NC STATE UNIVERSITY

Dynamic Memory Allocation

Variable Scope and Lifetime

= Scope: What parts of program can access
the variable?

= File: Accessible to everything in file after
declaration

= Block: Accessible to everything in block after
declaration

= Block defined by matching { and }
= A function is a block

= Nested blocks are possible (e.g.
automatic_block_scope)

NC STATE UNIVERSITY

int static file scope;

void functionl (int arg) ({
int automatic function scope;
static int static function scope;
if (arg > 0) {
int automatic block scope;

}

« Lifetime: How long does the variable exist?" IS variable allocated space in memory?

= Static: lifetime = program. Memory not
reusable

= Automatic: lifetime = block. Memory reusable

= Dynamic: lifetime = user-defined. Memory
reusable

= Variables allocated space in memory by default

= Variables with least scope and lifetime are
easier for compiler to optimize by eliminating
memory, just using registers

NC STATE UNIVERSITY

Variable Lifetimes

Program Activity/
Call Stack
Static
Automatic
Dynamic
Time
= Static: lifetime = program = Dynamically-allocated: lifetime = from
= Allocated (given address) at build time, never allocate to free
freed. Not reusable = Allocated by user, freed by user
= Automatic function: lifetime = function = Lifetime not limited to program , function or
= Allocated at function entry, freed at function block
exit. Reusable = Reusable
= Automatic block: lifetime = block = Further information:
= Allocated at { block entry, freed at } block exit. = https://blog.feabhas.com/2010/09/scope-and-

Reusable lifetime-of-variables-in-c/

https://blog.feabhas.com/2010/09/scope-and-lifetime-of-variables-in-c/
https://blog.feabhas.com/2010/09/scope-and-lifetime-of-variables-in-c/
https://blog.feabhas.com/2010/09/scope-and-lifetime-of-variables-in-c/
https://blog.feabhas.com/2010/09/scope-and-lifetime-of-variables-in-c/
https://blog.feabhas.com/2010/09/scope-and-lifetime-of-variables-in-c/
https://blog.feabhas.com/2010/09/scope-and-lifetime-of-variables-in-c/
https://blog.feabhas.com/2010/09/scope-and-lifetime-of-variables-in-c/
https://blog.feabhas.com/2010/09/scope-and-lifetime-of-variables-in-c/
https://blog.feabhas.com/2010/09/scope-and-lifetime-of-variables-in-c/
https://blog.feabhas.com/2010/09/scope-and-lifetime-of-variables-in-c/
https://blog.feabhas.com/2010/09/scope-and-lifetime-of-variables-in-c/
https://blog.feabhas.com/2010/09/scope-and-lifetime-of-variables-in-c/
https://blog.feabhas.com/2010/09/scope-and-lifetime-of-variables-in-c/
https://blog.feabhas.com/2010/09/scope-and-lifetime-of-variables-in-c/

Dynamic Memory Allocation Functions in C

Standard library d iC me\mory allocation functions <stdlib.h>

NOLC T8 v

y Aalloc(size_t size)

e o = C\(w\' Jé>y/m\lé)f_< ""’\>

?

= Allocate memory block of size bytes — CC\‘QP¥> Mal}oc_

= C operator sizeof() give size in bytes
= Of data type, variable or expression result

L] [/—.. = . [Y
= void * calloc(size t nitems, size t size)
= Allocate memory block of nitems*size bytes

and Elear it to zero
= void free (void * ptr) — — &
= Return allocated block of memory for reuse
= void * realloc(void * ptr, size t size)
= Change size of previously allocated block.

Shrink existing block, or allocate a new block
and copy over data (limited by smaller size)

Re \

———

NC STATE UNIVERSITY

NC STATE UNIVERSITY

How Does Dynamic Memory Allocation Work?

NULL (0) — end of list

Free List Info | Free

Heap Memory

-

FreelD

= Uses the “heap” section of memory = Keep track of free space with linked list
= Heap_Size defined in startup_MKL25Z4.h starting with FreelList pointer
= Statically allocated at build time = Each list entry holds size of free memory block,

pointer to next free memory block

NC STATE UNIVERSITY

NULL (0) — end of list Free List Info | Free

Heap Memory

Example Operations

FreeListj

= Allocation of N byte block (malloc, calloc)
= Find first block B which is large enough

int * a, * b, * c;

a = (int *) malloc(100);
b = (int *) malloc(200) ;
free(a);

a = (int *) O;

c = (int *) malloc(64);

= If size of B> N bytes, split B into two blocks (one used, one
unused)

= Update list pointers as needed
= Return pointer to start of allocated block

Allocate 100-Byte Block for Pointer a

int * a

\ Heap Memory

FreeLisD NULL (0) — end of list

= Allocation of N byte block (malloc, calloc)
= Find first block B which is large enough

= If size of B> N bytes, split B into two blocks (one used, one
unused)

= Update list pointers as needed
= Return pointer to start of allocated block

int * a, * b, * c;
a = (int ¥*) malloc(lOO);

b = (int *) malloc (200);
free(a);

a = (int *) 0;

c = (1int *) malloc(64);

NC STATE UNIVERSITY

NC STATE UNIVERSITY

Allocate 200-Byte Block for Pointer b

int * a int * b

/0 NULL
LFreeListj \ /

= Allocation of N byte block (malloc, calloc)
= Find first block B which is large enough

int * a, * b, * c¢;

a = (int *) malloc(100);
b = (int *) malloc (200);
free(a);

a = (int *) O;

c = (1nt *) malloc(o64);

= If size of B> N bytes, split B into two blocks (one used, one
unused)

= Update list pointers as needed
= Return pointer to start of allocated block

NC STATE UNIVERSITY

De-Allocate Pointer a’s Block

int * a int * b

1 /- NULL
LFreeLisD \ /

= Deallocation of block (free)

= |f block to free is adjacent to a block in FreelList, merge them and
update the list entry

int * a, * b, * c;

a = (int *) malloc (100);
b = (int *) malloc (200);
free(a) ;

a = (int *) O;

c = (int *) malloc(64);

= Else add list entry with pointer to B (and size) to FreelList

= Note that a is still pointing to the memory block!
= For safety should set a to null pointer: (int *) O;

NC STATE UNIVERSITY

Allocate 64-Byte Block for Pointer c

int * a int * b int * c

\DNULL /

& &

> N W NULL
FreeList

= Allocation of N byte block (malloc, calloc)
= Find first block B which is large enough

= If size of B> N bytes, split B into two blocks (one used, one
unused)

= Update list pointers as needed
int *) 0;

c = (int *) malloc(64);

= Return pointer to start of allocated block

NC STATE UNIVERSITY

Fragmentation and Dynamic Memory Allocation

. Here!
It doesn’t fit anywhere! .
Single pool handling all request sizes Pool for 16- Pool for 32-
(e.g. 16 and 32 bytes) byte requests byte requests
= Standard dynamic memory allocation = Custom dynamic memory allocation
= malloc, calloc, free, etc. = Use a separate memory pool for each size of
= Use a single memory pool data to be allocated
= Problem = Eliminates fragmentation within a pool
(internal)

= Allocating and freeing different size objects

_ : _ .
causes “internal fragmentation” Improves timing performance as well

= Free memory space is distributed in fragments - Common RTOS feature

which are too small to use = Drawback: fixed partition

= May have external fragmentation if pools are
| not sized well for memory requirements

NC STATE UNIVERSITY

CMSIS-RTOS2 Memory Pool

MemPool

= Pool contains multiple fixed-size blocks of memory
= Linked list of available memory blocks
= Since all blocks in pool are same size, allocation and freeing are very fast and easy

= Can create multiple pools, one per object (block) size
= https://www.keil.com/pack/doc/CMSIS/RTOS2/html/group CMSIS RTOS PoolMgmt.html

https://www.keil.com/pack/doc/CMSIS/RTOS2/html/group__CMSIS__RTOS__PoolMgmt.html
https://www.keil.com/pack/doc/CMSIS/RTOS2/html/group__CMSIS__RTOS__PoolMgmt.html

NC STATE UNIVERSITY

CMSIS-RTOS2 Memory Pool Creation and Destruction

= osMemoryPoolld t osMemoryPoolNew(block count,
block_size, attributes)
= Creates and initializes a memory pool
= Returns ID for pool

= osMemoryPoolld t osMemoryPoolDelete(pool id)

= Deletes memory pool, frees up space for other calls to
osMemoryPoolNew

CMSIS-RTOS2 Memory Pool Use

= void * osMemoryPoolAlloc(pool id,
timeout)

= Returns address of allocated memory block, or
NULL if no memory available

= |f no memory available, can block until available
(or time out)

= osStatus_t osMemoryPoolFree(pool id,
block)
= Frees block in pool for future allocation
= Return value
= 0sOK, osErrorResource, oskErrorParameter

NC STATE UNIVERSITY

CMSIS-RTOS2 Memory Pool Metrics

= uint32_t osMemoryPoolGetBlockSize(pool _id)
= Returns size of block in bytes

= uint32_t (pool_id)

= Returns max. number of memory blocks in pool

= uint32_t (pool_id)

= Returns number of memory blocks available

= uint32_t osMemoryPoolGetCount(pool id)
= Returns number of memory blocks used

NC STATE UNIVERSITY

NN

RTX Demo: Memory Pool

= Thread_Read_Switches polls

switches

= |f SW1 pressed, start creating an LED
flashing pattern in memory

= Allocates pattern memory from pool

= When SW1 released, send that pattern
as a message to Thread _RGB

= Put copies pattern into message

= Then free pattern memory, returning
it to pool

= Thread RGB waits for message

= Plays RGB sequence specified in
message

NC STATE UNIVERSITY
<

Thread
Read
Switches

Message
Queue <

R
Pta
-
-
-
P
-
-
-
-

Thread
RGB

OLD

NC STATE UNIVERSITY

NC STATE UNIVERSITY

Example Operations

NULL (0) — end of list

Heap Memory

FreeLisD

= Allocation of N byte block (malloc, calloc)
= Find first block B which is large enough
= |f size of B > N bytes, split B. Update list entry with (size of B)-N
= Update list pointers as needed

int * a, * b, * c;

a = (int *) malloc(100);
b = (int *) malloc(200) ;
free(a) ;

= Return pointer to start of allocated block _
c = (int *) malloc(64);

= Deallocation of block (free)

= |f block to free is adjacent to a block in FreelList, merge them and
update the list entry

. " Else add list entry with pointer to B (and size) to FreelList

	Dynamic Memory Allocation_v1
	Dynamic Memory Allocation
	Variable Scope and Lifetime
	Variable Lifetimes
	Dynamic Memory Allocation Functions in C
	How Does Dynamic Memory Allocation Work?
	Example Operations
	Allocate 100-Byte Block for Pointer a
	Allocate 200-Byte Block for Pointer b
	De-Allocate Pointer a’s Block
	Allocate 64-Byte Block for Pointer c
	Fragmentation and Dynamic Memory Allocation
	CMSIS-RTOS2 Memory Pool
	CMSIS-RTOS2 Memory Pool Creation and Destruction
	CMSIS-RTOS2 Memory Pool Use
	CMSIS-RTOS2 Memory Pool Metrics
	RTX Demo: Memory Pool
	Old
	Example Operations

