NC STATE UNIVERSITY

Debugging Embedded Systems

NC STATE UNIVERSITY

Highlights from Agans’ Debugging DERUGGING

Understand the system
Make it fail
Quit thinking and look
Divide and conquer
Change one thing at a time
Keep an audit trail
Check the plug
Get a fresh view
If you didn't fix it, it ain't fixed

from Debugging @ 2002 by David Agans

To get the book or download this free poster, go to

www.debuggingrules.com

NC STATE UNIVERSITY

The Big Picture

= Write code
= Run code and see if it works

NC STATE UNIVERSITY

Understand The System (1)

= Know the roadmap — need good
representations
= Hardware structure
Software structure — not just the
code! Build animated system diagram here
Hardware/software interactions
= PCB
= Module
= System
= Where can you access the
signals and data?
= “Test points”

NC STATE UNIVERSITY

Qﬁ ,—7 | A3
w g CW%' -2V (/b——'—{ -
?}@;{:’\ fxecw%’m e AT !'\ _‘g\\
il b Usse bA‘P 7
BT Do BK?T : J\&
\ /

GP) O

: /
| Sotucel lave| @L%Q(iy |
S
5 /)
<

<
/3
\V / <

NC STATE UNIVERSITY

LA
Boed “}/

Debugging 1
Thursday, September 5, 2019

nnnnnnnnnnnnnn

O O

0. JO
|:IO
Q

ORG
Q)
l

(¥4
2

= 'D,z ~(ode EXec-
. - hl@* Varble Wafthes

L%‘ had CH(Stebs Rens us’
4 5 iy J

jewer

|

\ﬂ-

Fi

N\,

Understand The System (2)

= Read the manuals, data sheets and everything
else which is relevant
= Tough for systems due to multiple layers of
abstraction (boxes within boxes)
= Roadmap/structure is useful for managing

complexity, identifying likely problem areas,
ruling out others

NC STATE UNIVERSITY

Build animated
documentation diagram here

| FROX(25 2
l«—Tu ¢

NC STATE UNIVERSITY

NC STATE UNIVERSITY

= -
: — g
e R
-
— T
e

NC STATE UNIVERSITY

Understand The System (2)

= Know what’s reasonable = Look it up
= LED indicator: How short of a flash can you = Don’t guess — it can lead you astray
actually see? = Use search features and create bookmarks in
= Printf logging: How fast is the serial port? online documentation (otherwise can get lost in
= Know your tools all the virtual material)

= Understand your debugger’s capabilities

= Conditional breakpoints, trace buffer, peripheral
viewer, real-time variable updates, kernel viewer,
etc.

= Understand your logic analyzer’s and scope’s
capabilities
= Triggering, decoding. More later.

= Understand that object code # source code

NC STATE UNIVERSITY

Make It Fail

= Why? = Handling intermittent failures
= So you can look at it = Try to understand uncontrolled conditions
= So you can focus on the cause = Uninitialized data, floating input signals, electric
= So you can tell if you’ve fixed it noise, etc.

* Be able to do it again = Fix problem conditions

= Tweak other conditions to evaluate sensitivity

= Record everything from failures (e.g. log file)
for analysis

= Document a process which makes it fail
= Understand system’s starting state for this

process ’ o
= For complex process, may be helpful to * Don’t rely too much on statistics
o] 7
stimulate (trigger) the failure using = “That can’t happen” is wrong
automation = Your definition of “that” is wrong!

= Can simulate conditions which stimulate the = Save every debugging tool
failure. E.g. periodic IRQ asserter

= But don’t simulate the failure itself — requires
too many assumptions, some likely to be wrong

NC STATE UNIVERSITY

Quit Thinking and Look (1)

= See the failure = Use external instrumentation
= See what actually happened = Use logic analyzers, scopes, meters, etc.
= Guessing about the failure may make you = When helpful, add debug signals to reveal critical
behavior

waste time “fixing” the wrong part

= See the details

= Keep digging into the details until there are
just a few possible causes (see pp. 52-55)

= task/ISR/idle activity and durations
= response latencies
= event chains
= See Know Your Tools earlier
= Use instrumentation = Triggering: on edges or levels or combination, pulse

= Build instrumentation into the system widths, delays, message type, data on bus (parallel,

UART, I2C, SPI, SD card protocol, etc.
= Use source-level debugger, debug logs, well- P)

formatted status messages, trace buffer, lights,
etc.

NC STATE UNIVERSITY

o

X

- mf ; 8 Maz%w

R
Y
Ul—
il ™=

NC STATE UNIVERSITY

— —hime CPU

& Y/ﬂ \J'ol ‘@‘hu%

T)@.la/ TIA

S Latency on (OQus

167,
g)’ﬁTem

Quit Thinking and Look (2)

= Don’t be afraid to dive in
= Create debug version of code, rebuild it

= Minor code modifications can help
dramatically (e.g. instrumentation)

= But watch out for Heisenbugs

= Don’t mess up the system with your
instrumentation (e.g. printf is slow)

" [t's OK to guess, but do it only to focus the
search
= Don’t overdo it

NC STATE UNIVERSITY

Divide and Conquer — One Rule to Rule Them !il H;

= Narrow the search with successive
approximation
= Define initial range as entire system
(dangerous to rule anything out)
= Use easy—to—see test patterns
= Make it easier to see the bugs
= Determine which side of the bug you’re on
= Essential to know how information flows
through system’s structures
= Start with the bad
= Work upstream until you find the original
failure

= Working downstream covers too much area,
takes too much time

Build animated
data flow diagram here

NC STATE UNIVERSITY

NC STATE UNIVERSITY

Divide and Conquer — One Rule to Rule Them !il |§;

= Keep the system clean

= Fix the other bugs you know about

= One could cause the bug you’re working on now,
and others you haven’t reached yet

= Enable and pay attention to compiler warnings
= Fix the noise first

= Some bugs are likely to cause other bugs
= But don’t overdo it and waste time

= Other bugs are superficial and relatively benign

NC STATE UNIVERSITY

Change One Thing at a Time

= Grab the brass bar with both hands.

= Don’t change things without thinking through
the likely impact

= Change one thing at a time

= Keep all other variables constant (controlled)
= |f it doesn’t do anything, undo it!

= Compare it with a good one
= Helps to have a debug log from each

= What changed since it last worked?

= Helps to keep a log of your code changes and
use version control

20

Keep an Audit Trail

= Write down what you did, in what order,
and what happened

= Any detail may be the important one

= Correlate events (requires some thinking)
= Use design audit trails for testing clues

= Write it down!

21

NC STATE UNIVERSITY

Check the Plug

= Question your assumptions

= Start at the beginning
= Don’t start at square three

= Test the tool
= Learn your tool’s limitations

22

NC STATE UNIVERSITY

Get a Fresh View

= Ask for fresh insights

= Tap expertise

= Listen to the voice of experience

= Know that help is all around you

= Don’t be proud

= Report symptoms, not theories

= Realize you don’t have to be sure

23

NC STATE UNIVERSITY

NC STATE UNIVERSITY

If You Didn’t Fix It, It Ain’t Fixed

= Check that it’s really fixed

= Check that it’s really your fix that fixed it

= Know that it never just goes away by itself
= Fix the cause

= Fix the process
= Get rid of bad habits

24

