
1 Fall 2025 v2

ECE 460/560 Midterm Exam Study Guide
❖ Process Concepts (Lectures and Theory HW1)

➢ Concepts for systems of concurrent processes
▪ Process relationships: Concurrency, synchronization, communication
▪ Process types: Software. Threads (inc. tasks), handlers (ISRs). Hardware peripherals
▪ Inter-process synchronization and communication: SW->SW, SW->HW, HW->SW, HW->HW
▪ Aspects of inter-process communication: How many senders? How many receivers? Notify receiver of

new data? Notify sender of reception? Allow data loss or buffer it? How much buffering?
▪ Software process scheduling: implicit program instruction sequence, interrupt system, task/process

scheduler
➢ Use of concurrent processes for embedded systems

▪ Web of processing chains connecting inputs and outputs
▪ Processing chain stages
▪ Stage implementations in software and/or hardware

➢ Analyzing timing for example system: quadrature decoder for shaft encoder (THW1)
▪ Determine signal timing behavior and sampling requirements (deadline window)
▪ Determine CPU timing behavior (interrupt response, input sampling, processing)
▪ Determine maximum shaft rotation speed based on signal timing requirements, CPU timing behavior,

and required free CPU utilization
❖ Process Synchronization (Lectures and Theory HW 2)

➢ Why synchronize?
▪ Synchronizing because of I/O – Key feature for embedded and real-time systems

• Synchronize to event or time
• Synchronizing software process reduces its timing variability (possible timing error) of when a given

instruction might execute relative to the sync operation
• Timing variability grows after synchronization due to software and hardware complexities (different

control flow path durations, preemption, pipeline stalls, memory system latency, etc.)
▪ Synchronization with other processes to allow/prevent progress, enable correct communication

➢ Synchronize what?
▪ Which parts in a software process can be synchronized (Start, certain parts, anywhere) to an event?
▪ How is it done (in-line code, interrupt system, task scheduler, finite state machine, OS)?

➢ Triggering a Process : “Sync and Do”
▪ Processing Stages for “Sync and Do”

• Sync
 Trigger Conversion if needed (external signal, converter not free-running)
 Convert Data if needed (external signal)

➢ Sample input
➢ Quantize to digital value

 Detect Event
➢ Analyze sampled, quantized data
➢ Decide if event was detected

 Schedule “do” work
➢ Select processing based on event detection, possibly other factors (priority, etc.)

2 Fall 2025 v2

➢ Dispatch it – start it running
• Do: Execute “do” code in process or interrupt/exception handler, or trigger “do” hardware processing

▪ Implementations of processing stages
• Software. Process/task code, scheduler/OS
• Hardware: peripherals, interrupt system, peripheral event interconnect, DMA

▪ Synchronization and communication between stages in processing chain
➢ Safely Sharing Resources among Processes - “Sync and Don’t”

▪ Volatile data type modifier: What it does, why to use it, and how to use it
▪ Critical sections of code for a shared resource

• Shareable resources: data variables, hardware peripherals
• Why mutual exclusion is needed
• Identify critical sections (and their instructions) in program with multiple processes
• Understand how certain factors affect which code sequences are critical sections

 CPU instruction set architecture (load/store?)
 Software process preemption and prioritization across thread-level code (thread, process, task)

and handler-level code (interrupt and exception handlers)
 Hardware peripherals

❖ Application Analysis Process
➢ Identify inputs, outputs and processes, and their key connections
➢ Identify key hardware and software stages based on fundamental peripheral features
➢ Analyze processes for synchronization and communication driven by I/O requirements
➢ Analyze processes for sync and comm with each other
➢ Define initial architecture considering most critical/difficult processing stages and interactions.
➢ Refine to detailed design and implementation. (Functionality first, then performance). Iterate as needed.

❖ Software Scheduling (Lectures and Theory HW 3)
➢ Interrupt System: Peripherals, Interrupt Controller, Interrupt Handlers
➢ Task Scheduler Evolution from while(1) loop to RTCS (Run To Completion Scheduler):

▪ Code generalization, modularization and abstraction
▪ Scheduler interface for data protection
▪ Task prioritization
▪ Timer tick and periodic tasks

➢ Evaluate impact of different process scheduling approaches on responsiveness in event-triggered system
built on interrupt system and software non-preemptive task scheduling
▪ Static task ordering
▪ Event detection with polling or interrupts
▪ Dynamic task ordering by priority
▪ Processing work in task or interrupt handler

3 Fall 2025 v2

❖ ESF Textbook
➢ Chapter 1 – Introduction

▪ General concepts, MCU vs. MPU, peripherals
➢ Chapter 2 – General-Purpose Input/Output

▪ How to read digital inputs, how to write digital outputs
• PORT peripheral, pin multiplexing concepts
• GPIO peripheral configuration and use, especially control registers PDDR, PDIR, PDOR, PSOR,

PCOR, PTOR
▪ Chapter 3 – Basics of Software Concurrency

• Software scheduling approaches
• Turning code into finite state machines
• Why peripherals generate interrupts (e.g. THW2)
• Polling hardware peripherals for status (e.g. timer)
• Port interrupt concepts (e.g. for input switches)

▪ Chapter 4 – ARM Cortex-M0+ Processor Core and Interrupts
• High-level understanding of CPU and instruction set architecture, especially:

 Memory access is only load/store
 Processor normally operates in thread mode, switches temporarily to handler mode when

executing interrupt/exception handlers
• Interrupt system, especially:

 Concepts of operation (pause thread, save some context, execute handler, restore context,
resume thread)

• Process synchronization and scheduling
 Role of peripherals, interrupt system and CPU

▪ Chapter 5 – C in Assembly Language – not covered in midterm
▪ Chapter 6 – Analog Interfacing

• Understanding sampling and quantization,
 Use a transfer function to convert a voltage to/from its quantized (digital) value

• Understanding how analog comparator, DAC and ADC work, and their relative conversion speeds
• Understand concepts in peripheral code examples

▪ Chapter 7 – Timers
• Only to extent covered in lectures and homework

 Measure elapsed time
 Generate periodic interrupts

▪ Chapter 8 – Serial Communications
• Only to extent covered in lectures and homework

 Asynchronous serial communication
➢ Data format and timing
➢ UART peripheral

▪ Chapter 9 – Direct Memory Access
• Only to extent covered in lectures and homework

 With each trigger event, copy data item(s) in memory from source to destination, potentially
incrementing addresses

 Triggerable by peripherals

