, many real-time control implementations do not provide this
data. Further, even if timestamps are available, their definition and
exact implementation can vary from system to system, providing
misleading results. To guarantee a fair comparison between differ-
ent controller implementation, an external time-stamping setup is
used here to capture control jitter. The control jitter measurement
setup introduces an additional function at the end of a conven-
tional control cycle that switches a secondary DAC output between
0V and 2.5V. This output is then sent through a comparator and
into an FPGA, which captures the signal edges with 5 ns resolution
and stores the control output update timestamps TS[k]. To extract
the control jitter from these timestamps TS[k], a least square linear
fitting is performed to minimize the following sum

Z(TS[k] — Ak + B)?, (59)

k

where A and B are the least squares fitting coefficients and k is the
control cycle index. The control jitter is then calculated as

7c[k] = TS[k] — Ak — B. (60)

Control jitter measurements are made for the following three con-
troller implementations:

e xPCTarget on a P3 800 MHz processor with a NI-6036E DAQ card;
e dSPACE 1103;
e UBC’s custom control platform [28].

As shown by Fig. 24, the xPC Target implementation has 810 ns
RMS of control jitter, the dSPACE 1103 implementation has 155 ns
RMS of control jitter, and the custom UBC platform has 5.2 ns RMS
of control jitter. While there are some deterministic components
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to the control jitter, most of the signal energy comes from the
white random component. These results clearly demonstrate how
greatly control jitter can vary depending on the real-time com-
puting hardware. Other general purpose platforms exhibit several
microseconds of jitter [8,9].

Appendix B. Tracking error analysis for non-repetitive
reference command

Repetitive command tracking error is analyzed in Section 3.2.
Here only non-repetitive finite-energy reference command is con-
sidered, as non-repetitive infinite-energy gives infinite-energy
error. When a non-repetitive reference command has finite energy
Zi‘;focrz [k] < oo,its Fourier transform exists and can be expressed
as

(o)

R(&¥) = Z r{k]e~*2. (61)

k=—o00

The total summed square of ¢,[k] is calculated as from the discrete
model in Fig. 7

oo 1 T
> etk = 7 /
k=—o0 -

¥

R(ei2)

1+ P;(ei$2)C(ei$?) (62)

Although gg[k]’s variance is time-varying, the summed variance of
&g[k] can be derived as follows:

%) %) . 2
201 _ TG I P,(e/?)
kZE(gg[k])_kZ Eg [k])Zn 2 | 1+ Pz(ei$2)C(ei$?) dsz
> N
=02y 12 [k]—/ — - | dR. (63)
V,Z;o AT | 11+ P(ei2)C(e?)
According to Parseval’s identity [30],
< 1 (" |RE2)c(e2)e2 - 1)[*
u? [k =7/ 4 . Q. (64)
k=z—oo alkl =57 | 1+P(eiR)C(e9)

As a result, the summed variance of gg[k] is

Z E(e2[k]) = 02 % /

k=—00
1 b4
(]
-7

Similarly, the summed variance of ¢j[k] for non-repetitive refer-
ence command is derived as

R(&I)C(e2)(ei2 — 1)|?
1 + P,(ef$2)C(e$?)

P,(e?)

1+ P(e2)C(@9) (83)

o0

~ b i i 2
3 Bk = ZE(hzlkD%/ %
k=—00 ke=—o0 N Z
o1 [T PR |
_o-kk_zyA[k g/ T o) | 1
o 1 [T REPIP(E2)C(eP)(1 — eF2) ’
=%\ 27 /_n 1+ P,(ei?)C(ei9?) “

P,(e/)C(e/?)

1+ P(62)C(@2) (66)
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