
1

Architecture Design Process
(Applied to the Expansion Shield)

rev. 10/22/2024

2

 What is an architecture? High-Level Design
 Components (that we care about)
 Their interactions (that we care about)

 Overview
 Decomposition

 References
 Embedded Software Design: A Practical Approach to Architecture,

Processes, and Coding Techniques, Jacob Beningo

Overview

3

Architecture Design Process Overview
Identify Major Components

H
ig

h-
Le

ve
l D

es
ig

n

Identify Input/Output Components and Data

Refine I/O Data Comm/Sync with Critical Data Requirements
and Formats (as known)

Identify Major Separate Processing Activities

Identify Known Comm/Sync between Major Activities

Look for Difficult Performance Requirements and
Other Risks in Processing Activities,
Synchronization and Communication

?Decompose Each Major Activity into
Processes in HW (peripherals) and SW

D
et

ai
le

d
D

es
ig

n

Refine Design for Each Major Activity:
Process characteristics, comm/sync
(internal, external)

Update Difficult Performance Requirements and Other Risks

Accelerometer

Touchscreen

???
(Magic Here)

Untouched or Touched
X,Y Positions if Touched

X, Y, Z
Accelerations

Brightness

Amplifier &
Speaker

LCD &
Backlight

Buck Converter
& White LED

Analog Signal

Display Commands/Data
& Brightness

Read X voltage

Configure pins XL, XR as GPIO outputs,
pin YD as ADC input, pin YU as GPIO input

Write 0 to XL
Write 1 to XR

Start conversion for ADC channel YD

Read ADC status regis ter

conversion complete?
no

Read ADC result and
return as ADC_code

Convert X-axis voltage to pixel X position
x_pos = (ADC_code - x_offset)*x_scale

yes

Read Y voltage

Configure pins YD, YU as GPIO outputs,
pin XR as ADC input, pin XL as GPIO input

Write 0 to YD
Write 1 to YU

Start conversion for ADC channel XR

Read ADC status regis ter

conversion complete?
no

Read ADC result and
return as ADC_code

Convert Y-axis voltage to pixel Y position
y_pos = (ADC_code - y_offset)*y_scale

yes

DAC
VOut

Timer

ISR:
Switch Buffers,

Refill Other

NVIC
DMA

Transfer One Sample

Audio Signal
(Analog Voltage)

update every 50µs

Speaker

Enable/Mute (One Bit)

Generate
Sounds DAC

GPIO

Software Hardware

LCD Driver Code GPIO
ST7789 LCD

Controller

Write Command

Assert Command Start

Write byte to DB[]

Assert WRX

Release WRX Transfer byte

Write Parameter 1

Assert Data

Write byte to DB[]

Assert WRX

Release WRX Transfer byte

Write Parameter n

Assert Data

Write byte to DB[]

Assert WRX

Release WRX Transfer byte

Sequence Diagram

Brightness
(Duty Cycle)

Buck
Converter

White
LED

Current Feedback
(Analog Voltage)

Drive LED
at Specified

Current

4

Architecture Design Process Overview
Identify Major Components

H
ig

h-
Le

ve
l D

es
ig

n

Identify Input/Output Components and Data

Refine I/O Data Comm/Sync with Data
Requirements and Formats (as known)

Update
LCD

CC LED
Driver

Read
Accel.

Generate
Sounds

Read
Touchscrn.

Identify High-Level (Major) Separate Processing
Activities

Identify High-Level Comm/Sync between Major
Activities) (as known)

Look for Difficult Performance Requirements and
other Risks at High-Level in Activities, Comm/Sync

Decompose Each Major Activity into Processes in
Hardware (peripherals) and Software

D
et

ai
le

d
D

es
ig

n

Refine Design for Each Major Activity – Process
characteristics, communication/synchronization
(internal, external)

Update Difficult Performance Requirements
and other Risks

5

 Determine requirements
 Define major components

 Input components and data
 Output components and data
 Refine with requirements, formats if

known
 Identify major processing activities

per component
 Identify high-level synchronization &

communication behavior
 Where? System inputs, between

activities, system outputs
 What? Triggering, data flow, restrictions

(dependency, mutual exclusion)
 Look for risky areas

 Performance: raw compute speed,
throughput (compute + more activities)

 Timing: stability (e.g. periodicity),
synchronization with events (including

input-to-output response time)
 Internal synchronization preventing

running code straight through. Wait for
HW (e.g. conversion done?)

 Sharing resources: which might require
waiting: data variables, peripheral HW

 Novelty: Anything you haven’t done
before

 Split (“decompose ”) activities and
allocate into HW and/or SW processes
 Select HW or SW based on HW

capabilities and risks found above
 Refine sync/comm relationships

 Between major processing activities
 Triggering, data sharing, etc.

 Between sub-activities (processes)
within each activity
 Triggering, data sharing, sync between

HW & SW

How to Create an Architecture Using Decomposition
Outside-In Approach, similar to Top-Down Requirements

Architecture
(High-Level Design)

Software?
Hardware?

TBD

Software
Hardware

Software
Hardware

Detailed Design

6

Questions to Answer
Requirements

Architecture (High-Level Design)

What must the system do?
What are the inputs, processing activities and outputs?

What are the parts, and how do they interact?
Which parts are software and which are hardware?

How will software parts
share the CPU(s) time?
ISRs, scheduling approach

(priority, preemption)

How will software parts interact
(synchronizing activities and resource

use, sharing data)? Buffer events?
Shared variable, mutex, event flag,

semaphore, message queue

How will hardware and software interact?
Interrupts and ISRs, peripheral control/status registers

How will the peripherals interact
(synchronizing activities and resource

use, sharing data)? Buffer events?
Hardware trigger signals, interrupt requests

Which hardware peripherals (actors)
will be used, and in which modes?

What software parts (actors)
will be used?

Threads, ISRs, state machines,
callback functions

Develop architecture, identify key
actors and interactions, allocate to

software or hardware

Refine architecture,
add critical details.
Repeat as needed.

How do we represent this? Can we do it graphically?
Equations, transfer functions, flow charts,

state diagrams, sequence diagrams

Software?
Hardware?

TBD

Software
Hardware

Software
Hardware

Detailed Design

7

Identify Major Components

Accelerometer

Touchscreen

???
(Magic Here)

Amplifier &
Speaker

LCD &
Backlight

Buck Converter
& White LED

8

Identify Inputs and Describe Data

Accelerometer

Touchscreen

???
(Magic Here)

Amplifier &
Speaker

LCD &
Backlight

Buck Converter
& White LED

Untouched or Touched
X,Y Positions if Touched

X, Y, Z
Accelerations

9

Identify Outputs and Describe Data

Accelerometer

Touchscreen

???
(Magic Here)

Untouched or Touched
X,Y Positions if Touched

X, Y, Z
Accelerations

Brightness

Amplifier &
Speaker

LCD &
Backlight

Buck Converter
& White LED

Analog Signal

Display Commands/Data
& Brightness

10

Describe I/O Comm/Sync: Known Data Requirements, Formats

???
(Magic Here)

Brightness
(Duty Cycle)

Backlight

Buck Converter

Audio Signal
(Analog Voltage)

Brightness
(Duty Cycle)

LCD

Commands and Data
(Format TBD)

White LED

Speaker

Current Feedback
(Analog Voltage)

Enable/Mute
(One Bit)

Accelerometer

Touchscreen

Untouched or Touched
X,Y Positions if Touched

(Format TBD)

X, Y, Z Accelerations
(I2C messages)

11

Identify Major Separate Processing Activities

Brightness
(Duty Cycle)

Backlight

Buck Converter

Audio Signal
(Analog Voltage)

Brightness
(Duty Cycle)

LCD

Commands
and Data

(Format TBD)

White LED

Speaker

Current Feedback
(Analog Voltage)

Enable/Mute
(One Bit)

Accelerometer

Touchscreen

Untouched or Touched
X,Y Positions if Touched

X, Y, Z Accelerations
(I2C messages)

Read
Touchscreen

Read
Accelerometer

Update
Screen

Generate
Sounds

Drive LED
at Specified

Current

TBD

12

Identify High-Level Synchronization and Data Communication

Brightness
(Duty Cycle)

Backlight

Buck
Converter

Audio Signal
(Analog Voltage)

Brightness
(Duty Cycle)

LCD

Commands
and Data

(Format TBD)

White LED

Speaker

Current Feedback
(Analog Voltage)

Enable/Mute
(One Bit)

Accelerometer

Touchscreen

X, Y, Z Accelerations
(I2C msgs)

Read
Touchscreen

Read
Accel.

Update
Screen

Generate
Sounds

Drive LED
at Specified

Current

Untouched or Touched
X,Y Positions if Touched

TBD

13

 Read Touchscreen
 Response within 50 ms probably ok
 How much position accuracy is needed?

Depends:
 Application: big pushbuttons vs. drawing

program
 How touched: finger vs. stylus

 Generate Sounds
 Update DAC with 12 bit sample every 50 µs.
 How much timing error is acceptable? Depends

on response of amplifier and speaker, listener,
etc.

 Accelerometer
 Interfaces via I2C bus. (up to 1 Mbps+), but this

accelerometer maxes out at 400 kbps.
 Part of protocol implemented in software, so will

need to look closer
 Required response time, throughput?
 Depend on application: Tilt sensor, game

controller, vibration frequency analysis

Look for Difficult Performance Requirements
and Other Risks in Processing and Comm/Sync
Identify any risky areas early and prioritize them

14

 Control system designed to run with steady timing
 Want to sample input on time, update output on time

 Timing errors reduce performance of controller

 Slower response, never reaching set point (commanded
value), going unstable and even destroying hardware

 Switch-mode signals have switching ripple
 Example: Buck converter’s 80 kHz switching

means LED current signal changes quickly.
 33 mA average current has 32 mA of ripple!

 Initial rough estimate: Peak-to-peak

 17 mA to 49 mA = 32 mA in ½ period (6 µs)

 Up to 5 mA of error per µs early/late

 Worse near middle: 7 mA in 1 µs

 Need to sample synchronously with switching.

 May also have other noise to avoid (ringing, etc.).

Constant-Current LED Driver
Identify any risky areas early and prioritize them

15

 What are required update rate, throughput?
Depends on application
 Clock, thermostat, digital photo frame, video player,

game?
 LCD Module includes LCD glass and controller IC

 LCD Controller IC uses parallel memory bus for speed
 Up to 18 data bits wide, matches max pixel color depth (6

bits each for red, green, blue)
 twrite_min, tread_min = 66 ns (15 MHz)

 No external memory bus on KL25Z MCU, so make
interface with “bit-banging”
 Software uses GPIO port bits (8 data, read/write,

control/data, reset) requires 5-10 instructions for read
or write operation

 Quick estimates of performance bounds
 LCD is 240 x 320 pixels (76,800),
 Use just 16 color bits (not 18) for speed, simplicity
 Must write 76,800 pixels * 2 bytes per pixel = 153,600

data bytes to refresh screen
 Refresh entire LCD in 1 second? At most have 48

MHz/153,600 bytes = 312.5 CPU clock cycles per byte
on average

 Refresh in 0.1 sec? Only ~31 cycles per byte – harder
 If refresh is not fast enough with software bit-

banging, examine using DMA to accelerate transfers
 Also lets CPU do something else during transfer

LCD Interface
Identify any risky areas early and prioritize them

MCU

G
PI

O
G

PI
O 8

LCD
Controller

C
om

m
un

ic
at

io
n

In
te

rf
ac

e

LCD

16

 SD Card (Not used here)
 Interface via SPI (legacy mode)
 Card and bus support 50+ Mbps
 KL25Z SPI peripheral limited to 12 Mbps
 What are required throughput, response time? Depend

on application:
 digital photo frame (how long to read longest file)
 data logger (how many bytes/second of data need to be

saved)

SD Card
Identify any risky areas early and prioritize them

17

Identify Difficult Performance Requirements, Other Risks

Brightness
(Duty Cycle)

Backlight

Buck
Converter

Audio Signal
(Analog Voltage)

Brightness
(Duty Cycle)

LCD

Commands
and Data

(Format TBD)

White LED

Speaker

Current Feedback
(Analog Voltage)

Enable/Mute
(One Bit)

Accelerometer

Touchscreen

X, Y, Z Accelerations
(I2C msgs)

Read
Touchscreen

Read
Accel.

Update
Screen

Generate
Sounds

Drive LED
at Specified

Current

Untouched or Touched
X,Y Positions if Touched

TBD

Throughput:
Need to send a lot of data

to update entire screen

Timing Precision,
Responsiveness:

Need ADC to sample
synchronously with PWM.

Need update duty cycle output
in time.

Output Timing Stability,
Responsiveness:

Need DAC to generate samples
at precise times. Need to

generate waveforms in time.

Likely Complexity:
Need software of unknown
complexity to support I2C

peripheral

18

Skip: Summary of Processing Activities
Update LCDCC LED DriverRead

Accelerometer
Generate
Sounds

Read
Touchscreen

Periodic TimerPWM timer (periodic)Periodic timerPeriodic timerPeriodic timerTrigger Method

50 Hz, 20 ms Every PWM cycle (80 kHz,
12.5 µs = 600 cycles

50 Hz, 20 ms20 kHz, 50 µs = 2,400 cyclesLoose.10 Hz,100 msTriggering Frequency, Period

Sample ADC: Error <<12.5
µs. Update PWM before
next cycle

Update DAC: Error < 50 µs.
How tight?

Timing Stability

Calculate control effort,
update PWM before next
cycle

Calculate next sample within
50 µs

Compute Speed

Large, depending on quantity,
frequency of pixel changes

LargeLargeExpected Throughput
(Speed * data volume)

Mostly S/W. Control LCD
with parallel bus
implemented on GPIO. Use
DMA if SW is not fast
enough.

H/W Timer (TPM) triggers
ADC conversion, ADC ISR
computes new control effort,
updates duty cycle

Mostly S/W. Use I2C
peripheral to talk with
Accelerometer

H/W Timer triggers DMA to
transfer data to DAC, DMA
ISR requests buffer refill.
Update buffer: Software +
peripherals.
Sound Manager: TBD

Mostly S/W. Use GPIO and
ADC for interfacing

S/W and HW Allocation
(Design Approach)

nonenoneI2C communications: Limited
transmission speed makes
CPU wait one 26 µs (~1200
CPU cycles) chunk per byte.
9 bytes/message -> ~11,000
CPU cycles. Triggered by I2C
byte completions

noneStart and wait for 2 A/D
conversions, ~3 µs (~150
cycles) each. ADC
conversion completion flag
or ADC IRQ

Internal Delays/Blocking

19

 Software – Thread(s) and ISRs
 Software gives very flexible functionality
 Stable, precise timing is expensive and difficult
 Interrupt system and scheduler (if any) determine

what software the CPU runs and when
 Software threads very vulnerable to timing

interference
 ISRs have better timing stability, but not perfect

 Hardware – Peripherals, interconnect and
DMA
 Very stable timing
 Functionality limited to what is built into

hardware and your creativity with configuration

Decompose Activities into Hardware and Software

20

 Key characteristics
 Functionality: What can it

do?
 Speed: How fast does it

do the work?
 Timing stability: how

predictable and steady is
the timing?

 Responsiveness: How
soon does it respond to
an input event?

 Use hardware
peripherals where
practical

Decomposition
Peripheral Hardware, ISRs and Software Threads

SoftwareHardware

Anything you can code up
(digital processing only)

Limited to specific digital and
analog functions

Functionality

Much slower. CPU must
execute instructions

Very fastSpeed

Poor. timing interference from
other code running on CPU

Excellent. Independent of code
running on CPU

Timing Stability

Poor. Polling, but can improve
with interrupts, better task
structure/scheduling

Excellent. Event-driven with
hard-wired connections.

Responsiveness

Infinitely configurable (digital
processing only)

Limited to hardware options,
but peripherals have many
application-specific
features/extensions

Configurability

More visibility, but more bugs
and Heisenbugs

Less visibility, but is probably
working as designed

Debuggability

21

Refine: Resistive Touchscreen
Untouched or Touched

X,Y Positions if Touched

LCD Panel LCD Panel

GPIO Out

GPIO Out

ADC

logic 1 (3.3V)

logic 0 (0V)

Read Y Position

Y position
(Analog, 0-3.3V)

ADC

GPIO Out GPIO Outlogic 0 (0V)

logic 1 (3.3V)

Read X Position

X position
(Analog, 0-3.3V)

Touchscreen

ADC

GPIO

Read
Touchscreen

22

Software Overview
 Later enhancement: Determine if

touchscreen is pressed without using
ADC, saving time and power

Touchscreen ADCGPIO

Read Touchscreen

23

Software Synchronization 1: Internal Delays

 Any internal delays?
 Software busy-waits for ADC conversion to complete. Example of

synchronization
 Typical A/D conversion time: ~2 µs * 48 MHz = 96 clock cycles

 Might need more settling time for high impedance signals

Busy waiting
2 μs or
96 CPU
clock
cycles

Touchscreen ADCGPIO

Read Touchscreen

24

Software Synchronization 1: Internal Delays

 Two conversions, 2*96 = 192 clock cycles per touchscreen read
 Is this big enough to be significant? Depends on how long the

other code (gray) takes to run
 10 cycles? Total is 192+10 = 202 cycles. Significant, because 192/202 is

large
 10000 cycles? Total is 192+10000 = 10192 cycles. Not significant,

192/10192 is small
 Assume reading touchscreen 10 times per second

 Wasting 1920 clock cycles each second on busy waiting
 Try to recover that idle time for use by other processing? Probably

not worthwhile.
 #1: 1920 cycles / 48 MHz is very small part of CPU capacity: 0.004%
 #2: 96 cycle chunk of idle time is not long enough compared with

scheduling overhead
 Interrupts: 15 (entry) + ~5 (exit) clock cycles
 RTOS Context switch: 2 * 100+ clock cycles

2 μs or
96 CPU
cycles

2 μs or
96 CPU
cycles

2 μs or
96 CPU cycles

2 μs or
96 CPU cycles

25

Software Synchronization 2
 Triggering question: When to run code to read touchscreen?
 Raises issues of software process scheduling
 Preview of issues covered later in scheduling

 General Approaches: polling vs. event-driven
 Polling runs code even if not needed

 Loose response time (e.g. 100 ms) allows slow polling rate
 Time/power/energy are wasted if screen not touched when code runs

 Event-driven runs code only when needed (pressed)
 Need scheduling mechanism to detect screen press and trigger code to run
 Interrupts? How to use touchscreen circuit and available peripherals to generate an interrupt?
 Scheduler with polling code?

 Is event-driven worthwhile?
 Since TS reading code is so short, usually not much benefit from reducing CPU cycles if other code is running
 However, can be very useful when this code dominates compute time. Example: using touchscreen to CPU

wake up from sleep mode

26

Timelines of Major Processing Activities and Synchronization
Read

Accelerometer
Sound

Generator
CC LED
Driver

Read
Touchscreen

Update
LCD

main I2C
Update
Buffer

DMA
ISR DMA

Create
Notes

ADC
ISRADC TPMSW ADCmain

27

Refine: Audio Generation Requirements and Constraints

 Requirements:
 Generate audio samples. How? TBD, defer.
 Use DAC to update analog output (0-3.3 V) every 50 µs

(20 kHz sample rate)
 Use digital output bit to enable/disable amplifier

 Design
 Allocate hardware: Use MCU’s 12-bit DAC
 Evaluate timing on KL25Z, fCPU = 48 MHz
 Timing Budget

 50 µs * 48 MHz = 240 clock cycles
 Since MCU can execute up to 1 instruction per cycle,

allowed at most 240 instructions between DAC updates

 Computational Requirements
 Compute next sample (??? cycles)
 Write next sample to DAC (well under 8 cycles)
 Overhead of switching contexts: interrupt, RTOS

 Evaluate different implementation options
 Try to leverage hardware to simplify software to meet

tough requirements: timing stability (-> HW and
buffering), throughput (-> deep buffers for batch
processing), responsiveness, etc.

Audio Signal
(Analog Voltage)

update every 50µs

Speaker

Enable/Mute (One Bit)

Generate
Sounds DAC

GPIO

28

Summary of Refining DAC Output Design
A. Task software
writes to DAC

E. Timer advances buffer data to DAC.
Low/Empty ISR writes next batch of

data to buffer

Add N-deep DAC input
buffer with low/empty ISR

D. Timer advances buffer data to DAC,
Timer ISR writes next data to buffer

Add 1-deep
DAC input buffer

Add HW timer ISR

C. Timer ISR writes data
to DAC

Add HW timer
(tracks time much better)

B. Task software poll/blocks on
timer, then writes to DAC

Add HW timer, DMA with
ISR, software buffer

F. Timer triggers DMA data transfer,
DMA ISR writes data to buffer

G. Timer triggers DMA
with double-buffering,

DMA ISR switches buffers
and writes data

Split into double-buffer to ease
first sample’s deadline and cuts

ISR duration in half.

H. Timer triggers DMA,
DMA ISR writes urgent

data to buffer and triggers
task to write rest of data

Move non-urgent
work to task

Output timing bad: Very unstable, vulnerable
to other software (processes and handlers),

timing errors accumulate.
Greedy, doesn’t share CPU.

Output timing better:
Tolerates more interference,

vulnerable to processes and handlers,
errors don’t accumulate.

Greedy, doesn’t share CPU

Output timing: Even better.
Vulnerable to other ISRs and interrupt

locking fsample times per second

Interrupt overhead for each
sample wastes CPU time

1.Tight Deadline: ISR must write first new sample
to buffer within TSample

2. Long DMA ISR is delays other processing too much

29

Refine: Audio Generation HW & SW

TPM

DMA
ISR

DMA DAC

Refill Sound Buffer!

Speaker

SoundBuffer
Generate
Waveform
from Voices

Create
Notes,

Assign to
Voices

DAC
VOut

Timer

ISR:
Switch Buffers,

Refill Other

NVIC
DMA

Transfer One Sample

30

Refine: Update Screen (LCD)

 How do we control the LCD?
 Examine documentation for

ST7789 LCD Controller
 Automatically refreshes display from

internal frame buffer memory
 Supports 83 commands

 Function: configuration, reading
status, accessing frame buffer

 Format: 1 byte command, 0 or more
parameters (data)

Backlight

Brightness
(Duty Cycle)

LCD

Commands
and Data

(Format TBD)
Update
Screen

LCD Controller

Commands
and Data

(Format TBD)

MCU

LCD

Communication
Interface

Frame
Buffer RAM
(240x320
x18 bits)

Drivers

D
ri

ve
rs

Controller

31

Memory Bus Architecture

 CPU uses bus to access items in memory space
 Fast! Parallel 32-bit data and 32-bit address buses

 Operation
 Decoder matches certain address bits to find range of addresses

this device will serve, asserts chip select line
 Device uses some of other address bits to identify location

within device
 Control: Read? Write?
 Data

 LCD Controller accepts commands through its
communication interface

 Supports parallel and serial interfaces
 11 “parallel” interfaces: control lines + 8/9/16/18 data bits target

MCU/MPU memory expansion bus
 5 single-bit serial interfaces
 Ignore rabbit holes of semantics

 Serialization (1 vs. 8 vs. 9 bits), truncation, half- vs. full-duplex

LCD

Address Bus

Control Bus

Data Bus

Address
Decoder

Address
Decoder

Address
Decoder

Address
Decoder

CPU
Memory

(Flash
ROM)

Memory
(RAM)

Peripheral
1

LCD
Controller
Comm. Interface

32

LCD Controller Memory Bus Interface

 LCD Controller interface for memory bus
 Control lines (X means active low)

 DCX data (1) or command (0)
 RDX read (0)
 WRX write (0)

 Optional CSX chip select signal (if sharing bus)
 Data bus DB[17:0] up to 18 bits wide

 Signal diagram shows typical operation
 Specify command or data with DCX
 (Optional: Select chip by asserting CSX)
 Place command or parameter on data bus DB[...]
 Write by asserting and releasing WRX (DB sampled on

rising edge of WRX)

MCU
LCD

Controller

C
om

m
un

ic
at

io
n

In
te

rf
ac

e

LCD

33

Refine: Update Screen HW & SW

 Software-based approach is single thread, not complex.
 Drive GPIO with software? Prototype early to reduce risks
 If not fast enough, look into accelerating interface with DMA (may need to slow it down)

Backlight

Brightness
(Duty Cycle)

LCD

3 Control Signals (DCX, WRX, RDX)

Update Screen

TPM
Buffer

Transistor

GPIO
(Data)

GPIO
(Control)

8 Data Lines (DB…)

34

Refine: Update Screen (LCD)

 Interface as implemented on shield
 3 control lines + 8 data bits: balance

pin count with speed
 KL25Z MCU lacks memory expansion

bus, so emulate bus with GPIO port
peripheral and software

 CSX: Chip select hard wired to ground
 RESX: Reset driven by GPIO bit

 Sequence diagram: “bus” operations
to send command + n parameters

 Implementing bus operations
 GPIO port operations must leave other

bits unchanged
 Take advantage of hardware support

for bit masking: PSOR, PCOR, PTOR
 Otherwise use software to perform

read/modify/write

Sequence Diagram

G
PI

O
G

PI
O 8

LC
D

C

on
tr

ol
le

r

C
om

m
un

ic
at

io
n

In
te

rf
ac

e

LCDUpdate
Screen

35

LCD Controller Parallel Interface Timing

 Minimum write cycle time: 66 ns
 KL25Z running at 48 MHz: 48 MHz * 66 ns = 3.168

instruction cycles

 Estimate best possible performance (lower bound)
for software–implemented bus
 Sequence diagram: four operations per byte
 Minimum one instruction per operation
 Minimum one clock cycle per instruction
 4 * 1 * 1 = Minimum of four cycles.

 Will not violate minimum timing requirement of
3.168 cycles
 If it did, we would need to slow down the code

(synchronization!)

36

Refine: Constant-Current LED Driver

 Timing precision requirement?
 Measurement Error: up to 7 mA from 1 µs. 7/32 =

~25% error

 Trigger ADC conversion in phase with PWM
signal from timer (TPM)
 Examine PWM signal
 In what phase of TPM signal should ADC convert?
 Hardware may allow triggering on rising edge,

falling edge, or middle of pulse (center-aligned
mode).

Brightness
(Duty Cycle)

Buck
Converter

White
LED

Current Feedback
(Analog Voltage)

Drive LED
at Specified

Current

37

Refine: Constant-Current LED Driver HW & SW

 Use high priority ISR for timing
precision

 ISR has simple software structure
 Read ADC result
 Calculate new duty cycle (output pulse

width)
 Write to TPM duty cycle register (CNV)
 No blocking or delays

 Needs to be fast enough to…
 Meet deadline, likely at most 1/80 kHz =

12.5 µs (depends on when duty cycle
register is updated)

 Leave enough CPU time for other
processing

Brightness
(Duty Cycle)

Buck Converter

White LED

Current Feedback
(Analog Voltage)

ADC ISR:
Adjust duty

cycle based on
measured
current

TPM

ADC
IRQ

Tr
ig

ge
r

(s
ta

rt
 c

on
ve

rs
io

n)

Current Feedback
(ADC Result)

38

Timelines of Major Processing Activities and Synchronization
Read

Accelerometer
Sound

Generator
CC LED
Driver

Read
Touchscreen

Update
LCD

39

Refine: Accelerometer

 Send I2C message to read acceleration, then
compute roll & pitch and share

 How does I2C communication work?
 Byte-oriented protocol:

 Data register holds one byte, so must run some software
for each byte sent or received.

 Message format:
 Fields: framing, addressing, command, data,

acknowledgements
 Steps: Send start condition, send address byte, send data

byte, etc. …. send stop condition

 Any timing challenges? Very likely!
 Must synchronize software and hardware: Can’t send

byte until previous byte has been sent
 I2C bus runs much slower than CPU, so can’t just run

straight through all the code at full speed.
 400 kilobits/second -> 1 bit takes 2.5 μs, 1 byte takes 20

μs
 For CPU, 20 μs at 48 MHz = 960 instruction cycles

Start ACK

NACK

Stop

Device
Address

Register
Address

Data
1

Repeated
Start

Device
Address

Data
2

Data
3

Data
4

Data
5

Data
6

ACK

Accelerometer

X, Y, Z Accelerations
(I2C messages)

Read
Accel.

I2C
Peripheral

40

read_full_xyz())
Timing Analysis: Linking Code and I2C Bus Activity

i2c_start()
I2C_TRAN; /*set to transmit mode */
I2C_M_START; /*send start */

i2c_read_setup(dev, address)
I2C0->D = dev; /*send dev address (write)*/

I2C0->D = address; /*send read address */
i2c_wait(); /*wait for completion */
I2C_M_RSTART; /*repeated start */
I2C0->D = (dev|0x1); /*send dev address (read)*/
i2c_wait(); /*wait for completion */
I2C_REC; /*set to receive mode */

i2c_repeated_read(isLastRead)
data = I2C0->D; /*dummy read starts rx (if not

already receiving) */
i2c_wait(); /*wait for completion */
data = I2C0->D; /*read data, start next rx */

i2c_wait()
while ((I2C0->S&I2C_S_IICIF_MASK)==0);
I2C0->S |= I2C_S_IICIC_MASK;

i2c_repeated_read(isLastRead)
data = I2C0->D; /*dummy read starts rx (if not

already receiving) */
i2c_wait(); /*wait for completion */
data = I2C0->D; /*read data, start next rx */

i2c_repeated_read(isLastRead)

SW
I2C
HW

41

Structure of Example I2C Communication Code

42

Looking at the Timing

 CPU could execute up to one instruction per cycle
 Work per byte (and its ACK and other overhead)

 26 us per byte * 48 MHz = 1248 CPU cycles
 8 cycles of work, 1240 cycles of waiting

 Work per message
 Three address bytes, six data bytes
 11,500 cycles total
 1240 * 9 = 11,160 cycles waiting

 Is it worth recovering these 11,160 cycles per
message?

NACKDevice
Address

Register
Address

Device
Address Data 1 Data 2 Data 3 Data 4 Data 5 Data 6

Start ACK StopRepeated
Start ACK

240 μs x 48 MHz = 11,500 CPU cycles
8 cycles of work

1240 cycles of waiting

43

Try to Recover Time Wasted on Synchronization?
 How much time is used?

 Add up all the pieces
 How can we recover it?

 Use scheduler to reallocate CPU to work on other
useful code

 Interrupt system
 Explicit software scheduler: cooperative, preemptive
 Implicitly scheduled code: integrate other useful code

into code doing synchronization

 Is it worth recovering?
 Is there enough time?

 Bound: How much relative to CPU speed?
 Refined: How much relative to CPU’s currently

available free time?
 Is granularity suitable?

 Are time chunks big enough to be worth recovering,
considering time overhead of recovery?

 Must consider scheduler time overhead vs. granularity
 ISR response overhead, OS context switch, etc.

 Example Design Points for shield application
 Read Accelerometer: I2C

 Granularity: ~960 CPU cycles long
 Total per event: ~11,160 CPU cycles per message
 Total per second:

50 Hz * 11,160 = 558,000 CPU cycles/second
(out of 48,000,000) = ~1%

 Probably not worth recovering

 Read Touchscreen: ADC
 Granularity: ~96 CPU cycles
 Total per event: ~192 CPU cycles per TS read
 Total per second:

10 Hz * 192 = 1,920 CPU cycles/second
(out of 48,000,000) << 1%

 Not worth recovering

SW
I2C
HW

44

Refine: Accelerometer HW & SW

 Initial solution
 Principle: Functionality First, Elegant

Performance Later (if ever)
 Use busy-waiting, and don’t try to recover idle

time yet

 Complex problem
 Want to recover idle time while ensuring urgent

code runs at right times
 Generic solution puts urgent work into ISR,

defers other work to thread. How do we split up
this I2C driver code?

 Possible solutions – coming up soon
 Finite State Machines
 Task/Thread scheduler (heart of operating

system)

Accel.

X, Y, Z Accelerations
(I2C messages)

Read
Accelerometer

I2C
Peripheral I2C ISRAccel.

X, Y, Z Accelerations
(I2C messages)

Less Urgent
Code

from Read
Accelerometer

I2C
Peripheral

Where and how to split?
How to synchronize?

45

Updated Difficult Areas

Brightness
(Duty Cycle)

Backlight

Buck Converter

Audio Signal
(Analog Voltage)

Brightness
(Duty Cycle)

LCD

Commands
and Data

(Format TBD)

White LED

Speaker

Current Feedback
(Analog Voltage)

Enable/Mute
(One Bit)

Accelerometer

Touchscreen

Untouched or Touched
X,Y Positions if Touched

(Format TBD)

X, Y, Z Accelerations
(I2C messages)

Read
Touchscreen

Read
Accelerometer

Update
Screen

Generate
Sounds

Drive LED
at Specified

Current

Throughput:
Need to send a lot of data

to update entire screen

Timing Precision,
Responsiveness:

Need ADC to sample
synchronously with PWM.

Need update duty cycle output
in time.

Timing Precision,
Responsiveness:

Need DAC to generate samples
at precise times. Need to

generate waveforms in time.

Not Run-to-Completion:
Internal Delays from

Synchronization with Hardware.
CPU much faster than bus, so

lots of waiting for I2C byte
transmission completion.

46

Synchronizing Activities
 Interrupt System example

 HW Peripheral generates IRQ, which triggers CPU
to run ISR

 Timing relationships between activities
 Triggering: does one trigger the other?
 Order: Must one be first?
 Concurrency: Overlap in time allowed?

 General Examples
 Neither:

 A and B can overlap in any order
 Concurrency:

 A and B can’t be concurrent. A must finish before
B starts, or B must finish before A starts

 A and B must be concurrent. A and B must
overlap in time.

 Order:
 A must finish before B starts.

 Use synchronization to
 start running code

 thread - external
 code within thread - internal

 stop running code within thread - internal

 Synchronization Triggers
 Event

 When something happens, do something else.
Event: IRQ -> Activity: ISR

 Time
 At absolute time T, do something
 After time delay ∆T, do something

 What if some activities are in software, and
others in hardware?

47

Timelines of Major Processing Activities and Synchronization
Read

Accelerometer
Sound

Generator
CC LED
Driver

Read
Touchscreen

Update
LCD

48

Synchronization between Software and Hardware
 If some processing is done in hardware and

some in software, how do we synchronize
them?

… to Software… to
Hardware

• Subroutine calls
• Software interrupts
• Polled shared variables

Scheduler task control
mechanisms: enable, disable,
release, etc.

• OS synch/comm.
mechanisms: semaphore,
mutex, event flag, message,
etc.

• Write to
peripheral
register

From
Software
…

• Interrupt System: IRQ→ISR
(handler)

• SW Polling HW status

• Hardware signalsFrom
Hardware
…

49

Software Overview
 Optional/Later: Return if screen isn’t pressed
 Read X position

 Configure GPIO XL and XR as outputs, YU as input
 Configure GPIO YD as analog input
 Write 0 to XL and 1 to XR
 Start conversion on ADC channel connected to YD
 Wait for conversion complete flag
 Read ADC result

 Read Y position
 Configure GPIO YD and YU as outputs, XL as input
 Configure GPIO XR as analog input
 Write 0 to YD and 1 to YU
 Start conversion on ADC channel connected to XR
 Wait for conversion complete flag
 Read ADC result

 Convert X, Y voltages to positions

50

Decompose into Hardware and Software

Identify Risks, Difficult Performance Requirements

Identify High-Level Communication and Synchronization

Identify Major Separate Processing Activities

Identify Data Requirements and Formats (if known)

Identify Interfaces, Communication and Synchronization

Identify I/O Devices

Identify Major Components

Start Application

Touchscreen

Resistive
touchscreen

Analog &
digital signals,
format TBD

Drive
touchscreen

terminals,
Analog to

digital
conversion

IPC

Pressed,
Position data

Pressed:
binary.

Position: (X,Y)

SW to read
Touchscreen

Acceleromete
r

3 Axis
Acceleromete

r

I2C
communicatio

n bus

I2C protocol

SW & HW for
I2C protocol
implementatio

n

Risk: Protocol
complexity

IPC

Share roll &
pitch

Shared float
variables.

Notification?
Atomicity?

LCD &
Backlight

LCD
Controller

Interface

Commands
and Data

(format TBD)

Throughput,
faking memory
bus with GPIO

& SW

LCD Backlight

White LEDs

PWM signal
for brightness

IPC

Amplifier &
Speaker

DAC Output

Analog output
voltage

updated at 20
kHz

…

Generate new
sample

Update output
every 50 us

Amplifier

Amp enable

Digital output
bit

IPC

Buck
Converter &
White LED

LED Current
Sense

Current
Measurement

Analog

Buck
Converter

Drive effort

PWM

Sample I_LED,
compensate,
update PWM

IPC

Design Refinement

51

Timelines of Major Processing Activities and Synchronization
Read

Accelerometer
Sound

Generator
CC LED
Driver

Read
Touchscreen

Update
LCD

1. Wasted Time: Is it OK for the CPU to waste 11,000 out of
11,500 cycles for each I2C message?

2. Delays:
1. If no scheduler priority system for tasks, Is it OK to delay

code with same or lower priority for 230 µs + ??
2. If scheduler supports prioritized tasks, Is it OK to delay

code with same or lower priority for 230 µs + ??

