
1

Debugging Embedded Systems



2

Highlights from Agans’ Debugging



3

The Big Picture

Write code
Run code and see if it works



4

Understand The System (1)

 Know the roadmap – need good 
representations
 Hardware structure
 Software structure – not just the 

code!
 Hardware/software interactions
 PCB
 Module
 System

 Where can you access the 
signals and data?
 “Test points”

Build animated system diagram here



5



6



7

Understand The System (2)

 Read the manuals, data sheets and everything 
else which is relevant
 Tough for systems due to multiple layers of 

abstraction (boxes within boxes)
 Roadmap/structure is useful for managing 

complexity, identifying likely problem areas, 
ruling out others

Build animated 
documentation diagram here



8



9



10

Understand The System (2)

 Know what’s reasonable
 LED indicator: How short of a flash can you 

actually see?
 Printf logging: How fast is the serial port?

 Know your tools
 Understand your debugger’s capabilities
 Conditional breakpoints, trace buffer, peripheral 

viewer, real-time variable updates, kernel viewer, 
etc.

 Understand your logic analyzer’s and scope’s 
capabilities
 Triggering, decoding. More later.

 Understand that object code ≠ source code

 Look it up
 Don’t guess – it can lead you astray
 Use search features and create bookmarks in 

online documentation (otherwise can get lost in 
all the virtual material)



11

Make It Fail

 Why?
 So you can look at it
 So you can focus on the cause
 So you can tell if you’ve fixed it

 Be able to do it again
 Document a process which makes it fail
 Understand system’s starting state for this 

process
 For complex process, may be helpful to 

stimulate (trigger) the failure using 
automation
 Can simulate conditions which stimulate the 

failure. E.g. periodic IRQ asserter
 But don’t simulate the failure itself – requires 

too many assumptions, some likely to be wrong

 Handling intermittent failures
 Try to understand uncontrolled conditions
 Uninitialized data, floating input signals, electric 

noise, etc.
 Fix problem conditions
 Tweak other conditions to evaluate sensitivity

 Record everything from failures (e.g. log file) 
for analysis

 Don’t rely too much on statistics
 “That can’t happen” is wrong

 Your definition of “that” is wrong!
 Save every debugging tool



12

Quit Thinking and Look (1)

 See the failure
 See what actually happened
 Guessing about the failure may make you 

waste time “fixing” the wrong part
 See the details

 Keep digging into the details until there are 
just a few possible causes (see pp. 52-55)

 Use instrumentation
 Build instrumentation into the system
 Use source-level debugger, debug logs, well-

formatted status messages, trace buffer, lights, 
etc.

 Use external instrumentation
 Use logic analyzers, scopes, meters, etc.
 When helpful, add debug signals to reveal critical 

behavior
 task/ISR/idle activity and durations
 response latencies
 event chains

 See Know Your Tools earlier
 Triggering: on edges or levels or combination, pulse 

widths, delays, message type, data on bus (parallel, 
UART, I2C, SPI, SD card protocol, etc.)



13



14



15

Quit Thinking and Look (2)

 Don’t be afraid to dive in
 Create debug version of code, rebuild it
 Minor code modifications can help 

dramatically (e.g. instrumentation)
 But watch out for Heisenbugs

 Don’t mess up the system with your 
instrumentation (e.g. printf is slow)

 It’s OK to guess, but do it only to focus the 
search
 Don’t overdo it



16

Divide and Conquer – One Rule to Rule Them All (1)

 Narrow the search with successive 
approximation
 Define initial range as entire system 

(dangerous to rule anything out)
 Use easy-to-see test patterns

 Make it easier to see the bugs
 Determine which side of the bug you’re on

 Essential to know how information flows 
through system’s structures

 Start with the bad 
 Work upstream until you find the original 

failure
 Working downstream covers too much area, 

takes too much time

Build animated 
data flow diagram here



17



18



19

Divide and Conquer – One Rule to Rule Them All (2)

 Keep the system clean
 Fix the other bugs you know about
 One could cause the bug you’re working on now, 

and others you haven’t reached yet
 Enable and pay attention to compiler warnings

 Fix the noise first
 Some bugs are likely to cause other bugs

 But don’t overdo it and waste time
 Other bugs are superficial and relatively benign



20

Change One Thing at a Time

 Grab the brass bar with both hands.
 Don’t change things without thinking through 

the likely impact
 Change one thing at a time

 Keep all other variables constant (controlled)
 If it doesn’t do anything, undo it!

 Compare it with a good one
 Helps to have a debug log from each

 What changed since it last worked?
 Helps to keep a log of your code changes and 

use version control



21

Keep an Audit Trail

 Write down what you did, in what order, 
and what happened

 Any detail may be the important one
 Correlate events (requires some thinking)
 Use design audit trails for testing clues
 Write it down!



22

Check the Plug

 Question your assumptions
 Start at the beginning

 Don’t start at square three
 Test the tool

 Learn your tool’s limitations



23

Get a Fresh View

 Ask for fresh insights
 Tap expertise
 Listen to the voice of experience
 Know that help is all around you
 Don’t be proud
 Report symptoms, not theories
 Realize you don’t have to be sure



24

If You Didn’t Fix It, It Ain’t Fixed

 Check that it’s really fixed
 Check that it’s really your fix that fixed it
 Know that it never just goes away by itself
 Fix the cause
 Fix the process

 Get rid of bad habits


