
1

Dynamic Memory Allocation

2

int static_file_scope;

void function1(int arg) {

 int automatic_function_scope;

 static int static_function_scope;

 if (arg > 0) {

 int automatic_block_scope;

 }

}

▪ Scope: What parts of program can access
the variable?
▪ File: Accessible to everything in file after

declaration

▪ Block: Accessible to everything in block after
declaration

▪ Block defined by matching { and }

▪ A function is a block

▪ Nested blocks are possible (e.g.
automatic_block_scope)

▪ Lifetime: How long does the variable exist?
▪ Static: lifetime = program. Memory not

reusable

▪ Automatic: lifetime = block. Memory reusable

▪ Dynamic: lifetime = user-defined. Memory
reusable

▪ Is variable allocated space in memory?
▪ Variables allocated space in memory by default

▪ Variables with least scope and lifetime are
easier for compiler to optimize by eliminating
memory, just using registers

Variable Scope and Lifetime

3

▪ Static: lifetime = program
▪ Allocated (given address) at build time, never

freed. Not reusable

▪ Automatic function: lifetime = function
▪ Allocated at function entry, freed at function

exit. Reusable

▪ Automatic block: lifetime = block
▪ Allocated at { block entry, freed at } block exit.

Reusable

▪ Dynamically-allocated: lifetime = from
allocate to free
▪ Allocated by user, freed by user

▪ Lifetime not limited to program , function or
block

▪ Reusable

▪ Further information:
▪ https://blog.feabhas.com/2010/09/scope-and-

lifetime-of-variables-in-c/

Variable Lifetimes

Time

Static

Automatic

Dynamic

Program Activity/

Call Stack

https://blog.feabhas.com/2010/09/scope-and-lifetime-of-variables-in-c/
https://blog.feabhas.com/2010/09/scope-and-lifetime-of-variables-in-c/
https://blog.feabhas.com/2010/09/scope-and-lifetime-of-variables-in-c/
https://blog.feabhas.com/2010/09/scope-and-lifetime-of-variables-in-c/
https://blog.feabhas.com/2010/09/scope-and-lifetime-of-variables-in-c/
https://blog.feabhas.com/2010/09/scope-and-lifetime-of-variables-in-c/
https://blog.feabhas.com/2010/09/scope-and-lifetime-of-variables-in-c/
https://blog.feabhas.com/2010/09/scope-and-lifetime-of-variables-in-c/
https://blog.feabhas.com/2010/09/scope-and-lifetime-of-variables-in-c/
https://blog.feabhas.com/2010/09/scope-and-lifetime-of-variables-in-c/
https://blog.feabhas.com/2010/09/scope-and-lifetime-of-variables-in-c/
https://blog.feabhas.com/2010/09/scope-and-lifetime-of-variables-in-c/
https://blog.feabhas.com/2010/09/scope-and-lifetime-of-variables-in-c/
https://blog.feabhas.com/2010/09/scope-and-lifetime-of-variables-in-c/

4

▪ void * malloc(size_t size)
▪ Allocate memory block of size bytes

▪ C operator sizeof() give size in bytes
▪ Of data type, variable or expression result

▪ void * calloc(size_t nitems, size_t size)
▪ Allocate memory block of nitems*size bytes

and clear it to zero

▪ void free (void * ptr)
▪ Return allocated block of memory for reuse

▪ void * realloc(void * ptr, size_t size)
▪ Change size of previously allocated block.

Shrink existing block, or allocate a new block
and copy over data (limited by smaller size)

Dynamic Memory Allocation Functions in C
Standard library dynamic memory allocation functions <stdlib.h>

5

How Does Dynamic Memory Allocation Work?

Heap Memory

FreeList

NULL (0) – end of list

▪ Uses the “heap” section of memory
▪ Heap_Size defined in startup_MKL25Z4.h

▪ Statically allocated at build time

▪ Keep track of free space with linked list
starting with FreeList pointer
▪ Each list entry holds size of free memory block,

pointer to next free memory block

UsedFreeFree List Info

6

▪ Allocation of N byte block (malloc, calloc)
▪ Find first block B which is large enough

▪ If size of B > N bytes, split B into two blocks (one used, one
unused)

▪ Update list pointers as needed

▪ Return pointer to start of allocated block

Example Operations

Heap Memory

FreeList

NULL (0) – end of list UsedFreeFree List Info

int * a, * b, * c;

a = (int *) malloc(100);

b = (int *) malloc(200);

free(a);

a = (int *) 0;

c = (int *) malloc(64);

7

▪ Allocation of N byte block (malloc, calloc)
▪ Find first block B which is large enough

▪ If size of B > N bytes, split B into two blocks (one used, one
unused)

▪ Update list pointers as needed

▪ Return pointer to start of allocated block

Allocate 100-Byte Block for Pointer a

Heap Memory

FreeList
NULL (0) – end of list

int * a

100 bytes

int * a, * b, * c;

a = (int *) malloc(100);

b = (int *) malloc(200);

free(a);

a = (int *) 0;

c = (int *) malloc(64);

8

▪ Allocation of N byte block (malloc, calloc)
▪ Find first block B which is large enough

▪ If size of B > N bytes, split B into two blocks (one used, one
unused)

▪ Update list pointers as needed

▪ Return pointer to start of allocated block

Allocate 200-Byte Block for Pointer b

FreeList

NULL

int * a

200 bytes

int * b

100 bytes

int * a, * b, * c;

a = (int *) malloc(100);

b = (int *) malloc(200);

free(a);

a = (int *) 0;

c = (int *) malloc(64);

9

▪ Deallocation of block (free)
▪ If block to free is adjacent to a block in FreeList, merge them and

update the list entry

▪ Else add list entry with pointer to B (and size) to FreeList

▪ Note that a is still pointing to the memory block!
▪ For safety should set a to null pointer: (int *) 0;

De-Allocate Pointer a’s Block

FreeList

NULL

int * a, * b, * c;

a = (int *) malloc(100);

b = (int *) malloc(200);

free(a);

a = (int *) 0;

c = (int *) malloc(64);

int * a

200 bytes

int * b

100 bytes

NULL

10

▪ Allocation of N byte block (malloc, calloc)
▪ Find first block B which is large enough

▪ If size of B > N bytes, split B into two blocks (one used, one
unused)

▪ Update list pointers as needed

▪ Return pointer to start of allocated block

Allocate 64-Byte Block for Pointer c

FreeList

NULL

int * a, * b, * c;

a = (int *) malloc(100);

b = (int *) malloc(200);

free(a);

a = (int *) 0;

c = (int *) malloc(64);

int * c

200 bytes

int * b

NULL

64 bytes

int * a

11

▪ Standard dynamic memory allocation
▪ malloc, calloc, free, etc.

▪ Use a single memory pool

▪ Problem
▪ Allocating and freeing different size objects

causes “internal fragmentation”

▪ Free memory space is distributed in fragments
which are too small to use

▪ Custom dynamic memory allocation
▪ Use a separate memory pool for each size of

data to be allocated

▪ Eliminates fragmentation within a pool
(internal)

▪ Improves timing performance as well

▪ Common RTOS feature

▪ Drawback: fixed partition
▪ May have external fragmentation if pools are

not sized well for memory requirements

Fragmentation and Dynamic Memory Allocation

Single pool handling all request sizes

(e.g. 16 and 32 bytes)

Pool for 16-

byte requests

Pool for 32-

byte requests

12

▪ Pool contains multiple fixed-size blocks of memory

▪ Linked list of available memory blocks

▪ Since all blocks in pool are same size, allocation and freeing are very fast and easy

▪ Can create multiple pools, one per object (block) size
▪ https://www.keil.com/pack/doc/CMSIS/RTOS2/html/group__CMSIS__RTOS__PoolMgmt.html

CMSIS-RTOS2 Memory Pool

https://www.keil.com/pack/doc/CMSIS/RTOS2/html/group__CMSIS__RTOS__PoolMgmt.html
https://www.keil.com/pack/doc/CMSIS/RTOS2/html/group__CMSIS__RTOS__PoolMgmt.html

13

▪ osMemoryPoolId_t osMemoryPoolNew(block_count,
block_size, attributes)
▪ Creates and initializes a memory pool

▪ Returns ID for pool

▪ osMemoryPoolId_t osMemoryPoolDelete(pool_id)
▪ Deletes memory pool, frees up space for other calls to

osMemoryPoolNew

CMSIS-RTOS2 Memory Pool Creation and Destruction

14

▪ void * osMemoryPoolAlloc(pool_id,
timeout)
▪ Returns address of allocated memory block, or

NULL if no memory available

▪ If no memory available, can block until available
(or time out)

▪ osStatus_t osMemoryPoolFree(pool_id,
block)
▪ Frees block in pool for future allocation

▪ Return value

▪ osOK, osErrorResource, osErrorParameter

CMSIS-RTOS2 Memory Pool Use

15

▪ uint32_t osMemoryPoolGetBlockSize(pool_id)
▪ Returns size of block in bytes

▪ uint32_t osMemoryPoolGetCapacity(pool_id)
▪ Returns max. number of memory blocks in pool

▪ uint32_t osMemoryPoolGetSpace(pool_id)
▪ Returns number of memory blocks available

▪ uint32_t osMemoryPoolGetCount(pool_id)
▪ Returns number of memory blocks used

CMSIS-RTOS2 Memory Pool Metrics

16

▪ Thread_Read_Switches polls
switches
▪ If SW1 pressed, start creating an LED

flashing pattern in memory

▪ Allocates pattern memory from pool

▪ When SW1 released, send that pattern
as a message to Thread_RGB

▪ Put copies pattern into message

▪ Then free pattern memory, returning
it to pool

▪ Thread_RGB waits for message
▪ Plays RGB sequence specified in

message

RTX Demo: Memory Pool

Thread_
Read_

Switches

Thread_
RGB

Message

Queue

Memory

Pool

17

OLD

18

▪ Allocation of N byte block (malloc, calloc)
▪ Find first block B which is large enough

▪ If size of B > N bytes, split B. Update list entry with (size of B)-N

▪ Update list pointers as needed

▪ Return pointer to start of allocated block

▪ Deallocation of block (free)
▪ If block to free is adjacent to a block in FreeList, merge them and

update the list entry

▪ Else add list entry with pointer to B (and size) to FreeList

Example Operations

Heap Memory

FreeList

NULL (0) – end of list
UsedFree

int * a, * b, * c;

a = (int *) malloc(100);

b = (int *) malloc(200);

free(a);

c = (int *) malloc(64);

	Dynamic Memory Allocation_v1
	Dynamic Memory Allocation
	Variable Scope and Lifetime
	Variable Lifetimes
	Dynamic Memory Allocation Functions in C
	How Does Dynamic Memory Allocation Work?
	Example Operations
	Allocate 100-Byte Block for Pointer a
	Allocate 200-Byte Block for Pointer b
	De-Allocate Pointer a’s Block
	Allocate 64-Byte Block for Pointer c
	Fragmentation and Dynamic Memory Allocation
	CMSIS-RTOS2 Memory Pool
	CMSIS-RTOS2 Memory Pool Creation and Destruction
	CMSIS-RTOS2 Memory Pool Use
	CMSIS-RTOS2 Memory Pool Metrics
	RTX Demo: Memory Pool
	Old
	Example Operations

