
1

Extracting Architectures
from an Implementation (v1.1)

A.G.Dean
ECE 460/560

Embedded System Architectures

Embedded System Architectures © 2023 A.G. Dean

2

Why?
Build road-maps of system to help debugging
 Agans’ Rule #1: Understand the System
 Agans’ Rule #4: Divide and Conquer

How?
Extract …
 Hardware aspects
 Software aspects

Put them together

Overview

3

Hardware
 Identify hardware input and output

signals
 Type: analog, digital, PWM, etc.

 Identify which peripherals are used and
how (use MCU manual)
 Which input or output signals are used
 How is peripheral used?
 How is peripheral triggered? (HW signal or SW

write?)
 Does the peripheral generate interrupts or

control signals for other peripherals?

Software
 Is there an explicit kernel/scheduler?
 Identify threads and handlers (vectors in

startup.s)
 How are they triggered to execute?
 What data is transferred one-way? (writer

doesn’t read the data). Where and how?
 What data is shared two-way? (e.g.

read/modify/write) Where and how?

 Code structures for key threads and
functions
 Determine each thread’s/handler’s call graph
 Determine each function’s control flow graph

(flow chart)

Extracting Architecture from an Implementation

Embedded System Architectures © 2020 A.G. Dean

4

Reminder: Flashing Constant Current LED Driver

Data Flow

LED Driver
Circuit

Current Feedback Signal

Control
SignalADC

TPM

PIT

main

ADC0_
IRQHandler

PIT_
IRQHandler

Hardware Trigger Signal

g_set_current

g_duty_cycle

g_enable_flash
Current
Debug
Signal

DAC

Embedded System Architectures © 2020 A.G. Dean

5

 Identify system hardware input, outputs
 Signal type (analog, digital, PWM, etc.)
 Peripherals connected to those signals

 Examine peripheral use (cf. MCU manual)
 What does peripheral do?

 Examine inputs and outputs
 Data
 Control
 In: How is peripheral triggered?
 HW signal, SW write or free-running

(asynchronous)?
 Out: What does the peripheral trigger?
 Does the peripheral generate interrupts or trigger

signals for other peripherals?

Hardware Aspects

Embedded System Architectures © 2020 A.G. Dean

ControlData

HW
Inputs

SW

HW
Outputs

SW

PeripheralData In Data Out

Control In (Do it!)

Control Out (Do it!)

6

Hardware/Software Interactions

Data Flow

LED Driver
Circuit

Current Feedback Signal

Control
SignalADC

TPM

PIT

main

ADC0_
IRQHandler

PIT_
IRQHandler

Hardware Trigger Signal

g_set_current

g_duty_cycle

g_enable_flash
Current
Debug
Signal

DAC

Embedded System Architectures © 2020 A.G. Dean

7

Periodic Interrupt Timer

 Generates periodic interrupts using a 32-bit
counter

 Load start value (32-bit) from LDVAL
 Counter decrements with each clock pulse

 Fixed clock source for PIT - Bus Clock from
Multipurpose Clock Generator - e.g. 24 MHz

 When timer value (CVAL) reaches zero
 Generates interrupt
 Reloads timer with start value

Clock

Read current timer value (TVL)
from PIT_CVALn

Presettable
Binary Counter

Interrupt

Reload

Start Value

Read/write timer start value (TSV)
from PIT_LDVALn

8

Periodic Interrupt Timer
Code
writes

1000 to
TSV

Code enables
timer, which loads
counter with TSV

and starts counting

TVL
counts
down

When TVL reaches
zero, hardware
generates PIT

interrupt request,
reloads TVL with
1000, continues

countingPIT
Interrupt

TSV

When TVL reaches
zero, hardware
generates PIT

interrupt request,
reloads TVL with
1000, continues

counting

When TVL reaches
zero, hardware
generates PIT

interrupt request,
reloads TVL with
1000, continues

counting

Time

C
ou

n
t V

a
lu

e

9

 After initialization, timer’s counter counts
down

 When reaching zero (end of cycle),
 Generates interrupt request
 Reloads counter

 Resumes counting down

Example: Periodic Interrupt Timer

Embedded System Architectures © 2020 A.G. Dean

PIT

HW Control Out:
Interrupt request

ControlData

HW
Inputs

SW

Timer overflow
signal (periodic)

HW
Outputs

SW

10

 Software writes code for DAC
voltage to DAC data register

 DAC generates analog voltage
based on data input

Example: Digital to Analog Converter

Embedded System Architectures © 2020 A.G. Dean

HW Data Out:
Analog voltage

representing ISetpoint
DAC

SW Data In:
Code for ISetpoint

ControlData

HW
Inputs

Code for ISetpointSW

Analog voltage
representing ISetpoint

HW
Outputs

SW

11

 After initialization, timer runs
independently of software
 Generates PWM signal based on

compare register and counter
value

 Generates HW control signal at
end of cycle (e.g. overflow or
underflow)

 To update desired pulse width,
software writes value to
compare register

Example: Timer/PWM Module

Embedded System Architectures © 2020 A.G. Dean

HW Data Out:
PWM signal to
buck converter

TPM

SW Data In:
Pulse width

HW Control Out:
Overflow Signal to ADC

ControlData

HW
Inputs Pulse width

value
SW

Timer
overflow signal
(periodic)

PWM
signal

HW

Outputs

SW

12

 Timer’s HW control signal
at end of cycle triggers
ADC to start conversion

 ADC converts input
(analog voltage
representing LED current)
to digital value

 ADC generates interrupt
request when conversion
is done

 ADC IRQ Handler (ISR)
reads data from ADC

Example: Analog to Digital Converter

Embedded System Architectures © 2020 A.G. Dean

SW Data Out:
Code representing

current through LED
ADC

HW Data In:
Analog voltage representing

current through LED

HW Control In:
TPM Overflow Signal

ControlData

Timer overflow signal (periodic)Analog voltage representing
current through LED

HW
Inputs

SW

ADC interrupt requestHW
Outputs Digital code representing

current through LED
SW

HW Control Out:
ADC IRQ

13

Hardware/Software Interactions

Data Flow

LED Driver
Circuit

Current Feedback Signal

Control
SignalADC

TPM

PIT

main

ADC0_
IRQHandler

PIT_
IRQHandler

Hardware Trigger Signal

g_set_current

g_duty_cycle

g_enable_flash
Current
Debug
Signal

DAC

What’s in the yellow boxes?

Embedded System Architectures © 2020 A.G. Dean

14

Hardware/Software Interactions

Data Flow

LED Driver
Circuit

Current Feedback Signal

Control
SignalADC

TPM

PIT

main

ADC0_
IRQHandler

PIT_
IRQHandler

Hardware Trigger Signal

g_set_current

g_duty_cycle

g_enable_flash
Current
Debug
Signal

DAC

What’s in the yellow boxes?

Embedded System Architectures © 2020 A.G. Dean

15

Threads and handlers
 Which parts of the program can be

running concurrently?
 How are threads and handlers triggered?
 How do threads and handlers interact

with each other?

Code structures within key threads
and functions
 Which functions can each thread call?
 What is the possible flow of control

within each function?

Software Aspects - Overview

Embedded System Architectures © 2020 A.G. Dean

16

Threads: Parts of the program which
can be running concurrently
 Execution sequence of thread A and

thread B is independent
 Can interleave execution sequence arbitrarily

as long as A goes in order and B goes in order
 Sometimes we will add constraints

 Each thread has a “next instruction” to
execute
 Thread = “Execution context”
 Each thread has its own program counter and

function call stack so threads can proceed
independently

Threads vs. subroutine calls vs. ISRs
 Subroutine calls (and software

interrupts) are triggered by a specific
instruction, are synchronous
(synchronized) with program execution

 Caller function always blocks (pauses)
until callee or ISR finishes and
relinquishes CPU control.

 ISR is triggered by hardware event, is
asynchronous (not synchronized) with
program execution

Thread Concepts

Embedded System Architectures © 2020 A.G. Dean

17

Threading
 Is the system single-threaded (main +

ISRs)?
 Is the system multi-threaded? Need an

explicit scheduler (in kernel)
 Look in main for call for osKernelStart

 Identify threads and handlers
 Threads created by calls to

osThreadNew
 Handler vectors identified in

startup_MKL25Z4.s

 How are threads triggered to
execute?
 Hardware?
 Other threads?
 Kernel’s scheduler (e.g. time-based)?

What data is transferred…
 One-way? Writer doesn’t read the data,

reader doesn’t write the data.
 Two-way? Thread reads data into register,

modifies it, writes it back to memory.

Software Aspects

Embedded System Architectures © 2020 A.G. Dean

18

Looking into the Software Boxes

Data Flow

LED Driver
Circuit

Current Feedback Signal

Control
SignalADC

TPM

PIT

main

ADC0_
IRQHandler

PIT_
IRQHandler

Hardware Trigger Signal

g_set_current

g_duty_cycle

g_enable_flash
Current
Debug
Signal

DAC

Embedded System Architectures © 2020 A.G. Dean

19

Structures Representing Code
Source Code (.c)

f1() {
f2();
f3();

}

f2() {
…

}
f3() {
…
}

f4() {
…
}
f5() {
…
}

main() {
f1();
f4();
f5();

}

Control Flow Graph of
One Function’s Codemain

f1

f2 f3

f4

libf3

libf2

libf1

f5

Function Call Graph
of One Thread

20

Function Call Graph

 Directed graph which shows function call
relationships
 Edges connect caller function (at tail of edge)

to callee function (at head)

 Types
 Static – show all possible function calls
 Dynamic – shows which function calls actually

occurred during a particular program run

21

Shared

Identifying Shared Data

 Definitions
 Resource: program variable, hardware peripheral, …
 Used: read, written or both
 Execution context: separate flow of program control

with own program counter.
 Main thread: main() function and every subroutine it calls

(recursive: and every subroutine which those call)
 Additional threads possible if scheduler supports them
 Exception handlers, including ISRs

 A resource is shared if it may be used by
multiple execution contexts
 thread and thread
 thread and handler
 handler and handler

 “Slice and dice” the program
 How deep is subroutine call nesting? Horizontal slices
 Which execution context? Vertical slices

 Only variables potentially accessed by
multiple execution context are shared

g_set_current

g_duty_cycleg_enable_flash

22

Both show possible paths of execution
(“control flow”) within a program or function
 https://en.wikipedia.org/wiki/Flowchart

Control flow graph is more detailed, has …
 Basic blocks of machine instructions
 Directed control flow edges

We’ll cover CFGs in ECE 461/561

Flowcharts and Control Flow Graphs

23

 https://en.wikipedia.org/wiki/Flowchart

ANSI/ISO Symbol Descriptions

24

Control Flow: If/Else

if (x){

y++;

} else {

y--;

}

condition

action_if action_else

T F

25

Control Flow: Switch

evaluate
expression

= const1?

= const2?

action1

action2

action3

T

T

F

F

switch (x) {

case 1:

y += 3;

break;

case 31:

y -= 5;

break;

default:

y--;

break;

}

26

Iteration: While

test

loop_body

T

F

while (x<10) {

x = x + 1;

}

27

Iteration: For

for (i = 0; i < 10; i++){

x += i;

}

28

Iteration: Do/While

Test

loop_body

T F

do {

x += 2;

} while (x < 20);

