
1

Dependable and Safety-Critical Systems

2

References

 Practical Design of Safety-Critical Computer Systems, William R. Dunn, Reliability Press,
2002

 MIL-STD-882E: Standard Practice for System Safety

3

BASIC CONCEPTS

4

5

Fault Model: Which Faults Are We Considering?

 Hardware examples
 3.3 V regulator fails.
 Fail short (5 V), fail open (0 V), fail at some other

voltage?
 Inductor not soldered fully (open circuit)
 I2C pullup resistor open
 LCD module connection has some open circuits
 RAM, Flash ROM bit flips
 CPU multiply instruction fails?

 Software examples
 Bugs in code: Generic, could do almost anything!
 Need to be more specific (Project)
 Corrupt important shared data
 Reconfigure or disable the ADC or TPM
 Overwrite TPM PWM duty cycle

 Reconfigure the port pins.
 Disable CPU clock, drop the CPU clock speed so

current rises.
 Disable all interrupts
 Keep ADC from generating interrupt
 Put an infinite loop in a high-priority ISR
 Keep key threads from running (lower their

priority, hog processor, take but don’t release
resources they need)

 Misuse queues (make full or empty)
 Use up RTOS object memory preventing queues

from working
 Overflow the stack
 Crash the RTOS

6

Software doesn’t wear out. It’s already broken.

 Embedded systems should always work, but it’s not easy to get the software perfect
 Must handle many different scenarios and error conditions
 Hard to anticipate all of them when creating requirements and code
 Hard, slow and expensive to test all of them (if even possible)

 So what should we do?

7

How Could The System Fail?

 What could possibly go wrong?

 Software isn’t perfect, so it has latent
defects lurking, waiting to be triggered
by a fault (input and/or condition)
 Bad inputs or bad system state → defect

acƟvated → device fails to perform properly
 Good inputs and system state, but not

considered in design → defect acƟvated →
device fails to perform properly

 Hardware failure (transient or
permanent) → device fails to perform
properly

8

Responses

 How should system respond to each fault?
 Ignore the problem?
 “Problem? What problem?”

 Declare out of scope?
 “Not my problem!”

 Stop working?
 Shut down.
 Fail Stop.

 Stop working in a way that minimizes further
damage?
 Move to safe mode, then stop.
 Fail Safe (subset of Fail Stop)

 Keep working (as able)?
 Handle failure and continue (possibly in degraded

mode)
 Fail Operate. Much harder to provide this, but very

useful.
 Restart and hope it doesn’t happen again?
 May want to save a checkpoint.

 How should system respond to multiple
concurrent faults?
 Non-trivial (hard)

9

Common Types of Solutions

 Design the fault out of the system
 May be feasible to modify design so that fault is

impossible

 Don’t design-in or code-in the fault
 Be more careful!

 Design-in or code-in the fault, but find it as
early as possible during development
 Testing, peer review

 Accept the fault may happen, so design
system to tolerate it during operation
 System masks the fault. E.g. RAM protected by

hardware ECC (error-correcting code).
 System detect the faults and responds (manages

it)

10

 Start with
 System diagram
 Fault model

 Identify where system is vulnerable to faults
 Prioritize faults
 For each fault

 Define a fault-management strategy (more later in process discussion)
 Prevent during development?
 Handle during operation?

 Fault handling during operation
 Develop detection method
 Develop response (continue operating? restart?)
 Discuss, implement, test

Basic Fault Management Concepts

Thread Read
Touchscreen

Queued ADC
Conversion
Requests

Thread Buck
Update
Setpoint

g_set_current

ADC results
sent back to
requesting

thread

plantPID_FX

g_peak_ set_current

g_flash_period
g_flash_duration

g_enable_flash

g_enable_control

g_measured_current

g_duty_cycle

Thread
Update
Screen

Thread Fault
Injector

?

?

?
?

?
Queued

Data Flow

Direct Data Flow
(read and write)

Direct Data Flow
(one-way)

SysTick IRQ
Handler

g_meas_sample[]

g_set_sample[]

Fault_Tests

osRtxIdle
Thread

osRtxTimer
Thread

TPM0
IRQHandler

ADC0_IRQHandler

Control_HBLED

12

Buck Converter Controller

ADC TPM

LED
Driver
Circuit

main

ADC0_ IRQHandler

PIT_ IRQHandler

g_set_current

g_duty_cycle_cts

g_enable_flash

PIT
Current
Debug
Signal

DAC

13

FAULT DETECTION AND RESPONSE

14

 As you know more about the application, more precise fault detection
becomes possible

 Coarse-Grain Example: Apply redundancy at very high level
 Duplicate the controller and compare the outputs
 Mismatched outputs indicate fault has occurred
 Misses common-mode faults

 Apply generic Built-In Test (BIT)
 Memory tests, CPU tests, etc.

 Safety Monitors
 Watchdog timer (WDT)
 Memory protection unit (MPU) or memory management unit (MMU),
 Low voltage detector
 Others possible…

 More detailed applicaƟon knowledge → more accurate fault
detection
 Input range checking, variable protection with CRC, etc.

Range of Fault Detection Methods

15

 Has data been updated correctly?
 Store extra information to confirm valid

updates
 Use extra memory (fine-grain to coarse-grain)
 Parity bit, EDC/ECC
 Data copy/copies
 Data complement
 CRC/hash of data

 Read: Confirm validity before use
 Write: Update redundancy with data

 Is data reasonable, within expected range?
 Simple bounds
 Near previous value (or trend)

 Near expected value from model
 Other ways?

Detecting Data Faults

16

 Logging
 Log a fault code?

 Processing flow
 Restart system?
 Save checkpoint first?

 Switch to degraded mode?
 Which data value to use? Corrected, old,

estimated…
 Continue normally
 Which data value to use? Corrected, old,

estimated…

Responding to Data Faults

17

Protecting the HBLED Buck Driver (High and Low)

Possible ResponsesDetection MethodsFault

Use previous value? Clip to valid
range?

Hide data (make it file local), add access functions,
integrity check (CRC/complement), range checking

Corrupt important shared data.

Scrub peripheral configurationCheck configuration periodically?Reconfigure or disable the ADC or TPM.

??Overwrite TPM PWM duty cycle

Scrub peripheral configurationCheck configuration periodically?Reconfigure the port pins (if not lockable)

Scrub clock configurationCheck configuration periodically?Disable CPU clock or drop the CPU clock
speed so peak current rises.

?WDTDisable ADC interrupt (or all), put an infinite
loop in a high-priority ISR.

?WDTKeep key threads from running (via priority or
shared resources).

? Test status returned by OS callsMisuse queues (make full or empty),

?Test status returned by OS callsUse up RTOS object memory preventing
queues from working.

?Perform stack overflow detectionOverflow the stack.

ResetWDTCrash the RTOS

18

SYSTEM ARCHITECTURE OPTIONS

19

System Architecture Options – Independent of Application

 Built-in Test (BIT) used to detect
faults

 Functional Safety requirements
(e.g. IEC 60730) specify running
BIT
 At start-up
 Periodically

20

More System Architecture Options

 Note that inputs are still shared
between computers (channels)
 Single point of failure. If the oven’s

thermal sensor fails, then both
channels will be wrong (but agree)

21

More System Architecture Options

 Duplicate sensors to eliminate
single point of failure

 Reduces some common mode
failures, but some may remain

22

Always unsafe

Safety Invariant Conditions

 Can we define simple tests which tell us
system may be operating unsafely?

 Then we can add monitor to disable
system when we enter the maybe unsafe
zone

 Where do we draw the line?
 False positive: System is safe, but test says

maybe unsafe
 False negative: System is unsafe, but test says

not unsafe (i.e. safe)

Maybe unsafe

Safe, AFAIK

23

External Safety Monitor

 Use separate simple device to monitor system,
disable it if safety invariant conditions are violated

 Over-temperature protection for oven
 Temperature must never rise above 500º F
 Thermal switch (bimetallic) opens circuit above max.

allowed temperature, removing power to heating
element (or controller?)

 Over-current protection for switch-mode power
conversion and motor control
 Motor current never above 5 A
 Control system will eventually detect and respond to

over-current, but may be too late to prevent damage
 Use dedicated hardware: analog comparator triggers

when overcurrent, turns off PWM output via fault input

24

HBLED DRIVER ANALYSIS

25

Current and Temperature Limits

 Transistor Q3: BSS215P.
 Max ID @ 25C = -1.5 A.
 RDS(on) = 105-280 mΩ

 Diode D1: DB2J20900LSMD
 IFAve = 0.5 A, IFSurge = 3 A

 Inductor L1: SDR0604-680KLCT-ND.
 IRMS Max = 0.62 A
 Isat = 0.84 A
 RDCMax = 0.52Ω

 LED1: MLEAWT-A1-0000-0003F7
 Nominal Imax = 500 mA
 Tmax for LED Junction = 150º C

26

Fault Tree Analysis for HBLED Driver

 How can the hardware be damaged?

27

 Reconfigure or disable the ADC or TPM
 Overwrite TPM PWM duty cycle
 Reconfigure the port pins
 Disable CPU clock, drop the CPU clock speed so

current rises
 Disable all interrupts, keep ADC from generating

interrupt, put an infinite loop in a high-priority ISR
 Keep key threads from running (lower their priority,

hog processor, take but don’t release resources they
need)

 Misuse queues (make full or empty)
 Use up RTOS object memory preventing queues

from working
 Overflow the stack
 Corrupt important shared data
 Crash the RTOS

Crashing the HBLED Buck Driver with Code

ADC TPMPins Pins

Thread Read
TS

Queued ADC
Conversion
Requests

ADC IRQ
Handler

(calls
Control_
HBLED)

Thread Buck
Update
Setpoint

g_set_current

ADC results
sent back to
requesting

thread

plantPID_FX

g_peak_ set_current
g_flash_period

g_flash_duration

g_enable_flash

g_enable_control

g_measured_current

g_duty_cycle

Thread
Update
Screen

Queued Data Flow

Direct Data Access
(read and write)

Direct Write-Only
Data Access

Direct Read-Only
Data Access

28

Generic Methods to Tolerate Imperfect Software

 Software methods
 Architecture and Implementation:
 Structure software, hardware to isolate critical

functions
 Provide redundancy in time or space (multicore) for

fault detection (and masking)
 Development Process:
 Design, implement and test that critical software

much more carefully than the rest. Refer to Safety-
Critical System processes

 Hardware support
 Use memory protection unit (MPU) or MMU to

prevent tasks from corrupting each other’s memory
or control registers

 Detect when program is out of control, and reset it
 Watchdog timer covered next
 Safety monitor

 Use MCU peripheral hardware limitations (e.g.
only one write to register allowed after reset)

 Apply thread privilege levels to prevent
execution of critical instructions, access to key
control registers

 Etc.

29

Examples of Limited Privileges for Cortex-M0+

 From ARM CM0+ Device Generic User Guide
 Types

 All handler code is privileged
 Thread code may or may not be privileged

 Unprivileged code
 Limited use of MSR, MRS
 Cannot use CPS to mask interrupts
 Cannot access system timer, NVIC, system control block
 Possible restricted access to memory or peripherals
 Cannot write to CONTROL register

 Unprivileged thread uses SVC (service call, SW interrupt) to request execution of
privileged software

 Is option for CM0+, but not provided in our KL25Z MCU

30

 Reconfigure or disable the ADC or TPM – scrub system to reconfigure peripherals correctly
 Overwrite TPM PWM duty cycle
 Reconfigure the port pins. Scrub system.
 Disable CPU clock, drop the CPU clock speed so current rises. Check CPU clock speed periodically
 Disable all interrupts, keep ADC from generating interrupt, put an infinite loop in a high-priority ISR. WDT
 Keep key threads from running (lower their priority, hog processor, take but don’t release resources they

need). WDT.
 Misuse queues (make full or empty)
 Use up RTOS object memory preventing queues from working. Check return codes
 Overflow the stack. Perform stack overflow detection and protection.
 Corrupt important shared data. Hide data (make it file local), add access functions, integrity check

(CRC/complement), range checking, duty cycle < period? .
 Crash the RTOS

 (Temperature sensor)

Protecting the HBLED Buck Driver

31

DEVELOPMENT PROCESSES

32

Software doesn’t wear out. It’s already broken.

 Systems have latent defects lurking, waiting to be
triggered
 Good but unexpected inputs and system state ->

defect activated -> device fails to perform
 Bad inputs -> defect activated -> device fails to

perform
 Hardware failures -> device fails to perform

 Can eliminate some through better development
process

 Address others by designing system to detect and
handle faults

33

Overview of System Development Process So Far

 Design system before coding it
 Don’t paint yourself into a corner

 But prototype high-risk areas

 Many defects can be caught during testing
 Many other defects can be caught by peer review

 Consider how system should detect and handle
remaining defects and faults

34

DESIGN IN FEWER DEFECTS

35

Perform Peer Reviews Upstream of Testing

 Peer reviews of code highly
effective
 Good at finding different kinds of

bugs than testing is
 Use both as complements

 Peer reviews of Design
Documents
 Test the ideas the system will be

built upon
 Express ideas more concisely than

with code

36

Software Development Models

37

TEST TO FIND IMPORTANT DEFECTS EARLIER

38

Improve Testing to Find Relevant Defects Earlier

 Improve testing to identify defects earlier, reducing cost of rework
 Impossible to test all possible inputs and states
 Range of testing methods available. Apply appropriately

39

DEVELOPMENT PROCESSES
FOR SAFETY-CRITICAL SYSTEMS

40

Safety-Critical System Concepts

 Safety-Critical System
 Failure can lead to injury, death, damage to

property or environment (a mishap)
 Example Applications

 Motor control, aircraft, chemical process,
medical electronics, automobile anti-lock
braking system

 Terminology
 Mishap: Event (or chain of events) resulting in

unintentional death, injury, damage, etc.
 Hazard: Condition that could lead to a mishap
 Failure: Failing to perform an expected action
 Fault: A defect

 Types of Computer Use
 Safety System: passively monitor system, take

control when application enters dangerous
state

 Control System: actively control system based
on inputs (operator, sensors) and control logic

 Types of Requirements
 Functional and Operational
 Maintain oven temperature within 1%

 Safety-Related
 Even with failures, don’t let temperature go over

a specified limit
 Don’t electrocute the user

41

Activities Required for Achieving System Safety

 Must address system’s life cycle
 Design of system, development, testing,

production, installation, operation (control,
monitoring, diagnostics, repair, upgrade),
disposal

 Requires a Systems Engineering
management approach (process) specific
to safety
 Processes: documentation standards and

practices, issue tracking system, system
configuration management, etc.

 Many Other Risks: Changes to design may
require additional training for users, employee
turn-over, component obsolescence, etc.

 Requires multidisciplinary effort
 Span design from hardware through software

through application through …
 Span entire life cycle

 Apply system safety standards
 MIL-STD-882E: Standard Practice for System

Safety
 IEC 61508: Functional Safety of

electrical/electronic/programmable electronic
safety-related systems

42

MIL-STD-882E System Safety Process Elements

 Just a design (hardware and code)
is not nearly enough!

 Systems must be developed
according to a process
 Must explain context, the approach

used, considerations, etc.

 Development activities are
typically audited: “Show me the
documentation for all of the
steps”

43

Risk Assessment Matrix

 Depends on
severity and
probability

44

Mishap Analysis for Basic System

Mishap

Hazard Event
in Application

Sensor
Failure

Effector
Failure

Computer
Hardware

Failure

Computer
Software
Failure

Operator
Failure

Hardware
Faults

Software
Faults

Personnel
Error

Environmental
Conditions

Design
Inadequacies

Procedural
Deficiencies

Other
Causes

45

Assessing Risk

 Design evaluation and analysis
 Failure Modes and Effects Analysis: In what ways

can each component fail? What is the impact on
the system of that component failing that way?

 Failure Modes and Effects Testing: Inject
component failures and evaluate system
responses, confirming design mitigates failures.

 Fault Tree Analysis: What could cause each
mishap?

 Risk Analysis
 Perform Fault Tree Analysis to identify basic

component failure events
 Calculate probability of all these failure events
 Combine probabilities to determine mishap

probability

46

Assessing Risk

 Design evaluation and analysis
 Failure Modes and Effects Analysis: In what ways

can each component fail? What is the impact on
the system of that component failing that way?

 Failure Modes and Effects Testing: Inject
component failures and evaluate system
responses, confirming design mitigates failures.

 Fault Tree Analysis: What could cause each
mishap?

 Risk Analysis
 Perform Fault Tree Analysis to identify basic

component failure events
 Calculate probability of all these failure events
 Combine probabilities to determine mishap

probability

47

Methods to Mitigate Mishap Risk (In Preferred Order)

1. Eliminate hazards through design
selection

2. Reduce risk through design
alteration

3. Improve component reliability and
quality

4. Incorporate safety devices
 External
 Internal

5. Provide warning devices
6. Develop procedures,

training and personal
protective equipment

Mishap

Hazard Event
in Application

Sensor
Failure

Effector
Failure

Computer
Hardware

Failure

Computer
Software
Failure

Operator
Failure

Hardware
Faults

Software
Faults

Personnel
Error

Environmental
Conditions

Design
Inadequacies

Procedural
Deficiencies

Other
Causes

Incorporate external safety devices

Incorporate internal safety and warning devices

Improve reliability and quality

48

MIL-STD-882E on Software

4.4 Software contribution to system risk.
The assessment of risk for software, and consequently software-controlled or software-
intensive systems, cannot rely solely on the risk severity and probability.
Determining the probability of failure of a single software function is difficult at best and
cannot be based on historical data.
Software is generally application-specific and reliability parameters associated with it
cannot be estimated in the same manner as hardware.
Therefore, another approach shall be used for the assessment of software’s contributions
to system risk that considers the potential risk severity and the degree of control that
software exercises over the hardware.

49

Process Requires Safety Decisions to be Documented and Justified

50

4.4.1 Software Assessments

 Software Control Categories (SCC)
 Describes how much of the system the

software controls
 Software Safety Criticality Matrix (SSCM)

 Describes how critical the software is based
on the severity of a mishap and the SCC

 Uses a number: Software Criticality Index
(SwCI)

 Level of Rigor Tasks (LoR)
 Indicates which tasks must be performed for

this SwCI

51

Software Control Categories
Description (Paraphrased)NameLevel

Autonomous control authority over potentially safety-significant components without the
possibility of predetermined safe detection and intervention by a control entity to prevent mishap or
hazard.

Autonomous
(AT)

1

Control authority over potentially safety-significant components, allowing time for predetermined
safe detection and intervention by independent safety mechanisms to mitigate or control the mishap or
hazard.
Software item that displays safety-significant information requiring immediate operator entity to
execute a predetermined action for mitigation or control over a mishap or hazard. Software
exception, failure, fault, or delay will allow mishap occurrence.

Semi-
Autonomous
(SAT)

2

Software functionality that issues commands over safety-significant hardware components requiring a
control entity to complete the command function. The system detection and functional reaction includes
redundant, independent fault tolerant mechanisms for each defined hazardous condition.
Software that generates information of a safety-critical nature used to make critical decisions. The
system includes several redundant, independent fault tolerant mechanisms for each hazardous condition,
detection and display.

Redundant
Fault Tolerant
(RFT)

3

Software generates information of a safety-related nature used to make decisions by the operator, but
does not require operator action to avoid a mishap.

Influential4

No command or control authority over safety-significant hardware components, does not provide safety-
significant information. Software does not provide safety-significant or time sensitive data or information that
requires control entity interaction. Software does not transport or resolve communication of safety-significant or
time sensitive data.

No Safety
Impact (NSI)

5

52

SSCM and Level of Rigor Tasks

Level of Rigor Tasks

Conduct Safety-
Specific Testing

Perform analysis of …Software Criticality
Index CodeDesignArchitectureRequirements

In-depth1

In-depth2

In-depth3

4

5

53

APPENDIX

54

Mapping Solutions onto the System Development Process

 Design the fault out of the system
 Don’t design-in or code-in the fault

 Use a better development process
 Prototype or model high-risk areas
 During development, find the fault as

early as possible
 Test early and often
 Use peer reviews for non-functional items

(architectures, etc.)

 Accept the fault may happen, so
design system to tolerate it during
operation

Requirements

Architecture

Detailed Design

Coding

Testing

Operation

Testing

Peer Review

Peer Review

Peer Review

55

Causes of Embedded System Failures

 Latent faults
 The system was designed and built that way

 Environmental factors
 Device failures
 Noise, single event upsets
 Hacker attacks
 New unexpected inputs/conditions

System

56

Definitions

 Terms
 Safety
 System does not cause any harm

 Reliability
 Probability that item will operate reliably for a

specified amount of time
 Availability
 Probability that item will operate correctly at a given

time

57

Fault Detection Methods

Application-
Specific Methods

Hardware Software Both

Generic Methods

Hardware Software

Platform & OS

Application

Both

