ECE 460/560 Midterm Exam Study Guide

7

< Process Concepts (Lectures and Theory HW1)

» Concepts for systems of concurrent processes

Process relationships: Concurrency, synchronization, communication

Process types: Software. Threads (inc. tasks), handlers (ISRs). Hardware peripherals

Inter-process synchronization and communication: SW->SW, SW->HW, HW->SW, HW->HW

Aspects of inter-process communication: How many senders? How many receivers? Notify receiver of
new data? Notify sender of reception? Allow data loss or buffer it? How much buffering?

Software process scheduling: implicit program instruction sequence, interrupt system, task/process
scheduler

» Use of concurrent processes for embedded systems

Web of processing chains connecting inputs and outputs
Processing chain stages
Stage implementations in software and/or hardware

» Analyzing timing for example system: quadrature decoder for shaft encoder (THW1)

Determine signal timing behavior and sampling requirements (deadline window)

Determine CPU timing behavior (interrupt response, input sampling, processing)

Determine maximum shaft rotation speed based on signal timing requirements, CPU timing behavior,
and required free CPU utilization

¢+ Process Synchronization (Lectures and Theory HW 2)

» Why synchronize?

Synchronizing because of I/0 — Key feature for embedded and real-time systems

e Synchronize to event or time

e Synchronizing software process reduces its timing variability (possible timing error) of when a given
instruction might execute relative to the sync operation

e Timing variability grows after synchronization due to software and hardware complexities (different
control flow path durations, preemption, pipeline stalls, memory system latency, etc.)

Synchronization with other processes to allow/prevent progress, enable correct communication

» Synchronize what?

Which parts in a software process can be synchronized (Start, certain parts, anywhere) to an event?
How is it done (in-line code, interrupt system, task scheduler, finite state machine, OS)?

» Triggering a Process : “Sync and Do”

Processing Stages for “Sync and Do”
e Sync
¢ Trigger Conversion if needed (external signal, converter not free-running)
¢ Convert Data if needed (external signal)
» Sample input
» Quantize to digital value
¢ Detect Event
» Analyze sampled, quantized data
» Decide if event was detected
¢ Schedule “do” work
» Select processing based on event detection, possibly other factors (priority, etc.)

Fall 2025 v2

» Dispatch it -start it running
e Do: Execute “do” code in process or interrupt/exception handler, or trigger “do” hardware processing
= |Implementations of processing stages
e Software. Process/task code, scheduler/OS
e Hardware: peripherals, interrupt system, peripheral event interconnect, DMA
= Synchronization and communication between stages in processing chain
> Safely Sharing Resources among Processes - “Sync and Don’t”
= Volatile data type modifier: What it does, why to use it, and how to use it
= (Critical sections of code for a shared resource
e Shareable resources: data variables, hardware peripherals
o Why mutual exclusion is needed
e |dentify critical sections (and their instructions) in program with multiple processes
e Understand how certain factors affect which code sequences are critical sections
¢ CPU instruction set architecture (load/store?)
¢ Software process preemption and prioritization across thread-level code (thread, process, task)
and handler-level code (interrupt and exception handlers)
¢ Hardware peripherals
«» Application Analysis Process
> Identify inputs, outputs and processes, and their key connections
Identify key hardware and software stages based on fundamental peripheral features
Analyze processes for synchronization and communication driven by I/0 requirements
Analyze processes for sync and comm with each other
Define initial architecture considering most critical/difficult processing stages and interactions.
Refine to detailed design and implementation. (Functionality first, then performance). Iterate as needed.
+» Software Scheduling (Lectures and Theory HW 3)
» Interrupt System: Peripherals, Interrupt Controller, Interrupt Handlers
» Task Scheduler Evolution from while(1) loop to RTCS (Run To Completion Scheduler):
= Code generalization, modularization and abstraction

YV V V V VY

= Schedulerinterface for data protection
= Task prioritization
= Timertick and periodic tasks
» Evaluate impact of different process scheduling approaches on responsiveness in event-triggered system
built on interrupt system and software non-preemptive task scheduling
= Static task ordering
= Eventdetection with polling or interrupts
= Dynamic task ordering by priority
= Processing work in task or interrupt handler

2 Fall 2025 v2

« ESF Textbook
» Chapter 1 -Introduction
= General concepts, MCU vs. MPU, peripherals
» Chapter 2 - General-Purpose Input/Output
= How to read digital inputs, how to write digital outputs
e PORT peripheral, pin multiplexing concepts
e GPIO peripheral configuration and use, especially control registers PDDR, PDIR, PDOR, PSOR,
PCOR, PTOR
= Chapter 3 - Basics of Software Concurrency
e Software scheduling approaches
e Turning code into finite state machines
e Why peripherals generate interrupts (e.g. THW2)
e Polling hardware peripherals for status (e.g. timer)
e Portinterrupt concepts (e.g. for input switches)
= Chapter 4 - ARM Cortex-M0+ Processor Core and Interrupts
e High-level understanding of CPU and instruction set architecture, especially:
¢ Memory access is only load/store
¢ Processor normally operates in thread mode, switches temporarily to handler mode when
executing interrupt/exception handlers
e Interrupt system, especially:
¢ Concepts of operation (pause thread, save some context, execute handler, restore context,
resume thread)
e Process synchronization and scheduling
¢ Role of peripherals, interrupt system and CPU
= Chapter5-Cin Assembly Language — not covered in midterm
= Chapter 6 — Analog Interfacing
e Understanding sampling and quantization,
¢ Use atransfer function to convert a voltage to/from its quantized (digital) value
e Understanding how analog comparator, DAC and ADC work, and their relative conversion speeds
e Understand concepts in peripheral code examples
= Chapter 7 -Timers
e Onlyto extent covered in lectures and homework
¢ Measure elapsed time
¢ Generate periodic interrupts
= Chapter 8 — Serial Communications
e Onlyto extent covered in lectures and homework
¢ Asynchronous serial communication
» Data format and timing
» UART peripheral
= Chapter 9 - Direct Memory Access
e Onlyto extent covered in lectures and homework
¢ With each trigger event, copy data item(s) in memory from source to destination, potentially
incrementing addresses
¢ Triggerable by peripherals

3 Fall 2025 v2

