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Why?
Build road-maps of system to help debugging
 Agans’ Rule #1: Understand the System 
 Agans’ Rule #4: Divide and Conquer

How?
Extract …
 Hardware aspects
 Software aspects

Put them together

Overview
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Hardware
 Identify hardware input and output 

signals
 Type: analog, digital, PWM, etc.

 Identify which peripherals are used and 
how (use MCU manual)
 Which input or output signals are used
 How is peripheral used? 
 How is peripheral triggered? (HW signal or SW 

write?) 
 Does the peripheral generate interrupts or 

control signals for other peripherals? 

Software
 Is there an explicit kernel/scheduler?
 Identify threads and handlers (vectors in 

startup.s)
 How are they triggered to execute?
 What data is transferred one-way? (writer 

doesn’t read the data). Where and how?
 What data is shared two-way? (e.g. 

read/modify/write) Where and how?

 Code structures for key threads and 
functions
 Determine each thread’s/handler’s call graph
 Determine each function’s control flow graph 

(flow chart)

Extracting Architecture from an Implementation
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Reminder: Flashing Constant Current LED Driver
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 Identify system hardware input, outputs
 Signal type (analog, digital, PWM, etc.)
 Peripherals connected to those signals

 Examine peripheral use (cf. MCU manual)
 What does peripheral do?

 Examine inputs and outputs
 Data
 Control
 In: How is peripheral triggered?
 HW signal, SW write or free-running 

(asynchronous)?
 Out: What does the peripheral trigger?
 Does the peripheral generate interrupts or trigger 

signals for other peripherals? 

Hardware Aspects
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Hardware/Software Interactions
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Periodic Interrupt Timer

 Generates periodic interrupts using a 32-bit 
counter

 Load start value (32-bit) from LDVAL
 Counter decrements with each clock pulse

 Fixed clock source for PIT - Bus Clock from 
Multipurpose Clock Generator  - e.g. 24 MHz

 When timer value (CVAL) reaches zero
 Generates interrupt
 Reloads timer with start value

Clock

Read current timer value (TVL) 
from PIT_CVALn

Presettable
Binary Counter

Interrupt

Reload

Start Value

Read/write timer start value (TSV) 
from PIT_LDVALn
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Periodic Interrupt Timer
Code 
writes

1000 to 
TSV

Code enables 
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counter with TSV 
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down
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 After initialization, timer’s counter counts 
down

 When reaching zero (end of cycle),
 Generates interrupt request
 Reloads counter 

 Resumes counting down 

Example: Periodic Interrupt Timer
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 Software writes code for DAC 
voltage to DAC data register

 DAC generates analog voltage 
based on data input

Example: Digital to Analog Converter
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 After initialization, timer runs 
independently of software
 Generates PWM signal based on 

compare register and counter 
value

 Generates HW control signal at 
end of cycle (e.g. overflow or 
underflow)

 To update desired pulse width, 
software writes value to 
compare register

Example: Timer/PWM Module
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 Timer’s HW control signal 
at end of cycle triggers 
ADC to start conversion

 ADC converts input 
(analog voltage 
representing LED current) 
to digital value

 ADC generates interrupt 
request when conversion 
is done

 ADC IRQ Handler (ISR) 
reads data from ADC

Example: Analog to Digital Converter
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Hardware/Software Interactions
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What’s in the yellow boxes?
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Hardware/Software Interactions
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Threads and handlers
 Which parts of the program can be 

running concurrently? 
 How are threads and handlers triggered?
 How do threads and handlers interact 

with each other?

Code structures within key threads 
and functions
 Which functions can each thread call? 
 What is the possible flow of control 

within each function?

Software Aspects - Overview
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Threads: Parts of the program which 
can be running concurrently
 Execution sequence of thread A and 

thread B is independent 
 Can interleave execution sequence arbitrarily 

as long as A goes in order and B goes in order
 Sometimes we will add constraints

 Each thread has a “next instruction” to 
execute
 Thread = “Execution context”
 Each thread has its own program counter and 

function call stack so threads can proceed 
independently

Threads vs. subroutine calls vs. ISRs
 Subroutine calls (and software 

interrupts) are triggered by a specific 
instruction, are synchronous 
(synchronized) with program execution

 Caller function always blocks (pauses) 
until callee or ISR finishes and 
relinquishes CPU control. 

 ISR is triggered by hardware event, is 
asynchronous (not synchronized) with 
program execution

Thread Concepts
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Threading
 Is the system single-threaded (main + 

ISRs)?
 Is the system multi-threaded? Need an 

explicit scheduler (in kernel)
 Look in main for call for osKernelStart

 Identify threads and handlers 
 Threads created by calls to 

osThreadNew
 Handler vectors identified in 

startup_MKL25Z4.s

 How are threads triggered to 
execute?
 Hardware?
 Other threads?
 Kernel’s scheduler (e.g. time-based)?

What data is transferred…
 One-way? Writer doesn’t read the data, 

reader doesn’t write the data. 
 Two-way? Thread reads data into register, 

modifies it, writes it back to memory. 

Software Aspects

Embedded System Architectures © 2020 A.G. Dean



18

Looking into the Software Boxes
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Structures Representing Code
Source Code (.c)

f1() {
f2();
f3();

}

f2() {
… 

}
f3() {
…
}

f4() {
…
}
f5() {
…
}

main() {
f1();
f4();
f5();

}

Control Flow Graph of 
One Function’s Codemain

f1

f2 f3

f4

libf3

libf2

libf1

f5

Function Call Graph 
of One Thread



20

Function Call Graph

 Directed graph which shows function call 
relationships
 Edges connect caller function (at tail of edge) 

to callee function (at head)

 Types
 Static – show all possible function calls
 Dynamic – shows which function calls actually 

occurred during a particular program run
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Shared

Identifying Shared Data

 Definitions
 Resource: program variable, hardware peripheral, …
 Used: read, written or both
 Execution context: separate flow of program control 

with own program counter.  
 Main thread: main() function and every subroutine it calls 

(recursive: and every subroutine which those call)
 Additional threads possible if scheduler supports them
 Exception handlers, including ISRs 

 A resource is shared if it may be used by 
multiple execution contexts
 thread and thread
 thread and handler
 handler and handler

 “Slice and dice” the program
 How deep is subroutine call nesting? Horizontal slices
 Which execution context? Vertical slices

 Only variables potentially accessed by 
multiple execution context are shared

g_set_current

g_duty_cycleg_enable_flash
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Both show possible paths of execution 
(“control flow”) within a program or function
 https://en.wikipedia.org/wiki/Flowchart

Control flow graph is more detailed, has …
 Basic blocks of machine instructions
 Directed control flow edges

We’ll cover CFGs in ECE 461/561

Flowcharts and Control Flow Graphs



23

 https://en.wikipedia.org/wiki/Flowchart

ANSI/ISO Symbol Descriptions
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Control Flow: If/Else

if (x){

y++;

} else {

y--;

}

condition

action_if action_else

T F
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Control Flow: Switch

evaluate
expression

= const1?

= const2?

action1

action2

action3

T

T

F

F

switch (x) {

case 1:

y += 3;

break;

case 31:

y -= 5;

break;

default:

y--;

break;

}
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Iteration: While

test

loop_body

T

F

while (x<10) {

x = x + 1;

}
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Iteration: For

for (i = 0; i < 10; i++){

x += i;

}
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Iteration: Do/While

Test

loop_body

T F

do {

x += 2;

} while (x < 20);


