NC STATE UNIVERSITY

Dependable and Safety-Critical Systems

NC STATE UNIVERSITY

References

= Practical Design of Safety-Critical Computer Systems, William R. Dunn, Reliability Press,
2002

= MIL-STD-882E: Standard Practice for System Safety

NC STATE UNIVERSITY

BASIC CONCEPTS

Desin
4 — tﬁc@‘#é&
Faulty Lo Vi Priortee Preveitt %\f&:& VMLLHQ"\J le ot ReuTiug

T Jaue (e aus Nos ta
W Eorrﬁe\ne %{“5@ § %
- Fost Rt [

. (\ ‘ 7 :{: y‘['j - —D PRr ~/‘QQ7L((/$
" 7 ?//—‘%O t:[%}\»5 - {'\W?&Pap
pa o 40 ____/—{S ‘ 54?6 Mﬂcgg
| .

: - =»

NC STATE UNIVERSITY

Fault Model: Which Faults Are We Considering?

= Hardware examp|es = Reconfigure the port pins.
= Disable CPU clock, drop the CPU clock speed so

= 3.3V regulator fails.
current rises.

= Fail short (5 V), fail open (0 V), fail at some other
voltage?

= Inductor not soldered fully (open circuit)
= |12C pullup resistor open
= LCD module connection has some open circuits

= Disable all interrupts

= Keep ADC from generating interrupt

= Put an infinite loop in a high-priority ISR

= Keep key threads from running (lower their
priority, hog processor, take but don’t release

= RAM, Flash ROM bit flips resources they need)
= CPU multiply instruction fails? = Misuse queues (make full or empty)

= Software examples = Use up RTOS object memory preventing queues
= Bugs in code: Generic, could do almost anything! from working

= Overflow the stack
= Crash the RTOS

= Need to be more specific (Project)
= Corrupt important shared data
= Reconfigure or disable the ADC or TPM
= Overwrite TPM PWM duty cycle

NC STATE UNIVERSITY

Software doesn’t wear out. It’s already broken.

= Embedded systems should always work, but it’s not easy to get the software perfect
= Must handle many different scenarios and error conditions
= Hard to anticipate all of them when creating requirements and code
= Hard, slow and expensive to test all of them (if even possible)

= So what should we do?

NC STATE UNIVERSITY

HO\\/\\étCouId The System Fail? Stk
(oo \Tloy AR 5L S, dfeun e 7fjme€
Sl 7 f
«©,

e

? — / = What could possibly go wrong?
A

r = Software isn’t perfect, so it has latent
defects lurking, waiting to be triggered
by a fault (input and/or condition)

= Bad inputs or bad system state > defect
@L activated - device fails to perform properly

. = Good inputs and system state, but not

considered in design - defect activated -
device fails to perform properly

L Hardware failure (transient or
permanent) - device fails to perform

properly

'\/\/L//

J- SEt_Cuired”

NC STATE UNIVERSITY

Responses
= How should system respond to each fault?
= Ignore the problem? = Keep working (as able)?
= “Problem? What problem?” - Handl)e failure and continue (possibly in degraded
mode

= Declare out of scope?
= “Not my problem!”
= Stop working?
= Shut down.
= Fail Stop.
= Stop working in a way that minimizes further
damage?
= Move to safe mode, then stop.
= Fail Safe (subset of Fail Stop) * Non-trivial (hard)

= Fail Operate. Much harder to provide this, but very
useful.

= Restart and hope it doesn’t happen again?
= May want to save a checkpoint.

= How should system respond to multiple
concurrent faults?

NC STATE UNIVERSITY

Common Types of Solutions

= Design the fault out of the system = Design-in or code-in the fault, but find it as
= May be feasible to modify design so that fault is early as possible during development
impossible = Testing, peer review
= Don’t design-in or code-in the fault = Accept the fault may happen, so design
* Be more careful! system to tolerate it during operation

= System masks the fault. E.g. RAM protected by
hardware ECC (error-correcting code).

= System detect the faults and responds (manages
it)

NC STATE UNIVERSITY

Basic Fault Management Concepts

= Start with
= System diagram
= Fault model
= |[dentify where system is vulnerable to faults
= Prioritize faults
= For each fault
= Define a fault-management strategy (more later in process discussion)
= Prevent during development?
= Handle during operation?
= Fault handling during operation
= Develop detection method
= Develop response (continue operating? restart?)
= Discuss, implement, test

Thread Fault
Injector

Thread Buck
Update
Setpoint

S TR WP~ 0 < N T -

Handler Thread Read
Touchscreen

Update

Direct Data Flow
(read and write)

-
Direct Data Flow s
’
(one-way) e’
Queued " '
Data Flow - —/

TPMO
IRQHandler

Screen

osRtxTimer osRtxldle ADC results
Thread T sent back to

Queued ADC requesting
Conversion } thread
Requests ~

s, - e
See 7T
e :)«,

Buck Converter Controller

—

main

NCSTATE LN ST

- g{w?@\«ag

PIT

—

PIT_ IRQHandler

B U\b/ (che

e

Current

DAC > Debug

%M‘%ﬁw curet] @

ADCO_ IRQHandler

Couctiol A \‘YBL)C

' TPM

Signal

BUCK_SENSE_ M

NC STATE UNIVERSITY

FAULT DETECTION AND RESPONSE

NC STATE UNIVERSITY

Range of Fault Detection Methods

= As you know more about the application, more precise fault detection
becomes possible
= Coarse-Grain Example: Apply redundancy at very high level
= Duplicate the controller and compare the outputs

= Mismatched outputs indicate fault has occurred
= Misses common-mode faulfs

= Apply generic Built-In Test (BIT)
= Memory tests, CPU tests, etc.
= Safety Monitors
= Watchdog timer (WDT)
= Memory protection unit (MPU) or memory management unit (MMU),
= Low voltage detector
= Others possible...
= More detailed application knowledge - more accurate fault
detection
= Input range checking, variable protection with CRC, etc.

NC STATE UNIVERSITY
Detecting Data Faults o
%m%{mw

= Near expected val m model (>

= Has data been updated correctly?
= Other ways?

= Store extra information to confirm valid
updates
= Use extra memory (fine-grain to coarse-grain)

= Parity bit, EDC/ECC
= Data copy/copies 5(Obnip |

G)ata complenTent 5g- 111010
= CRC/hash of data TNl =
= Read: Confirm validity beforeyﬁge | e

= Write: Update redundancy with data é_ao,\t j
= |s data reasonable, within expected range? C)/u. L ‘ Mol(7
a/

= Simple bounds E(% {: > wc—“« = 440 \)A){lﬁ

= Near previous value (or trend)
wySMLc 4’%

(ool 1DLED

Responding to Data Faults

@‘ﬁ'&%{m Ews
= Logging

* Log a fault code?

= Processing flow
= Restart system?
= Save checkpoint first?

4

Cocbrol LEN

= Switch to degraded mode?

= Which data value to use? Corrected, old,
estimated...

= Continue normally

= Which data value to use? Corrected, old,
estimated...

Protecting the HBLED Buck Driver (High and Low)

Detection Methods Possible Responses

Corrupt important shared data.

Reconfigure or disable the ADC or TPM.
Overwrite TPM PWM duty cycle

Reconfigure the port pins (if not lockable)

Disable CPU clock or drop the CPU clock
speed so peak current rises.

Disable ADC interrupt (or all), put an infinite
loop in a high-priority ISR.

Keep key threads from running (via priority or
shared resources).

Misuse queues (make full or empty),

Use up RTOS object memory preventing
queues from working.

Overflow the stack.
Crash the RTOS

Hide data (make it file local), add access functions,
integrity check (CRC/complement), range checking

Check configuration periodically?
?

Check configuration periodically?

Check configuration periodically?

WDT

WDT

Test status returned by OS calls

Test status returned by OS calls

Perform stack overflow detection
WDT

Use previous value? Clip to valid
range?

Scrub peripheral configuration
?

Scrub peripheral configuration

Scrub clock configuration

Reset

NC STATE UNIVERSITY

SYSTEM ARCHITECTURE OPTIONS

NC STATE UNIVERSITY

System Architecture Options — Independent of Application

Inputs _ tputs
Sensors }-—chomputer L ActuatorsJ = Built-in Test (BIT) used to detect
faults
FlEsS: SRSk ROTRCIoSanes = Functional Safety requirements
disengage computer (eg IEC 60730) specify running
Inputs | I BIT
——bl Computer w/ BIT - = At start-up

= Periodically

Fig. 5. Simplex, disengagement features

— /BIT[I engage back-up
E‘ uter w
uts
1op o ‘.—Pl Actuators

Fig. 6. Dual standby FT architecture

Computer w/BIT

More System Architecture Options

Computer

Inputs |:

Computer

Fig. 7. Self-checking pair

| BIT fail‘“

Computer
W/BIT

Output if
agreement

'>| Actuators

Inputs]:

Computer
W/ BIT

.

Output if
Agreement,
pass thru if
BIT fail

20

I BIT fai!l

Fig. 8. Self-checking pair with simplex fault down

-H Actuators

NC STATE UNIVERSITY

= Note that inputs are still shared
between computers (channels)

= Single point of failure. If the oven’s
thermal sensor fails, then both
channels will be wrong (but agree)

More System Architecture Options

Inputs [»|_ComP Output if
Comp agreement

Inputs I-’ Comp Output if
agreement

mﬂ Compuer
(sensors) Computer

21

- Computer

Middle
Value
Selection
or2/3
majority

vote

lengage back-up

Fig. 9. Dual self-checking pair

Actuators l

Fig. 10. Triple modular redundancy

NC STATE UNIVERSITY

= Duplicate sensors to eliminate
single point of failure

= Reduces some common mode
failures, but some may remain

Safety Invariant Conditions

= Can we define simple tests which tell us
system may be operating unsafely?

= Then we can add monitor to disable
system when we enter the maybe unsafe
zone

= Where do we draw the line?

= False positive: System is safe, but test says
maybe unsafe

= False negative: System is unsafe, but test says
not unsafe (i.e. safe)

22

NC STATE UNIVERSITY

Safe, AFAIK

Maybe unsafe

Always unsafe

N NC STATE UNIVERSITY

External Safety Monitor

= Use separate simple device to monitor system,
disable it if safety invariant conditions are violated

= Qver-temperature protection for oven \—T |
e J,j, a o> eater

= Temperature must never rise above 5009 F
= Thermal switch (bimetallic) opens circuit above max.

allowed temperature, removing power to heating o §/>‘
element (or controller?) mot
= Over-current protection for switch-mode power o 7 @
conversion and motor control \
= Motor current never above 5 A A lﬂ/\f/&: - .
— - -

= Control system will eventually detect and respond to -
over-current, but may be too late to prevent damage

= Use dedicated hardware: analog comparator triggers
when overcurrent, turns off PIWM output via fault input

23

NC STATE UNIVERSITY

HBLED DRIVER ANALYSIS

Current and Temperature Limits

o\ %& ®3 DI
4 il |
T T =
" Transistor Q3: BSS215P. 7 _;_
= Max |, @ 25C=-1.5A. w0 =
" RDS(on) =105-280 mQ
= Diode D1: DB2J20900LSMD 500
- IFAve =0.5 A' IFSurge =3A .
= Inductor L1: SDR0604-680KLCT-ND. E \
" laps max = 0-62 A g - M -
“1_.=0.84 A § A ; ﬁwya
" RDCMax =0.520Q ‘;‘ 200 | / Q\@ “
= LED1: MLEAWT-A1-0000-0003F7 :2222%
= Nominal | ., = 500 mA e R-2 = 40°C/W

e Rj-a = 50°C/W

0 - - —

= T .. fOor LED Junction = 1502 C

0 20 40 60 80 / 100 120 140 160

Ambient Temperature (°C)

25

NC STATE UNIVERSITY

Q/
= How can the hardware be damaged?

420 (/\ALLO]/\ Cc,u‘w\%"(:éﬁ‘ Lﬁb &’kﬁuﬁ.w W\(e@tu\e 2 /\\
O - F 6325 C)ﬁ ﬁ%}%\} %7“

Fault Tree Analysis for HBLED Driver

V\/\Z{% S)n@
Toucs ﬁ 9WL or Sufunde W

%&) §D(>6mg) N\
Db T 0 T

02"

A

Crashing the HBLED Buck Driver with Code

= Reconfigure or disable the ADC or TPM

= QOverwrite TPM PWM duty cycle

= Reconfigure the port pins

= Disable CPU clock, drop the CPU clock speed so
current rises

= Disable all interrupts, keep ADC from generating
interrupt, put an infinite loop in a high-priority ISR

= Keep key threads from running (lower their priority,
hog processor, take but don’t release resources they
need)

= Misuse queues (make full or empty)

= Use up RTOS object memory preventing queues
from working

= Overflow the stack
= Corrupt important shared data
= Crash the RTOS N

@ﬁ“‘ﬁd

Queued ADC
Conversion

Requests

ADC results

sent back to

requesting
thread

Thread Read
TS
\ e

(

(‘

A

[V]

>

Thre.

Queued Data Flow

Direct Data Access
(read and write)

oK

~
ad Buck N\\\

Update
Setpoint

ADC IRQ
Handler
(calls

Control_
HBLED)

i
——
-

)

g

IV ad
e

Screen

~
e ——————

Direct Write-Only f

Data Access

Direct Read-Only
Data Access

-

Vgl

’I

-»

NC STATE UNIVERSITY

NC STATE UNIVERSITY

Generic Methods to Tolerate Imperfect Software

= Software methods = Hardware support
= Architecture and Implementation: = Use memory protection unit (MPU) or MMU to
= Structure software, hardware to isolate critical prevent tasks from corrupting each other’s memory
functions or control registers
= Provide redundancy in time or space (multicore) for = Detect when program is out of control, and reset it

fault detection (and masking)
= Development Process:

= Design, implement and test that critical software
much more carefully than the rest. Refer to Safety-
Critical System processes

= Watchdog timer covered next
= Safety monitor
= Use MCU peripheral hardware limitations (e.g.
only one write to register allowed after reset)
= Apply thread privilege levels to prevent
execution of critical instructions, access to key
control registers
= Etc.

28

NC STATE UNIVERSITY

Examples of Limited Privileges for Cortex-MO+

* From ARM CMO+ Device Generic User Guide
= Types
= All handler code is privileged
= Thread code may or may not be privileged
= Unprivileged code
= Limited use of MSR, MRS
= Cannot use CPS to mask interrupts
= Cannot access system timer, NVIC, system control block
= Possible restricted access to memory or peripherals
= Cannot write to CONTROL register
= Unprivileged thread uses SVC (service call, SW interrupt) to request execution of
privileged software

= |s option for CMO+, but not provided in our KL25Z MCU

29

NC STATE UNIVERSITY

= Reconfigure or disable the ADC or TPM — scrub system to reconfigure peripherals correctly

= Overwrite TPM PWM duty cycle

= Reconfigure the port pins. Scrub system.

= Disable CPU clock, drop the CPU clock speed so current rises. Check CPU clock speed periodically

= Disable all interrupts, keep ADC from generating interrupt, put an infinite loop in a high-priority ISR. WDT

= Keep key threads from running (lower their priority, hog processor, take but don’t release resources they
need). WDT.

= Misuse queues (make full or empty)
= Use up RTOS object memory preventing queues from working. Check return codes
Overflow the stack. Perform stack overflow detection and protection.

= Corrupt important shared data. Hide data (make it file local), add access functions, integrity check
(CRC/complement), range checking, duty cycle < period? .

= Crash the RTOS

Protecting the HBLED Buck Driver

= (Temperature sensor)

30

NC STATE UNIVERSITY

DEVELOPMENT PROCESSES

Software doesn’t wear out. It’s already broken.

; Closa Desiin 15 Pefgcbond Respand
vbly ol S o %‘ﬂ)"’“w
| ﬁfi{“a/ % L G—CBC’% 0)(9 }D\Q‘ 5 -
{/\3(\,\i\/gﬁc ~F &b ;Q Ve étur‘i

v

wo 1 Wy e st a0

DELD= | 75 aledy ok
F 4

X

= Systems have latent defects lurking, waiting to be = Can eliminate some through better development

triggered process
= Good but unexpected inputs and system state -> = Address others by designing system to detect and
defect activated -> device fails to perform handle faults
= Bad inputs -> defect activated -> device fails to
perform

= Hardware failures -> device fails to perform

32

NC STATE UNIVERSITY

Overview of System Development Process So Far
LBt

/\/fo/ \ Redey = Design system before coding it
4W>2 o = Don’t paint yourself into a corner
} _Aepen. = But prototype high-risk areas
el
L j Reverr = Many defects can be caught during testing
¥ %% » IL = Many other defects can be caught by peer review
// (/ (/ :)/ e e
i]' I‘ | = Consider how system should detect and handle
i “M e remaining defects and faults

W N Fal kv Wik podlen?) 2 F an

Pusse~ Stk Journ Dy vo arun. 9&%)(’. RMNV\ | S
LF lﬂéz \(fi ?ojm?};’)ev;mzz I/Sv)m\ ﬁ@ awes. [EC{0720 < @/

: VBl Dt —Kag ey)

NC STATE UNIVERSITY

DESIGN IN FEWER DEFECTS

NC STATE UNIVERSITY
Perform Peer Reviews Upstream of Testing

@FV\@I*\CE”QI\ j(

A W\T““J/ Qo\cj);fmlu .
2 M LC?//'TL ‘Il Kues bu‘lv[71\/ 0645’/'“9“7

3 R;U e’ ”L Seugs u@;/ /(DM/\LML

Pengfiix
10 mw Cmcm caa\?
= /[/1 MA S (500

= Peer reviews of code highly
effective

= Good at finding different kinds of
bugs than testing is

: @%C{M Code revisdn,
= Use both as complements

= Peer reviews of Design @eﬁrf @\QNU} @,% Bﬂ; E@meﬁ&j

Documents J ? bk
= — [&CTCV\C
= Test the ideas the system will be P Code. 3& . @CQ 7/
built upon A?féw}\@ 069@
= Express ideas more concisely tha ~ jﬁ@wc\mﬂ?
with code = %&@ O aﬁm\w %
C
M{Ml@r@wm SRS Y %% Wf\ & %

35

NC STATE UNIVERSITY

Software Development Models

éﬁﬂe b@\le,\cpmj‘
/<\ iﬂb
o 4
AL,
A
A

L™

NC STATE UNIVERSITY

TEST TO FIND IMPORTANT DEFECTS EARLIER

NC STATE UNIVERSITY

Improve Testing to Find Relevant Defects Earlier

T

JCoex ¢ s 3
/7 &(\/
El;&l(/@@d/% Lo @?SB%W\
:W@ g R Totl e /éi
%J(A ZE@’\[@‘P/ }@7”977@1(& .
oK I Ut @i Q\D e W fw
Cs\oé Ce\f\ﬁﬂﬁﬁ

= Improve testing to identify defects earlier, reducing cost of rework
= Impossible to test all possible inputs and states
= Range of testing methods available. Apply appropriately

NC STATE UNIVERSITY

DEVELOPMENT PROCESSES
FOR SAFETY-CRITICAL SYSTEMS

Safety-Critical System Concepts

= Safety-Critical System

= Failure can lead to injury, death, damage to
property or environment (a mishap)

= Example Applications

= Motor control, aircraft, chemical process,
medical electronics, automobile anti-lock
braking system

= Terminology

= Mishap: Event (or chain of events) resulting in

unintentional death, injury, damage, etc.

» Hazard: Condition that could lead to a mishap
» Failure: Failing to perform an expected action

" Fault: A defect

40

NC STATE UNIVERSITY

= Types of Computer Use

= Safety System: passively monitor system, take
control when application enters dangerous
state

= Control System: actively control system based
on inputs (operator, sensors) and control logic
= Types of Requirements
= Functional and Operational
= Maintain oven temperature within 1%
= Safety-Related

= Even with failures, don’t let temperature go over
a specified limit
= Don’t electrocute the user

NC STATE UNIVERSITY

Activities Required for Achieving System Safety

= Must address system’s life cycle = Requires multidisciplinary effort
= Design of system, development, testing, = Span design from hardware through software
production, installation, operation (control, through application through ...
monitoring, diagnostics, repair, upgrade), = Span entire life cycle
disposal = Apply system safety standards
* Requires a Systems Engineering = MIL-STD-882E: Standard Practice for System
management approach (process) specific Safety
to safety = |EC 61508: Functional Safety of
= Processes: documentation standards and electrical/electronic/programmable electronic
practices, issue tracking system, system safety-related systems

configuration management, etc.

= Many Other Risks: Changes to design may
require additional training for users, employee
turn-over, component obsolescence, etc.

41

NC STATE UNIVERSITY

MIL-STD-882E System Safety Process Elements

Element 1: .
Document the System —> ERI: cheenREisi- _
Safety Approach = Just a design (hardware and code)
l l is not nearly enough!
. Element 6:
EILe"t'_f“t 3- Verify, Validate and = Systems must be developed
entify an ’ i .
Document Risk
Document Hazards Reduction according to a process
= Must explain context, the approach
used, considerations, etc.
Element 3: Element 7:
Assess and Accept Risk s
Poctnent Rk and Dociimerit - Development activities are
typically audited: “Show me the
l l documentation for all of the
”
Element 4: Element 8: steps
Identify and Document Manage Life-Cycle
Risk Mitigation Measures Risk

NC STATE UNIVERSITY

Risk Assessment Matrix

= Depends on

43

severity and
probability

RISK ASSESSMENT MATRIX

SEVERITY

Eliminated
(F)

Catastrophic Critical Marginal Negligible
|[PROBABILITY (1) (2) () (4)
Frequent .
(A) Medium
Probable .
Medium
(B)
Occasional :
Medium
(C)
Remote Medium Medium
(D)
Impr(oEgable Medium Medium

Mishap Analysis for Basic System

Mishap

NC STATE UNIVERSITY

Computer Computer
Sensor Effector Hardware Software Operator
Failure Failure Failure Failure Failure
Hardware || Software || Personnel | | Environmental Design Procedural Other
Faults Faults Error Conditions Inadequacies | | Deficiencies Causes

44

NC STATE UNIVERSITY

Assessing Risk ggﬂ}\

Comp

/(ﬁ\ : \ er Computer
Effector Hardware Software Operator
_Failure | | Failure Failure __Failure Failure

SN e AN F
__——/_/
AN /
[Har‘ Ia Soft\ : Personnel E‘\ﬁ{on ntal Design Procedural Other T
FM Fau | Error tofﬁﬁ%):ns Inadequ%cies Deficiencies || Causes % AT/MEV\ },V\E

: De5|gn evaluation and analysis = Risk Analysis

g de d Eff nalysis: In what ways = Perform Fault Tree Analysis to |dent|fy basic
can each component fail? What is the impact on component failure events
the system of that component failing that way? u CaIcuIathty of all these failure events

= Failure Modes and Effects Testing:-Inject = Combine probabilities to determine mishap
component failures and evaluate system probability
responses, confirming design mitigates failures.

= Fault Tree Analysis: What could cause each

s mishap?

Assessing Risk

\/v

{ Computer Computer
Ly Sensor Effector Hardware Software Operator
E Failure Failure Failure Failure Failure
Hardware | | Software | | Personnel | | Environmental Design Procedural Other
Faults Faults Error Conditions Inadequacies | | Deficiencies || Causes

&

= Design evaluation and analysis
= Failure Modes and Effects Analysis: In what ways

= Risk Analysis
= Perform Fault Tree Analy5|s to identify basic

can eacﬁ‘cumponentqul? What is the impact on
the system of that component failing that way?

= Failure Modes and Effects Testing: Inject
component failures and evaluate system

responses, confirming design mitigates failures.
= Fault Tree Analysis: What could cause each

« mishap?

mjﬂg%@
i CuprTek

mﬁm&b&

ﬁ

eyl </_\/gs;&

I
ﬂ(’m

component failure events
= Calculate probability of all these failure events

= Combine probabilities to determine mishap
probability

NC STATE UNIVERSITY

Methods to Mitigate Mishap Risk (In Preferred Order)

1. Eliminate hazards through design

selection

2. Reduce risk through design
alteration

3. Improve component reliability and

Mishap

Incorporate_external safety devices

/

oo

TS

oo

Incorporate internal safety/and warning devices

e ﬂ(\m\wx

quality / N
4. Incorporate safety devices / . Computer Corﬁputk
Sensor Effector Hardware Software Operator
= External Failure Failure Failure Failure Failure
= Internal __ +—] i 3}‘
. . . Improve reliability and quality]
5. Provide warning dewc@l ! I ! —
6. Develop procedures,
< s Hardware Software Personnel Environmental Design Procedural Other
trammg and personal Faults Faults Error Conditions Inadequ%cies Deficiencies Causes

protective equipment

47

NC STATE UNIVERSITY

MIL-STD-882E on Software

48

4.4 Software contribution to system risk.

The assessment of risk for software, and consequently software-controlled or software-
intensive systems, cannot rely solely on the risk severity and probability.

Determining the probability of failure of a single software function is difficult at best and
cannot be based on historical data.

Software is generally application-specific and reliability parameters associated with it
cannot be estimated in the same manner as hardware.

Therefore, another approach shall be used for the assessment of software’s contributions
to system risk that considers the potential risk severity and the degree of control that
software exercises over the hardware.

Process Requires Safety Decisions to be Documented and Justified

49

NC STATE UNIVERSITY

RELATIONSHIP BETWEEN SwCl, RISK LEVEL, LOR Tasks, AND RISK

Software X
P Risk Level .
Criticality Software LOR Tasks and Risk Assessment/Acceptance
Index (SwCl)
e [f SwWCI 1 LOR tasks are unspecified or incomplete, the contributions to system
risk will be documented as HIGH and provided to the PM for decision. The PM
SwCl 1 shall document the decision of whether to expend the resources required to
implement SwCl 1 LOR tasks or prepare a formal risk assessment for
acceptance of a HIGH risk.
o |f SWCI 2 LOR tasks are unspecified or incomplete, the contributions to system
risk will be documented as SERIOUS and provided to the PM for decision.
SwCl 2 The PM shall document the decision of whether to expend the resources

required to implement SwCl 2 LOR tasks or prepare a formal risk assessment
for acceptance of a SERIOUS risk.

« |If SwCI 3 LOR tasks are unspecified or incomplete, the contributions to system
risk will be documented as MEDIUM and provided to the PM for decision. The
SwCI 3 PM shall document the decision of whether to expend the resources required
to implement SwCl 3 LOR tasks or prepare a formal risk assessment for
acceptance of a MEDIUM risk.

o |fSwCI 4 LOR tasks are unspecified or incomplete, the contributions to system
risk will be documented as LOW and provided to the PM for decision. The PM

SwCl 4 shall document the decision of whether to expend the resources required to
implement SwCl 4 LOR tasks or prepare a formal risk assessment for
acceptance of a LOW risk.

SwCI 5 Not Safety e No safety-specific analyses or testing is required.

NC STATE UNIVERSITY

g N

4.4.1 Software Assessments (}

4’&@\‘.
7|
|

= Software Control Categories (SCC) M}S

= Describes how much of theﬂsystem the (//\
software controls S

= Software Safety Criticality Matrix (SSCM) Cj/

= Describes how critical the software is based
on the severity of a mishap and the SCC Q(]’ﬁ
= Uses a number: Software Criticality Index /
(SwCl) / . /
= Level of Rigor Tasks (LoR)

= Indicates which tasks must be performed for
this SwCl =

NS

L\
N

50

NC STATE UNIVERSITY
Software Control Categories
Lovel [Name | Descrpton (Parspbrasedy

Autonomous Autonomous control authority over potentially safety-significant components without the

(AT) possibility of predetermined safe detection and intervention by a control entity to prevent mishap or
hazard.

Semi- Control authority over potentially safety-significant components, allowing time for predetermined

Autonomous safe detection and intervention by independent safety mechanisms to mitigate or control the mishap or

(SAT) hazard.

Software item that displays safety-significant information requiring immediate operator entity to
execute a predetermined action for mitigation or control over a mishap or hazard. Software
exception, failure, fault, or delay will allow mishap occurrence.

Redundant Software functionality that issues commands over safety-significant hardware components requiring a
S ACIEETTE control entity to complete the command function. The system detection and functional reaction includes
(RFT) redundant, independent fault tolerant mechanisms for each defined hazardous condition.

Software that generates information of a safety-critical nature used to make critical decisions.The
system includes several redundant, independent fault tolerant mechanisms for each hazardous condition,
detection and display.

Influential Software generates information of a safety-related nature used to make decisions by the operator, but
does not require operator action to avoid a mishap.

No Safety No command or control authority over safety-significant hardware components, does not provide safety-

Impact (NSI) significant information. Software does not provide safety-significant or time sensitive data or information that

requires control entity interaction. Software does not transport or resolve communication of safety-significant or
time sensitive data.

NC STATE UNIVERSITY

SSC M a n d Leve | Of R I go r Ta S kS SOFTWARE SAFETY CRITICALITY MATRIX
SEVERITY CATEGORY
SOFTWARE . o s e
Catastrophic Critical Marginal Negligible

CATEGORY (1) @ 8 (@

1 SwCl 1 SwCl 1 \ SwCl 3 SwCl 4
o —

2 SwCl 1 SwCl 2 SwCl 3 SwCl 4
3 SwCl 2 SwCl 3 SwCl 4 SwCl 4
4 SwCl 3 SwCl 4 SwCl 4 SwCl 4
5 SwCl 5 SwCl 5 SwCl 5 SwCl 5

Level of Rigor Tasks
Software Criticality Perform analysis of ... Conduct Safety-

£ - o o

In-depth
2 [L L In-depth
3 [o In-depth
4 [
5

52

NC STATE UNIVERSITY

APPENDIX

NC STATE UNIVERSITY

Mapping Solutions onto the System Development Process

Requirements Peer Review
= Design the fault out of the system
S —— E—— = Don’t design-in or code-in the fault
= Use a better development process
= Prototype or model high-risk areas
Detailed Design Peer Review = During development, find the fault as

early as possible
= Test earl d oft
Coding Testing = earyan' oren . .
= Use peer reviews for non-functional items
(architectures, etc.)
= Accept the fault may happen, so
design system to tolerate it during

operation

Testing

Operation

54

Causes of Embedded System Failures

= Latent faults

= The system was designed and built that way

= Environmental factors

55

= Device failures

= Noise, single event upsets

= Hacker attacks

= New unexpected inputs/conditions

NC STATE UNIVERSITY

System

Definitions

= Terms
= Safety
= System does not cause any harm
= Reliability
* Probability that item will operate reliably for a
specified amount of time

= Availability
= Probability that item will operate correctly at a given
time

56

NC STATE UNIVERSITY

Fault Detection Methods

Appl ‘ >

pplication-)

Specific Methods Generic Methods

Hardware Software Both Hardware Software Both
$

Platform & OS
) g
$
Application

N’

57

