NC STATE UNIVERSITY

Extracting Architectures
from an Implementation (vl.I)

A.G.Dean
ECE 460/560
Embedded System Architectures

Embedded System Architectures © 2023 A.G. Dean

NC STATE UNIVERSITY

Overview

*Why!?
= Build road-maps of system to help debugging

= Agans’ Rule #1: Understand the System
= Agans’ Rule #4: Divide and Conquer

*How!
= Extract ...

= Hardware aspects
= Software aspects

* Put them together

Extracting Architecture from an Implementation

= Hardware = Software
= Identify hardware input and output = Is there an explicit kernel/scheduler?
signals = ldentify threads and handlers (vectors in
= Type: analog, digital, PWM, etc. startup.s)
= ldentify which peripherals are used and = How are they triggered to execute!?
how (use MCU manual) = What data is transferred one-way? (writer
= Which input or output signals are used doesn’t read the data).Where and how?

= What data is shared two-way!? (e.g.

= How is peripheral used?
read/modify/write) Where and how?

= How is peripheral triggered? (HW signal or SW

write?) = Code structures for key threads and
= Does the peripheral generate interrupts or functions
control signals for other peripherals? = Determine each thread’s/handler’s call graph

= Determine each function’s control flow graph
(flow chart)

Embedded System Architectures © 2020 A.G. Dean

NC STATE UNIVERSITY

Reminder: Flashing Constant Current LEB EI"IVGI‘

Hardware Trigger Signal —

Data Flow —_—
main
Current
PIT Debug -
PIT > IRQHandler Signal v

DAC =—>

> ADC ADCO_ Signal SN
(\ " IRQHandler v, TPM _oena J o f j
7

=
5

Control

\

C_J A

BUCK_SENSE_M

Current Feedback Signal

Embedded System Architectures © 2020 A.G. Dean

NC STATE UNIVERSITY

Hardware Aspects |
Control In (Do it!)

= |dentify system hardware input, outputs

= Signal type (analog, digital, PWM, etc.) Data In = Peripheral » Data Out
= Peripherals connected to those signals
= Examine peripheral use (cf. MCU manual) \
= What does peripheral do? Control Out (Do it!)

= Examine inputs and outputs
= Data

+ Control | |Data_|Control _
HW

= In: How is peripheral triggered?

. : , Inputs
= HW signal, SW write or free-running SW
(asynchronous)? HW
= Out:What does the peripheral trigger? Outputs

, . . SW
= Does the peripheral generate interrupts or trigger

signals for other peripherals?

Embedded System Architectures © 2020 A.G. Dean

NC STATE UNIVERSITY

Hardware/Software Interactions

Hardware Trigger Signal —

Data Flow —_—
main
Current
. PIT_ Debug -
PIT ->| IRQHandler \ Signal v
‘ =» DAC |=—=p

~~ * Control —
ADC '=§ ADCO_ Signal o

r> IRQHandler v -» TPM ™= g_> BUCK_DRV H
7

— r__D_I1 A
Current Feedback Signal

Embedded System Architectures © 2020 A.G. Dean

BUCK_SENSE_M

NC STATE UNIVERSITY

Periodic Interrupt Timer

Read/write timer start value (TSV) L.) .
from PIT LDVALR = Generates periodic interrupts using a 32-bit

counter
= Load start value (32-bit) from LDVAL

= Counter decrements with each clock pulse
Reload = Fixed clock source for PIT - Bus Clock from
Multipurpose Clock Generator - e.g.24 MHz

Clock Presettable = When timer value (CVAL) reaches zero

Hﬂ”ﬂ“ﬂ“ﬂ“ﬂ . --5------>Interrupt
Binary Counter = Generates interrupt
= Reloads timer with start value

Start Value

Read current timer value (TVL)
from PIT_CVALn

NC STATE UNIVERSITY

Periodic Interrupt Timer

Code Code enables
writes timer, which loads
1000 to counter with TSV
TSV and starts counting
TSV |
of
S &
C
o
@)
TVvL When TVL reaches When TVL reaches When TVL reaches
counts zero, hardware zero, hardware zero, hardware
down generates PIT generates PIT generates PIT
interrupt request, interrupt request, interrupt request,
reloads TVL with reloads TVL with reloads TVL with
1000, continues 1000, continues 1000, continues
PIT counting counting counting
Interrupt

Time

NC STATE UNIVERSITY

Example: Periodic Interrupt Timer

= After initialization, timer’s counter counts

down PIT
* When reaching zero (end of cycle), \ HW Control Out:
= Generates interrupt request Interrupt request

= Reloads counter

_ .
Resumes counting down | |Data____Control
HW

Inputs
P SW
HW Timer overflow
Outputs signal (periodic)
SW

Embedded System Architectures © 2020 A.G. Dean

NC STATE UNIVERSITY

| HW Data Out:
= Software writes code for DAC SW Data In: Analog voltage

voltage to DAC data register Code for lgqypin representing lqypoin:
etpoin

Example: Digital to Analog Converter

= DAC generates analog voltage
based on data input

| [Daa______Control
HW

Inputs
SW Code for lseepoine
HW Analog voltage
Outputs representing lsecoine

SW

Embedded System Architectures © 2020 A.G. Dean

NC STATE UNIVERSITY

Example: Timer/PVWWM Module

T . SW Data In:
= After initialization, timer runs , HW Data Out:
, Pulse width \) '
independently of software TPM _[——> PWM signal to
= Generates PWM signal based on buck converter
compare register and counter HW Control Out:
value Overflow Signal to ADC

= Generates HWV control signal at

end of cycle (e.g-overflow or | |Data___|Control
HW

underflow)
= To update desired pulse width,

. Inputs SwW Pulse width
software writes value to value
compare register HW PWM Timer
signal overflow signal
Outputs (periodic)

SW

Embedded System Architectures © 2020 A.G. Dean

NC STATE UNIVERSITY

Example: Analog to Digital Converter

HW Control In:
= Timer’s HW control signal TPM Overflow Signal\
t end of cycle tri
ot SNE Of fye e tissers HW Data In: SW Data Out:
ADC to start conversion , ,
« ADC ts inbut Analog voltage representing =»_ ADC |—> Code representing
converts inpt current through LED current through LED
(analog voltage
representing LED current) HW Control Out:
to digital value ADC IRQ ’
* ADC generates interrupt I
request when conversion HW Analog voltage representing Timer overflow signal (periodic)
is done Inputs current through LED
= ADC IRQ Handler (ISR) SW
reads data from ADC HW ADC interrupt request

Outputs SW Digital code representing
current through LED

Embedded System Architectures © 2020 A.G. Dean

NC STATE UNIVERSITY

Hardware/Software Interactions

Hardware Trigger Signal —

Data Flow — *What’s in the yellow boxes?
Current
PIT Debug o
~ pa IRQHandler Signal

DAC =—>

* Control —
> ADC ADCO_ Signal
IRQHandler ‘v, A —— e omy %T
7

\

C_J A

BUCK_SENSE_M

Current Feedback Signal

Embedded System Architectures © 2020 A.G. Dean

Hardware/Software Interactions

PTD->PCOR = NASK(BLUE_LED_POS);
1 else
PTD-PSOR = MASK(BLUE_LED_POS);

3

#ifnder HELED W
#deFine HBLED_H

I/ Switching parasetars
#deFine Pa_HBLED_CHANNEL (4)
#define Pa_PERIOD (400)
/% 48 Mz input clock
quency 48 MHz/(PUM_PERIODS2)
Timer s in count-up/down mode. 4/

#define LIM_DUTY_CYCLE (PM_PERTOD)

1/ Control approach configuration
#define USE_ASYNC_SAMPLING]
#define USE_SYNC_NO_FREQ DIV

#define USE_SYNC_SW_CTL_FREQ DIV 0
#define USE_SYNC_HA_CTL_FREQ_DIV 0

#detin REQ_DIV_FACTOR (1) // Software division in IS
Sieine ACTUFRERDTVICODE (05 1/ ot weed

#iF USE_ASYNC_SANPLING

#define USE_TPMO_INTERRUPT 0
#azfine USE_ADC_HW_TRICGER 0
#azfine USE_ADC_INTERRUPT 1
#endit

21T USE_SYNC_NO_FRE(

#define USE_TPMO_INTERRUPT 0
#define USE_ADC_HW_TRIGGER 1
#define USE_ADC_INTERRUFT 1
#enaif

#1f USE_SYNC_SW_CTL_FREQ DIV
#detine USE_TFMO_INTERRUFT 1
#define USE_ADC_HW_TRICCER 0
#dafine USE_ADC_INTERRUFT 1
#endif

#iF_USE_SYNC_HW_CTL_FREQ DIV
#aefine 'USE_TPMO_INTERRUPT 0
#azfine USE_ADC_HW_TRICGER 1
#azfine USE_ADC_INTERRUFT 1
#enait

I/ Control Parameters
7/ default control mode: Openloop. BangBang. Incremental. PID. PID_FX
#define DEF_CONTROL_MODE (Incremental)

/7 Tncremental contraller: change amount
#define INC_STEP (PW_PERIOD/40)

77 Proportional Gain. scaled by 248
#define PGATNS (0x0028)

/7 PID (flaating-point) gains. Guaranteed to be non-aptimal
#define T_GAIN_FL (0.000F)
#define P_GAIN_FL (0_600F)
#deFine D_CAIN_FL (0_000F)

47 PID_FX (Fixad_point) gains. Cuarantead to be non-optimal
define T_GAIN_FX (FL_TO_FXC0_0085F))
#define P_GAIN_FX (FL_TO_FXC0 062672
#define D_GATN_FX (FL_TO_FXC0 18317

#define FLASH_PERIOD (20)
#dzfine FLASH_CURRENT MA (180)

47 Mardware configuration
2dafine ADC_SENSE_CHANNEL (8)

#define R_SENSE (2.20)
#define RSENSE_MD (Cint) (R_SENSE“1000)3

#define V_REF
#define V_REF MV (Cint) (V_REF*1000))

#define ADC_FULL_SCALE (0x10000)
#dafine MA_SCALTNC_FACTOR (1000)

#deFine DAC_POS 30
#define DAC_RESOLUTION 4096

J/ #define MA_TO_DAC_CODECi) (i*2.2*DAC_RESOLUTION/V_REF_MV) // Introduces timing delay and in-
terasting bug!
#deFine MA_TO_DAC_CODECT) (C1)*(2.2F4DAC_RESOLUTION,V_REF_MV))

2dafine MINGa,b) ((a<b)7a:b)
#define MAXCa b) ((a>b)7a:b)

#endif // HBLED_H

#ifadef DELAY_H
#3zFine DELAY_H
#include <stdint.h>

extern void Delay(uinti2_t d1yTicks;
extern void ShortDelayCuint32_t dlyTicks);
#endif

[HALLALALLALALLALLLLALLLLALLLLALARN University Program Copyright 8 ARM Ltd

7
Qg3 0nevasussasins

#include <MKLZSZA K>

void Delay Guintizt 1) ¢
volatile wint32_t

for (t=81y*10000; t=0; t--)

i3

Wb R
volatile uint32_t

+4ARNM University Frogram Copyright € ARM Ltd

#include <MKL2SZ2.H>
#include <stdio.h>
#include <stdint.h>

#include
#include

gpio_defs_h"
debug.h™

#include “timers.|
#include “delay.h
#include LEDS.A'

#include "HELED.h™
#include “FX.h"

volatile int g_enable_control=i;
wolatile int g_set_currentsd

velatile int measured_current;

velatile intl t g duty cycle=0; // global to give debugger access

velatile dnt error;

enun {Openloop, EangEang, Incremental, Proportional, PID, PID_FX}
ntrol_sode=DEF_CONTROL_MODE;

int32_t pGain_8 = PGATN_8; // proportional gain numerator scaled by 248
volatile int g_enable flash=1;

typedef struct {
float dState; // Last position input
float iState; // Integrator state
Float iMax, Min; 7/ Haximn (&8 wie i oY anat i cigEs el aue
Phond (i 1 Amcecrd e
T/, oo giin
dCaIn 74 derivative gain

} 5Pid;

typedet struct
FXis_10 dState; // Last position input
FX16.16 iState; // Integrator state
FX16_16 iMax, iMin; /7 Haxinum and minimum allowable integrator state
FX16_16 iGain, // integral gain
phain, // proportional gain
dGasn’ [/ derivative gain
} SPRdFK;

SF1d plantPID = 40, /7 dstate
[

DLGAINFL 4/ dCzin
5

SFHGR PIanPIDEX = (FLTOFXCO), /7 aState
_T0_FXE0), // iState
FLIU,FX([IPLDIJ’W,EV(L[), 21 iMax

DLGAIN_FX // dCain
5

Flost UpdatePIDCSFid ¢ pid, flost rror, Mot posiviond
oat pTerm, dTerm, iTerm;

// calculate the proportional term
BTerm = pid->pGain # error;
// calculate the integral state with appropriate limiting
50 ;
I (pid->iState > pid-»iMag)
Ad->i5tate = pid-iiax;
A s sa s bt e
pidsiState - pidsd
idriState; 4/ caleulate the integral term
STerm = Do+ Gpamrtion ~ pha-s dSestens
pidrdState « position,

iTerm = pid->i

return pTers & Term - dTerm;

i3

PS8 UpderaPID_FXCSFIdRC + pid, PGS arror P, FXIGS poritio
X616 pTerm, dTerm, iTers, diff, ret_val

// calculate the proportional ters
erm = Multiply_FX(pid-»pGain, error_FX);

// calculate the integral state with appropriate Timiting
pid-riState = Add_FX(pid-»iState, error_F0;
I (pid-»iState > pid-iMax)
pid--iState = pid-riifax;
else i (pid->iState < pid->aMin)
pid->istats = pid-»iMin;

iTerm = Multiply_FX(pid->iGain, pid->iState); // calculate the integral term
GiFF = Subtract_F(position_FX, pid-dState)

dTerm = Multiply_FX(pd->dGasn, 639);

pid-»dState = position FX;

rec_val = Ada_PX(pTerm, iTers);
ret_val = Subtract_PX(ret_val, dTerm);
return ret_val;

3

o Lo LD el
Bl " changeFX, error_PX;
FPTE->PSOR = MASK(DEC_CONTROLLER) ;

17 UsE ACINTERRUPT
/7 diready completed conversion. so don't wait
else
vhile (1 ADCD-SCAE0] 8 ADC_SCILCOCO SN
@it until end o conversion
fenaif
res = ADCO->RL0)

measured_current = (rest1500)>>16; // Extra Credit: Make this code wark: V_REF_WHA_SCAL-
ING_FACTOR) / (ADC_FULL_SCALE“R_SENSE)

switch (control_mode) £
case Openloop:
/ don't do anything!
break;
case BangBan
IF (measured_current < g_set_current)
ty_cycle = LIMDUTY_CVCLE;

else
g_duty_cycle = 0
break:
case Incremental
F (measured_current < g_set_current)

o_duty_cycle += INCSTEP;

else

gduty_cycle

Inc_sTER;

brea
case Prapnrtmna'\
ty_cycle += (pGain_B*(g_set_current - measured_current)}/256; // -

case P10
g_duty_cycle += UpdateFID(851antFID, g_set_current - measured_current, meas-
ured_current);
k;
case PID_FX
error_FX = INT_TO_FX(g_set_current - measured_current);
change UpdatePTD_FX(plantPID_FX, error_PX, INT_TO_FX(measured_current));

g_duty_cycle += FX_TO_INT(change_FX);
break;
default:

break;

H

/4 Update PM controller with duty cycle
i (gduty_cycle <
gduty_cycle =

WAMLAE (o e > LIM_DUTY_CYCLEY

uy_cycle = LIADUTY_CYCLE
PWM_Set Value(TFMO, PWM_HELED CHANNEL, g_duty_cycled;
e R L thecrou oL TRy

b

#if USE_ADC_INTERRUPT
void ADCD_Tibandlar) ¢

= MASK(DBG_TRQ_ADD);
Comero HELEDO,

FPTB->PCOR = MASK(DBC_TRQ_ADO) ;

b
senait

o e iy W o) L
/7 Force 16-bit write to
Vinien + dnchiet — Cainelbx HECACO-DATIE. DATL ;
#dachdat = (wintl6_t) code;

b

veid Ser_DAC mACunsigned int current) {
igned int code = MA_TO_DAC_CODE(current);
/4 Forca 16-bit write to DAC
Wintl6_t * dacodat = (wintlé_t +)E(DACO->DAT[O].DATLY;
#dachdat = (wintl6_t) code;

3

void Init DACKvoid) {
#/ Enable clock to DAC and Port E

SIM->SCCCS |= SIM_SCCCS_DACO_MAS

SIM-35CCC5 |= SIM_SCCCI_PORTE_MASK;

7/ Select analog for pin
FORTE->FCRIDAC_FOS] &= ~PORT_PCR_MUX_MASK;
FORTE->FCRIDAC_FOS] 1= PORT_PCR_MUX(0);

/4 Disable buffer mode
c0->c1

NC STATE UNIVERSITY

DACO->C2

0

J# Enable DAC. select VDDA as reference voltage
DACO->C0 = DAC_CO_DACEN_MASK | DAC_CO_DACRFS_MASK;
Set_DACCD);

i3

void Tnit ADCCvoid) {
'/ Configure ADC to read Ch B (FPTE 0)
SDA-rSCECE |- ST SCGCSADCOHASK;
T

T o crs = e cren aoustscss
ADCO->5C2 = ADC_SC2_REFSEL(D);

#1 USE_ADC_HW_TRICCER
7/ Enable hardware triggering of ADC
_ADTRG(1)

ADCO-25C2 1= DK :
77 Select triggering by vert
Lo ssort B S0PT7 ADCUTAGREL B | STH_S0PT7_ADCOALTTRGEN MASK;,

7 Select input channel
ADCO->5CA[0] &= ~ADC_SCI_ADCH MASK;
ADCD->SCLIO] |= ADC_SCI_ADCHCADC_SENSE_CHANNEL)
#enait

TR IR
77 enable ADC interrupt
AOCO-LSCLEON 1+ DL SCL AZENCE);

J# Configure NVIC for ADC interrupt
NVIC SecPriority(ADCO_IRGn, 1283 // 0. 64, 126 or 182
KVIC_ClearPendingTROCABCO_TRON) ;

NVIC_Enabl eTRQEADCO_TRQM)
senait

b

vod Ugdateset Currant (i) {
tic It delay=FLASH_PERIOD;

iF (o_ensble_flash)

1
FPTB->PS0R = MASK (D3C_LED_OK);
Set_DAC_sACFLASH_CURRENT &) ;

2_current = FLASH_CURRENT_MA;

3 else iF (delay—0) {

21 2y=FLASH_FERIOD;
FPTB->PS0R = MASK (DBC_LED_OK);
Set_DAC_sACFLASH_CURRENT_MA/4) ;
g_set_current = FLASH_CURRENT_MA/4;

3 else {
FPTB->PCOR = MASK (D3C_LED_OK);
Set_DAC_sACO),
g_sex_current

¥

b

MAIN functicn

int main (void) {
Init Debug SignalsO:
Init DACQ;
Init_ADCO
Init REE_LEDSC);

G a5 W bk
7/ Set up FTE: Sups ey en TR € 4

S echs 1= smi scaes poRTE ISk

PORTE->FCRI31] &= PORT_PCRMUX(T);

PORTE->FCRLIL] |= PORT_PCR_MUXCD);

FWN_n c(TFMD, PWN_MELED_CHANNEL, RuM_FERIOD, 40);

Delay
Control_RGE_LEDS (0,0, 13;

Control_RGE_LEDs (1,1,03;
(100

¢ Configure flash timer
Imit_PIT(423456);
Start_PITO;

#iT USE_ASYNC_SANPLING
/ Start conversion
ADCO-»SCL[0] = ADC_SCLATENCL) | ADC_SENSE_CHANNEL;
Contral HBLED(); // Elocks uncil ADC dene, then updates control

senait
7 €l1se do nothing but wait for interrupts

3

b
#tfaset TIUERS 4
#deFine TIMERS_}
inciuds WLZTRG 0"

vo1d PUHLINTECTRU Type * TP, winid.& chenncl nun, wintis.t period, uintis & duty):

oid PM_Set_Valus(TPM_Type # TFM, Uint_t channei_num, uintlS_t vilue);

woid Init_PITqunsigned period);
woid Start PIT(void);
veid Stop PITGvaid);

senait

#include “timers_h”
#include <MKL25Z4.h>

extern void Update_Set_Current (void)

void PHM_Init(TPM_Type * TPH,
H

J4zurn on clock to TP
switch (Cint) TR ©
case Cint) TPHO
STW-»5CCC
eak;
case Cint) TP
So-mscoc

case Cine> T2
STH-»5C6C
break;

dafane:
braak;

J/set clock source for
SIN--SOPTZ |= (SIM_SOPI

//10ad the counter and
TPH-:MOD = period:

//5et_channel o cantar
TPH->CONTROL S[channe_s

//se% TPU to up-down ar
TPH-25C = (TPM_SC_CPUM:

//set trigger mode and
TPH->CONF |= TP_CONF_T

/7 Set initial duty cy
TPH->CONTROL S [channel_s

RS 41
MO->SC |= TPH_SC_TOT

7/ Configure NVIC

NVIC_SetPriorityCTPH_]

WVICClearPendingIRQ(T?

NVIC Enab1eTROCTAHO_TRC
#endif

/7 Stare the vimer cour

TPN->SC |= TPM_SC_CMODY

Vet PHL ST Valus (TP Typs *
TP->CONTROL S[channe_s

3
extern void Control_HBLED(voi

void TRMO_IAQHandler() {
static uine32_t control

FPTE->PSOR = MASK(DEC_]
//eT8ar pending 1RQ 1:
2 TPHO->SC |= TPH_SC_TOF.

control_divider-
if Ccontrol_divider
control_givider
/ Start convers
ADCO-»SC1[0] = A

#57 UsE o DTIUeT
can return in
#else
/7 €N contral
Contro1_MBLEDO);
sendit

¥
FPTE->PCOR = MASK(DEC_]

void Tnit_PIT(unsigned period
7/ Enable clock to PIT
SDH->5C SIM_sCCCt

/4 Disable clocks for ¢
PIT-+MQR |= PLT_MCR_MD]

/4 Initialize PITO to ¢
FTACHNNEL 191 LOVAL -

'4 o _chainin
PIT->CHANNEL[0] . TCTRL 4

FIT-~CHANNEL [0] TCTRL |

#if 1 // generate interrupts
VIC_SetPriority(PLT_
WVIC_ClearPendingIRg(F)
VIC_EnabeTAQ(PIT_IRG:

senait

b

void Start_FIT(void) {

7/ Enable counter
PIT->CHANNEL [0 TCTRL |
T-NCR &= wPIT_MCR_M

¥

void Stop_PIT¢void) {
7/ Disable counter

NC STATE UNIVERSITY

Software Aspects - Overview

* Threads and handlers = Code structures within key threads
= Which parts of the program can be and functions
running concurrently? = Which functions can each thread call?

* How are threads and handlers triggered? = What is the possible flow of control
* How do threads and handlers interact within each function?
with each other?

Embedded System Architectures © 2020 A.G. Dean

NC STATE UNIVERSITY

Thread Concepts

= Threads: Parts of the program which = Threads vs. subroutine calls vs. ISRs

can be running concurrently = Subroutine calls (and software
= Execution sequence of thread A and interrupts) are triggered by a specific
thread B is independent instruction, are synchronous
= Can interleave execution sequence arbitrarily (synchronized) with program execution
as long as A goes in order and B goes in order = Caller function always blocks (pauses)
= Sometimes we will add constraints until callee or ISR finishes and
= Each thread has a “next instruction” to relinquishes CPU control.
execute = ISR is triggered by hardware event, is
* Thread ="Execution context” asynchronous (not synchronized) with

= Each thread has its own program counter and
function call stack so threads can proceed
independently

program execution

Embedded System Architectures © 2020 A.G. Dean

Software Aspects

* Threading
= Is the system single-threaded (main +
ISRs)?

= |s the system multi-threaded? Need an
explicit scheduler (in kernel)
= Look in main for call for osKernelStart

= [dentify threads and handlers

= Threads created by calls to
osThreadNew

= Handler vectors identified in
startup_ MKL25Z4.s

NC STATE UNIVERSITY

= How are threads triggered to
execute!
= Hardware?
= Other threads!?
= Kernel’s scheduler (e.g. time-based)?

= What data is transferred...

= One-way?! Writer doesn’t read the data,
reader doesn’t write the data.

= Two-way!? Thread reads data into register,
modifies it, writes it back to memory.

Embedded System Architectures © 2020 A.G. Dean

NC STATE UNIVERSITY

Looking into the Software Boxes

Hardware Trigger Signal —

Data Flow —_—
main
Current
PIT Debug -
PIT > IRQHandler Signal v

DAC =—>

* Control —
> ADC ADCO_ Signal
IRQHandler ‘v, A —— e omy %T
7

\

C_J A

BUCK_SENSE_M

Current Feedback Signal

Embedded System Architectures © 2020 A.G. Dean

NC STATE UNIVERSITY

Structures Representing Code

Source Code (.c)

f1() { f2() { f4() { main() {
f2(); f1();
f3(); } } f4();
} f3() { f5() { }f5():
}... }...A
Function Call Graph
of One Thread Control Flow Graph of
main One Function’s Code
|y N —
fl f4 f5 >
— !
f2 f3 libf2
¥ !
libfl libf3

NC STATE UNIVERSITY

Function Call Graph

exit ADCO_IRQHandler main PIT_IRQHandler TPMO_IRQHandler

A
Control_HBLED Delay Control_RGB_LEDs Init_ADC Init_Debug_Signals Init_PIT Init_RGB_LEDs PWM_Init Start_PIT Update_Set_Current

Pl

Add_FX PWM_Set_Value Subtract_FX Multiply_FX

= Directed graph which shows function call = Types
relationships = Static — show all possible function calls

= Edges connect caller function (at tail of edge) = Dynamic — shows which function calls actually
to callee function (at head) occurred during a particular program run

20

NC STATE UNIVERSITY

|dentifying Shared Data |
i ADCO_IRQHandler

TPMO_IRQHandler

| 1 | |
| 1 | |
1 | 1 1
| I | |
| I | |
: Delay Control_RGB_LEDs ’— Init_ADC r Init_Debug_Signals Init_PIT ‘ Init_RGB_LEDs -‘ PWM_Init Start_PIT “ ‘ Update_Set_Current Control_HBLED : :
I I | ¥ I I
| | 1
E : % Add_FX PWM_s£t_Value } Subtract_FX‘ Multiply_FX : :
= Definitions = A resource is shared if it may be used by
= Resource: program variable, hardware peripheral, ... multiple execution contexts
= Used: read, written or both = thread and thread
= Execution context: separate flow of program control = thread and handler
with own program counter. = handler and handler

= Main thread: main() function and every subroutine it calls = “Slice and dice” the program

(recursive: and every subroutine which those call) = How deep is subroutine call nesting? Horizontal slices

= Additional threads possible if scheduler supports them = Which execution context? Vertical slices

= Only variables potentially accessed by
2 multiple execution context are shared

= Exception handlers, including ISRs

NC STATE UNIVERSITY
Flowcharts and Control Flow Graphs

ANEIISO
Name

Shape | Shape | Name
= Both show possible paths of execution Flowine 8 Data File or
‘ %) ol . (Arrowhead)(""! Database
(“control flow”) within a program or function @
= https://en.wikipedia.org/wiki/Flowchart Terminai®l = Document
= Control flow graph is more detailed, has ... o .-| —
= Basic blocks of machine instructions U operation
" Directed control flow edges Decision'"™ Q Manual input
= We’ll cover CFGs in ECE 461/561 S e

Initialization
Annotation['4 '
(Comment)l 1!

Predefined
Process!¥!

On-page

Connectorl 4]

Off-page
Connectorl

a°[C10 |

14]

22

ANSI/ISO Symbol Descriptions

NC STATE UNIVERSITY

Flowline
(Arrowhead)!"8]

Shows the process's order of operation. A line coming from
one symbol and pointing at another.l'*! Arrowheads are
added if the flow is not the standard top-to-bottom, left-to
right.[9]

Terminall'4]

Indicates the beginning and ending of a program or sub-
process. Represenied as a stadium,["! oval or rounded
(fillet) rectangle. They usually contain the word "Start" or
"End", or another phrase signaling the start or end of a
process, such as "submit inquiry” or "receive product".

Process!19]

Represents a set of operations that changes value, form, or
location of data. Represented as a rectangle.[%]

Decisionl !

Shows a conditional operation that determines which one of
the two paths the program will take.I'*] The operation is
commonly a yes/no question or true/false test. Represented

as a diamond (rhombus).[1%]

Data File or . . .
Data represented by a cylinder (disk drive).
Database
@ Single documents represented a rectangle with a wavy base.
— —— Document } :
]| Multiple documents represented stacked rectangle with a wavy
- base.
—— Represented by a trapezoid with the longest parallel side at the top,
U y fo represent an operation or adjustment to process that can only be
operation
made manually.
Manual Represented by quadrilateral, with the top irregularly sloping up
input from left to right, like the side view of a keyboard.
Preparation oo .
C> Represented by an elongated hexagon, originally used for steps like
or
L setting a switch or initializing a routine.
Initialization

Input/Qutputl’3]

Indicates the process of inputting and outputting data,l'®! as
in entering data or displaying results. Represented as a
rhomboid 14!

= https://en.wikipedia.org/wiki/Flowchart

23

Annotation! 4!
(Comment)['3]

Indicating additional information about a step in the
program. Represented as an open rectangle with a dashed
or solid line connecting it to the corresponding symbol in the
flowchart.[']

Shows named process which is defined elsewhere.

Predefined . .
Processi4l Represented as a rectangle with double-struck vertical
edges.[1]
On-page Pairs of labeled connectors replace long or confusing lines
O Conn:::tgr“ 4 |ONA flowchart page. Represented by a small circle with a
letter inside. 141181
e A labeled connector for use when the target is on another
U Conn:::tgr“ 4 | Page. Represented as a home plate-shaped

pentagon [141[18]

Control Flow: If/Else

NC STATE UNIVERSITY

TF

action_if

action_else

Control Flow: Switch

switch (x) {
case 1:
y += 3;
break;
case 31:
y -= 5;
break;
default:
y--,
break;

}

evaluate
expression

action1

action2

action3

NC STATE UNIVERSITY

NC STATE UNIVERSITY

lteration: While

while (x<10) {

X =X + 1; =
¥

T
loop body

!

NC STATE UNIVERSITY

Iteration: For

init
for (i = 0; i < 10; i++){
X += 1;
} —> loop_body
re-init
T F

NC STATE UNIVERSITY

Iteration: Do/While

do {
X += 2; i
} while (x < 20);

—> loop_body

>

