NC STATE UNIVERSITY

Architecture Design Process
(Applied to the Expansion Shield)

rev. 10/22/2024

NC STATE UNIVERSITY

Overview

= What is an architecture? High-Level Design
= Components (that we care about)

= Their interactions (that we care about) Embedded
= Qverview SOftWElI’E
= Decomposition DESIgn

A Practical Approach to Architecture,
Processes, and Coding Techniques

= References

= Embedded Software Design: A Practical Approach to Architecture, Apress’
Processes, and Coding Techniques, Jacob Beningo

NC STATE UNIVERSITY

Architecture Design Process Overview

Identify Major Components

|dentify Input/Output Components and Data

Refine I/O Data Comm/Sync with Critical Data Requirements
and Formats (as known)

Identify Major Separate Processing Activities

Identify Known Comm/Sync between Major Activities

High-Level Design

Look for Difficult Performance Requirements and
Other Risks in Processing Activities,
Synchronization and Communication

Decompose Each Major Activity into o _H e

L{j =

(internal, external) =3

ITE
et
i

,go Processes in HW (peripherals) and SW el D W W
a Refine Design for Each Major Activity: %ﬁ

E Process characteristics, comm/sync ggﬂf”

5

()

)

Update Difficult Performance Requirements and Other Risks

Architecture Design Process Overview

NC STATE UNIVERSITY

High-Level Design

Detailed Design

Identify Major Components
Identify Input/Output Components and Data
Refine 1/0O Data Comm/Sync with Data
Requirements and Formats (as known)
Identify High-Level (Major) Separate Processing
Activities
|dentify High-Level Comm/Sync between Major
Activities) (as known)

Look for Difficult Performance Requirements and
other Risks at High-Level in Activities, Comm/Sync

Decompose Each Major Activity into Processes in
Hardware (peripherals) and Software

Refine Design for Each Major Activity — Process
characteristics, communication/synchronization
(internal, external)

Update Difficult Performance Requirements
and other Risks

Read
Touchscrn.

Generate
Sounds

Read
Accel.

CCLED
Driver

Update
LCD

NC STATE UNIVERSITY

How to Create an Architecture Using Decomposition

Outside-In Approach, similar to Top-Down Requirements
= Determine requirements input-to-output response time) o
= Define major components = Internal synchronization preventing Architecture
« Input components and data running code straight through. Wait for (High-Level Design)
i ?
= Output components and data HW (.e.g. conversion d(?ne.). . Software?
= Refine with requirements, formats if " Sharing resources: which might require Software Gy Har dware | g
Known ’ waiting: data variables, peripheral HW Hardware TBD ’
; . . . e e = Novelty: Anything you haven’t done
Identify major tprocessmg activities before Ust difﬁcult\ A
per componen o . o . to
= |dentify high-level synchronization & = Split decompuic) activities and reqzlrerlrl]::;iion I—SIZ:th\:?arfe >
B . uide a
communication behavior allocate into HW and/or SW processes to HW vs. SW
= Where? System inputs, between - Select‘ltl\.N or SW.based on HW v
activities, system outputs capabilities and risks found above Detailed Design
= What? Triggering, data flow, restrictions " Refine sync/comm relationships | O:{E >
(dependency, mutual exclusion) = Between major processing activities >
= Look for risky areas = Triggering, data Sharing, etc.

= Between sub-activities (processes)
within each activity

= Triggering, data sharing, sync between 4

HW & SW

= Performance: raw compute speed,
throughput (compute + more activities)

= Timing: stability (e.g. periodicity),
synchronization with events (including

Questions to Answer

Requirements

Develop architecture, identify key

.

actors and interactions, allocate to | Architecture (High-Level Design)

software or hardware

Use difficult Software

Hardware
requirements to

e

Software!?
Hardware?
TBD

guide allocation
to HW VS. SW

Refine architecture,

Software

Hardware

add critical details.
Repeat as needed.

!

NC STATE UNIVERSITY

What must the system do?

What are the inputs, processing activities and outputs?
How do we represent this? Can we do it graphically?
Equations, transfer functions, flow charts,
state diagrams, sequence diagrams

What are the parts, and how do they interact?
Which parts are software and which are hardware?

What software parts (actors)
will be used?
Threads, ISRs, state machines,
callback functions

Detailed Design

Which hardware peripherals (actors)
will be used, and in which modes?

How will the peripherals interact
(synchronizing activities and resource
use, sharing data)? Buffer events?
Hardware trigger signals, interrupt requests

How will software parts interact
(synchronizing activities and resource
use, sharing data)? Buffer events?
Shared variable, mutex, event flag,
semaphore, message queue

How will software parts
share the CPU(s) time?
ISRs, scheduling approach

How will hardware and software interact?
Interrupts and ISRs, peripheral control/status registers

(priority, preemption)

NC STATE UNIVERSITY

|dentify Major Components

LCD &

Backlight
Touchscreen

"
Amplifier &

(Magic Here) Speaker

Accelerometer

Buck Converter
& White LED

NC STATE UNIVERSITY
ldentify Inputs and Describe Data

Untouched or Touched LCD &
W,Y Positions if Touched Backlight
—

2
XY Z (Magic Here)

Accelerations

Amplifier &
Speaker

Buck Converter
& White LED

NC STATE UNIVERSITY

|dentify Outputs and Describe Data

Display Commands/Data
& Brightness LCD &

Backlight

Untouched or Touched

W,Y Positions if Touched
27 Analog Signal

XYZ (Magic Here)

Accelerations

Amplifier &
Speaker

Brightness

Buck Converter

& White LED

NC STATE UNIVERSITY

Describe I/0 Comm/Sync: Known Data Requirements, Formats

Commands and Data

Untouched or Touched Brightness
X,Y Positions if Touched (Duty Cycle)
i i -

Audio Signal

”n (Analog Voltage)
: . Speaker
X,Y, Z Accelerations (Maglc H el’e) Enable/Mute
- (I?C messages) (One Bit)
Accelerometer
Brightness
Duty Cycle)

Buck Converter vvhite LED
Current Feedback |

(Analog Voltage)

T -

10

NC STATE UNIVERSITY

Commands
and Data

Untouched or Touched LSdeate Brightness
XY Positions if Touched e (Duty Cycle)

: R:ad Audio Signal
ouchscreen e (Analog Voltage)

Sounds Enable/Mute

|dentify Major Separate Processing Activities

Touchscreen

Speaker

X,Y, Z Accelerations ,
(12C messages) (One Bit
Read
Accelerometer .
Accelerometer . Brightness
Drive LED (Duty CycIe)

at Specified Buck Converter White LED
Current
Current Feedback

(Analog Voltage)

NC STATE UNIVERSITY

|dentify High-Level Synchronization and Data Communication

Commands
and Data
(Format TBD)

LCD

Untouched or Touched Update .
X,Y Positions if Touched S(I:Dreen (grlfhtcneSIS)
uty Cycle

Backlight

18D Read

Touchscreen e ; Audio Signal
€11 [S 1= (Analog Voltage)

Sounds

Touchscreen

Speaker

Enable/Mute

XY, Z Accelerations .
(IZC msgs) (One Blt)
Read
Accelerometer
Accel. Drive LED Brightness
rive
(Duty Cycle) Buck

at Specified White LED

Current

Converter

Current Feedback
(Analog Voltage)

Look for Difficult Performance Requirements
and Other Risks in Processing and Comm/Sync

Identify any risky areas early and prioritize them

= Read Touchscreen = Accelerometer
= Response within 50 ms probably ok = |nterfaces via I12C bus. (up to 1 Mbps+), but this
= How much position accuracy is needed? accelerometer maxes out at 400 kbps.
Depends: -
= Application: big pushbuttons vs. drawing
program = Required response time, throughput?

= How touched: finger vs. stylus = Depend on application: Tilt sensor, game
controller, vibration frequency analysis

= Generate Sounds
= Update DAC with 12 bit sample every 50 ps.

= How much timing error is acceptable? Depends
on response of amplifier and speaker, listener,

etc.

NC STATE UNIVERSITY
bl

Constant-Current LED Driver>g@

Identify any risky areas early and prioritize them

= Control system designed to run with steady timing
= Want to sample input on time, update output on time
= Timing errors reduce performance of controller

= Slower response, never reaching set point (commanded
value), going unstable and even destroying hardware

. MimA P ea 1 M1 M2 |
= Switch-mode signals have switching ripple ™ 2l lamlnal

M1: 41.65mA

= Example: Buck converter’s 80 kHz switching -
means LED current signal changes quickly. %0
= 33 mA average current has 32 mA of ripple! =0
= |nitial rough estimate:
= 17 mAto 49 mA =32 mAin % period (6 us)
= Upto 5 mA of error per ps early/late ~ N
= Worse near middle: 7mAin 1 us

= Need to sample synchronously with switching. -

= May also have other noise to avoid (ringing, etc.).2

X /¥ 93.16us

NC STATE UNIVERSITY
LCD Interface

Identify any risky areas early and prioritize them

RESX = No external memory bus on KL25Z MCU, so make
N '&‘x& interface with “bit-banging”
— *PNL = Software uses GPIO port bits (8 data, read/write,
e control/data, reset) requires 5-10 instructions for read
SDA or write operation
o = Quick estimates of performance bounds
2o a7 = LCD is 240 x 320 pixels (76,800),
= Use just 16 color bits (not 18) for speed, simplicity
= What are required update rate, throughput? = Must write 76,800 pixels * 2 bytes per pixel = 153,600
Depends on application data bytes to refresh screen
= Clock, thermostat, digital photo frame, video player, = Refresh entire LCD in 1 second? At most have 48
game? MHz/153,600 bytes = 312.5 CPU clock cycles per byte

= LCD Module includes LCD glass and controller IC on average

= LCD Controller IC uses parallel memory bus for speed * Refreshin 0.1 sec? Only ~31 cycles per byte — harder

= Up to 18 data bits wide, matches max pixel color depth (6 = If refresh is not fast enough with software bit-
bits each for red, green, blue) banging, examine using DMA to accelerate transfers

=t tread_min = 66 Ns (15 MHz) = Also lets CPU do something else during transfer

write_min’

NC STATE UNIVERSITY

SD Card

Identify any risky areas early and prioritize them

= SD Card (Not used here)
= |nterface via SPI (legacy mode)
= Card and bus support 50+ Mbps
= KL25Z SPI peripheral limited to 12 Mbps
= What are required throughput, response time? Depend

on application:

= digital photo frame (how long to read longest file)

= data logger (how many bytes/second of data need to be
saved)

NC STATE UNIVERSITY

|dentify Difficult Performance Requirements, Other Risks

Throughput:
Need to send a lot of data)

to update entire screen |2,
Untouched or Touched upaate

X,Y Positions if Touched

Brightness
reen e Screen (Duty Cycle) N

18D Read

Touchscreen

Output Timing Stability,
= Responsiveness: -
<1< Need DAC to generate samples
at precise times. Need to
generate waveforms in time.

XY, Z Accelerations
(I?C msgs)

Read

rof|

Accel. Bright
i Drive LED Duty Cyele
ty:
fie’y Lomplexity Timing Precision, > >
Need software of unknown .
) 2 Responsiveness:
complexity to support I°'C Need ADC to sample nt Feedback
peripheral synchronously with PWM. |8 Voltage)
Need update duty cycle output
in time.

Skip: Summary of Processing Activities

NC STATE UNIVERSITY

Read
Touchscreen

Generate
Sounds

Read
Accelerometer

CC LED Driver

Update LCD

Trigger Method

Triggering Frequency, Period

Timing Stability

Compute Speed

Expected Throughput
(Speed * data volume)

S/W and HW Allocation
(Design Approach)

Internal Delays/Blocking

Periodic timer

Loose.10 Hz,100 ms

Mostly S/W. Use GPIO and
ADC for interfacing

Start and wait for 2 A/D
conversions, ~3 ps (~150
cycles) each. ADC
conversion completion flag
or ADC IRQ

Periodic timer

20 kHz, 50 ps = 2,400 cycles

Update DAC: Error < 50 ps.
How tight?

Calculate next sample within
50 us

Large

H/W Timer triggers DMA to
transfer data to DAC, DMA
ISR requests buffer refill.
Update buffer: Software +
peripherals.

Sound Manager: TBD

none

Periodic timer

50 Hz, 20 ms

Mostly S/W. Use 12C
peripheral to talk with
Accelerometer

12C communications: Limited
transmission speed makes
CPU wait one 26 ps (~1200
CPU cycles) chunk per byte.
9 bytes/message -> ~11,000
CPU cycles. Triggered by 12C
byte completions

PWM timer (periodic)

Every PWM cycle (80 kHz,
12.5 ps = 600 cycles

Sample ADC: Error <<12.5
ps. Update PWM before
next cycle

Calculate control effort,
update PWM before next
cycle

Large

H/W Timer (TPM) triggers
ADC conversion, ADC ISR
computes new control effort,
updates duty cycle

none

Periodic Timer

50 Hz, 20 ms

Large, depending on quantity,
frequency of pixel changes

Mostly S/W. Control LCD
with parallel bus
implemented on GPIO. Use
DMA if SW is not fast
enough.

none

NC STATE UNIVERSITY

Decompose Activities into Hardware and Software

) = Software — Thread(s) and ISRs

= Software gives very flexible functionality

= Stable, precise timing is expensive and difficult

= Interrupt system and scheduler (if any) determine
software the CPU runs and

= Software threads very vulnerable to timing
interference

= ISRs have better timing stability, but not perfect

MCA = Hardware — Peripherals, interconnect and

DMA
= Very stable timing

= Functionality limited to what is built into
hardware and your creativity with configuration

NC STATE UNIVERSITY

Decomposition
Peripheral Hardware, ISRs and Software Threads

" Key characteristics | Hardware ___|Software

Limited to specific digital and Anything you can code up

= Functionality: What can it Bgltlle{]E1115%
do? analog functions (digital processing only)

= Speed: How fast does it Speed Very fast Much slower. CPU must
do the work? execute instructions

= Timing stability: how Ll = 101198 Excellent. Independent of code Poor. timing interference from
running on CPU other code running on CPU

predictable and steady is
GEEL L EIN S Excellent. Event-driven with Poor. Polling, but can improve

the timing?
R _ H hard-wired connections. with interrupts, better task
. .
€SPONSIVENEss: How structure/scheduling

soon does it respond to
an input event?

= Use hardware
peripherals where
practical

oL 1011978 Limited to hardware options, Infinitely configurable (digital
but peripherals have many processing only)
application-specific

features/extensions

Debuggability Less visibility, but is probably More visibility, but more bugs
working as designed and Heisenbugs

20

NC STATE UNIVERSITY

Refine: Resistive Touchscreen

Untouched or Touched Read X Position
X,Y Positions if Touched / N | (3.3V) \
Read logic O | &%
Touchscreen S R T

X position

_ (Andlog, 0-3.3V) ;-v

ReadY Position

o

/ — logic | (3.3V) \
74 e ._/_ { ‘%‘YU
= : Y position
- | (Analog, 0-3.3V)

x. RL R2
W L . ——
\

21

Software Overview

Read X voltage)

Configure pins XL, XR as GPIO outputs,
pin YD as ADC input, pin YU as GPIO input

Write 0 to XL
Write 1 to XR

[Start conversion for ADC channel YDJ

CRead ADC status register) A

. no
conversion complete?

yes

Read ADC result and
return as ADC_code

Read Y voltage)

[Conﬁgure pins YD, YU as GPIO outputs, j

pin XR as ADC input, pin XL as GPIO input

Write 0 to YD
Write 1 to YU

(Start conversion for ADC channel XR)

[Read ADC status register) A

. no
conversion complete?

yes

Read ADC result and
return as ADC_code

22

Convert X-axis voltage to pixel X position
x_pos = (ADC_code - x_offset)*x_scale

NC STATE UNIVERSITY

= Later enhancement: Determine if
touchscreen is pressed without using
ADC, saving time and power

Read Touchscreen

Convert Y-axis voltage to pixel Y position
y_pos = (ADC_code - y_offset)*y_scale

NC STATE UNIVERSITY

Software Synchronization 1: Internal Delays

Read X voltage)

[Conﬁgure pins XL, XR as GPIO outputs, j

pin YD as ADC input, pin YU as GPIO input

Write 0 to XL

Write 1 to XR

(Start conversion for ADC channel YD)

Busy i\miting A

[Read ADC status register) A

-

no

conversion complete?

yes

Read ADC result and
return as ADC_code

= Any internal delays?

= Software busy-waits for ADC conversion to complete. Example of
synchronization

= Typical A/D conversion time: ~2 us * 48 MHz = 96 clock cycles
= Might need more settling time for high impedance signals

Convert X-axis voltage to pixel X position

[x_pos = (ADC_code - x_offset)*x_scale]

23

NC STATE UNIVERSITY

Software Synchronization 1: Internal Delays

= Two conversions, 2*96 = 192 clock cycles per touchscreen read

= |s this big enough to be significant? Depends on how long the
other code (gray) takes to run

= 10 cycles? Total is 192+10 = 202 cycles. Significant, because 192/202 is
large
= 10000 cycles? Total is 192+10000 = 10192 cycles. Not significant,
192/10192 is small
= Assume reading touchscreen 10 times per second
= Wasting 1920 clock cycles each second on busy waiting

= Try to recover that idle time for use by other processing? Probably
not worthwhile.

= #1: 1920 cycles / 48 MHz is very small part of CPU capacity: 0.004%

= #2:96 cycle chunk of idle time is not long enough compared with
scheduling overhead
= Interrupts: 15 (entry) + ~5 (exit) clock cycles
= RTOS Context switch: 2 * 100+ clock cycles

2

4

NC STATE UNIVERSITY

Software Synchronization 2

= Triggering question: When to run code to read touchscreen?
= Raises issues of software process scheduling

= Preview of issues covered later in scheduling

= General Approaches: polling vs. event-driven
= Polling runs code even if not needed
= Loose response time (e.g. 100 ms) allows slow polling rate
= Time/power/energy are wasted if screen not touched when code runs
= Event-driven runs code only when needed (pressed)
* Need scheduling mechanism to detect screen press and trigger code to run

= Interrupts? How to use touchscreen circuit and available peripherals to generate an interrupt?
= Scheduler with polling code?

= |s event-driven worthwhile?
= Since TS reading code is so short, usually not much benefit from reducing CPU cycles if other code is running

= However, can be very useful when this code dominates compute time. Example: using touchscreen to CPU
wake up from sleep mode

25

NC STATE UNIVERSITY

Timelines of Major Processing Activities and Synchronization

Update Read CCLED Sound Read
LCD Touchscreen Driver Generator Accelerometer
ADC Create DMA Update
main SW ADC TPM ADC ISR Notes DMA ISR Buffer main 12C
|

26

= Requirements:

27

NC STATE UNIVERSITY

Refine: Audio Generation Requirements and Constraints

Audio Signal
(Analog Voltage)
update every 50us

= Design
= Allocate hardware: Use MCU’s 12-bit DAC
= Evaluate timing on KL25Z, f.,, = 48 MHz
= Timing Budget
. * -
Enable/Mute (One Bit) 50 us * 48 MHz = 240 clock cycles

= Since MCU can execute up to 1 instruction per cycle,
allowed at most 240 instructions between DAC updates

Gt
5 Dl ¢ S/?X
¥

= Generate audio samples. How? TBD, defer. = Computational Requirements
= Use DAC to update analog output (0-3.3 V) every 50 s = Compute next sample (??? cycles)

(20 kHz sample rate) = Write next sample to DAC (well under 8 cycles)
= Use digital output bit to enable/disable amplifier " Overhead of switching contexts: interrupt, RTOS

= Evaluate different implementation options

= Try to leverage hardware to simplify software to meet
tough requirements: timing stability (-> HW and
buffering), throughput (-> deep buffers for batch
processing), responsiveness, etc.

Summary of Refining DAC Output Design

A.Task software
writes to DAC

Output timing bad: Very unstable, vulnerable
to other software (processes and handlers),
timing errors accumulate.

Add HW timer, DMA with
ISR, software buffer

dd HW timer

Greedy, doesn’t share CPU. (tracks time much better)
o) B.Task software poll/blocks on F-Timer triggers DMA data transfer,
Output timing better: timer; then writes to DAC DMA ISR writes data to buffer
Tolerates more interference,
vulnerable to processes and handlers, l Add HW timer ISR |.Tight Deadline: ISR mugf' wrKe first new sample
errors don’t accumulate.
Greedy, doesn’t share CPU C.Timer ISR writes data 2. Long DMA ISBfis delays otheéx processing too much
to DAC o
Split into doubfé-buffer to ease
. ; : Move non-urgent
Output timing: Even better. Add 1-d first samplegf deadline and cuts
. eep . work to task
Vulnerable to other ISRs and interrupt DAC input buffer ISR furation in half.
locking fgmpe times per second
D.Timer advances buffer data to DAC, G.Timer triggers DMA H. Timer triggers DMA,
Timer ISR writes next data to buffer with double-buffering, SUTAIAIES urgent
DMA ISR switches buffers data to buffer and triggers
Interrupt overhead for each Add N-deep DAC input] s task to write rest of data

sample wastes CPU time buffer with low/empty ISR

E.Timer advances buffer data to DAC.
Low/Empty ISR writes next batch of

data to buffer
28

Refine: Audio Generation HW & SW

ISR:
Switch Buffer:
Refill Other V

H J" VO“
| Tir - TfOSmpI

NI \
- s ! -ES-p—E

b

Zﬁ) W7

Refine: Update Screen (LCD) A

Commands o
and Data
(Format TBD) .
Commands <>
and Data AN
(Format TBD) ﬂﬂ

\V‘—;//]

\:
= How do we control the LCD? i cIs T
= Examine documentation for 9.1.22 RAMWR (2Ch): Memory Write & ¢ &
ST7789 LCD Controller 2cH RAMWR (Memory Write)
. Automatically refreshes display from Inst/ Para D/icX [WwrRx | RDX | D17-8 D7 | o6 | D5 | D4 | D3 | D2 | D1 | DO | HEX
. RAMWR 0 1 1 - 0 0 1 0 1 1 0 0 |ecn
internal frame buffer memory -
1% parameter 1 t 1 | Dif71-118] | D171 | DAre] | DAgs) | DA | DAE) | D) | D] | Do)
" Supports 83 commands 1 t 1 | px171-x8] | Dx71 | Dxi8] | Dxi5] | Dxi4] | Dx(3] | Dx(2] | Dx[1] | Dx(o]
= Function: configuration, reading N parameter 1 1 1 | on[17]-n(8] | Dn[7] | Dns] | onis] | Dni4] | onE] | D] | Dnpt] | Dnpo)
StatUS, aCCQSSing frame buffer -This command is used to transfer data from MCU to frame memory.

= Format: 1 byte command, O or more
parameters (data)

30

NC STATE UNIVERSITY

Memory Bﬂi Architecture

Control Bus R ,
V. I ! L -
c’ l

Address Bus

2. >/ R X
= | —
ﬁ Data Bus :; ; ;
A ———
= CPU uses bus to access items in memory space = LCD Controller accepts commands through its
= Fast! Parallel 32-bit data and 32-bit address buses communication interface
= Operation = Supports garallel and serial interfaces
= Decoder matches certain address bits to find range of addresses = 11 “parallel” interfaces: control lines + 8/9/16/18 data bits target
this device will serve, asserts chip select line MICUO/MPU memory expansion bus
= Device uses some of other address bits to identify location = 5 single-bit serial interfaces
within device la. - anti
= Ignore rabbit holes of semantics
= Control: Read? Write? = Serialization (1 vs. 8 vs. 9 bits), truncation, half- vs. full-duplex

s ® Data

NC STATE UNIVERSITY

LCD Controller Memory Bus Interface

RESX 1- byte 2- byte N- byte
IM 0] Command Command Command
DCXRS N > >
DCX R\ /
CSX (RS) . /_-’
WRX/SCL {
P CcsX /.
& LD O E R C &
=
«/ DB[17:0) RDX_/ _
DOTCLK WRX w ------- __f_\f
ENABLE _f__f— _f_
VSYNC
- HSYNC
= LCD Controller interface for memory bus = Signal diagram shows typical operation
= Control lines (X means active low) = Specify command or data with DCX
= DCX data (1) or command (0) = (Optional: Select chip by asserting CSX)
" RDXread (0) = Place command or parameter on data bus DB]...]
* WRXwrite (0) = Write by asserting and releasing WRX (DB sampled on
= Optional CSX chip select signal (if sharing bus) rising edge of WRX)

= Data bus DB[17:0] up to 18 bits wide

32

Refine: Update Screen HW & SW

. 3 Control Signals (DCX,WRX, RDX)
Update Screen
8 Data Lines (DB...) —
] 2 >
Brightness
(Duty Cycle)
> > >
S I
§

= Software-based approach is single thread, not complex.
= Drive GPIO with software? Prototype early to reducﬁ?k\b

= |If not fast enough, look into accelerating interface with DMA (may need to slow it down)

33

NC STATE UNIVERSITY

R f . U d t S LCD Sequence Diagram
e I n e . p a e C re e n Software Hardware
RESX ST7789 LCD
‘ LCD Driver Code ’ ‘ GPIO ’ Controller
— ['f:(,‘.J T T T
DCXRS & :
> —3 osx . :Write Command : |
WRX/SCL Assert Command _ | Start :
RDX Write byte to DB[J _
ik Assert WRX ad
SDO &
Release WRX | _ | | Transfer byte
- < §/ DB[17:0] :Write Parameter 1 :
Asserglata - i
= Interface as implemented on shield = Sequence diagram: “bus” operations Write byte to DBJ] _
* 3 control lines + 8 data bits: balance, to send command + n parameters Assert WRX |
pin count with SpEEd] |mp|ementing bus operations Release WRX Transfer byte
= KL25Z MCU lacks memory expansion = GPIO port operations must leave other i ¢ ;
bus, so emulate bus with GPIO port bits unchanged |l oy |1
peripheral and software = Take advantage of hardware support et DLta %
= CSX: Chip select hard wired to ground for bit masking: PSOR, PCOR, PTOR o -
= RESX: Reset driven by GPIO bit = Otherwise use software to perform Assert WRX_ | _
read/modify/write Release WRX | _| | Transfer byte_
34 v 0

NC STATE UNIVERSITY

VDDI=1.65 to 3.3V, VDD=2.4 to 3.3V, AGND=D

LCD Controller Parallel Interface Timing

Tenw | e Teuw
i Signal Symbol Parameter Min | Max | Unit
ViH
csX w I I Tesg) D/CX Tast Address setup time 0 ns
:: — ;i W :4—{—>: Thse Tsit Address hold time (Write/Read) | 10 ns
» | | l | | - Tenw Chip select “H” pulse width 0 ns
D/CX V:X : : : X : : Tes Chip select setup time (Write) 15 ns
| [e—————> | i i
Tast [] T | T ; ;: I - Tres Ch-|p select setup 'F|me (Read ID) 45 ns
: -l v T [v (Tresem Chip select setup time (Read FM) | 355 ns
WiRos : : Vi > ;‘ ; j Tesr | Chip select wait time (Write/Read) | 10 ns
[| TosT [Tour | o Tesh Chip select hold time 10 ns
| k—>| - > -
DI7:0] | : v | l : : | Toc | Write cycle | 66 | | ns |
write [Vi | | WRX TwrH Control pulse “H” duration 15 ns
TwrL Control pulse “L” duration 15 ns
= Minimum write cycle time: 66 ns = Estimate best possible performance (lower bound)
= KL25Z running at 48 MHz: 48 MHz * 66 ns = 3.168 for software—implemented bus
instruction CVC'ES = Sequence diagram: four operations per byte

= Minimum one instruction per operation
= Minimum one clock cycle per instruction
= 4*1*1=Minimum of four cycles.

= Will not violate minimum timing requirement of
3.168 cycles

= |f it did, we would need to slow down the code

(synchronization!)
35

NC STATE UNIVERSITY

Refine: Constant-Current LED Driver -

Drive LED :
at Specified Brightness > —>
. (Duty Cycle) o il
urrent mima [Ready |c1]ch [r12|n3]81925amp|esat33 333 MHz | 2
CurrentFeedbGCk 50 »Ill LI lllll T IIIIIIII
(Analog Voltage) s F
. 40 |
= Timing precision requirement? L
= Measurement Error: up to 7 mA from 1 ps. 7/32 = ":,L@x;@@’ e
~25% error ’ £
= Trigger ADC conversion in phase with PWM 2
signal from timer (TPM) v
= Examine PWM signal i
= In what phase of TPM signal should ADC convert? I |
= Hardware may allow triggering on rising edge, 5 e N2 03.20R,
falling edge, or middle of pulse (center-aligned 1

E_.. I - ..: = i - - -
mode). X |v-83.16us 73.16 us 53.16 us

36

NC STATE UNIVERSITY

Refine: Constant-Current LED Driver HW & SW

= Use high priority ISR for timing

orecision ADC ISR: Brightness
. Adjust duty (Duty Cycle)
= |SR has simple software structure
cycle based on
= Read ADC result measured
= Calculate new duty cycle (output pulse current s
width) ’ 1
= Write to TPM duty cycle register (CNV) E”o 2
= No blocking or delays = 9
* Needs to be fast enough to Currentleedback = +
gh to... (ADC Result) g
= Meet deadline, likely at most 1/80 kHz = ~
12.5 ps (depends on when duty cycle IRQ - Current Feedback
register is updated) (Analog Voltage)

= Leave enough CPU time for other
processing

37

NC STATE UNIVERSITY

Timelines of Major Processing Activities and Synchronization

Update Read CCLED é Sound A, Read
CD Touchscreen Driver Generator Accelerometer
(\‘6 NV p\ 3 e \\\»‘\)\38 €
A "~ IW ?\Xﬁt SN f\&\f Serg?™ i polles
= | VECER |
"B ok AR
?% i)é L {4 u?éaz‘}'e = /Y
L by
X “
s ()
=N (
b,
MRt

Refine: Accelerometer

Device
Address

NC STATE UNIVERSITY

Data

6 NACK

Data
5

Data
3

Data
4

Data
2

Device Data

Address

Register
Address

XY, Z Accelerations P W KT f
(IZC messages) Name 10 T| Read';_l 2000 samples ag 3.703 MHZ | 2016-]1-25 11:49:47.302 |] v v
= T—{howr |]ho1 |Hhiro [er lreo her | |hao | |ha1 | |hso =
SN . N i e 1 R A
sa S L A L N Sy
X —?.Eu.s ﬂ 46 us 99,5us 153 us 206.5us

Start

= Send 12C message to read acceleration, then
compute roll & pitch and share

= How does I2C communication work?

= Byte-oriented protocol:
= Data register holds one byte, so must run some software
for each byte sent or received.
= Message format:

= Fields: framing, addressing, command, data,
acknowledgements

= Steps: Send start condition, send address byte, send data
byte, etc. send stop condition

39

ACK Repeated ACK Stop

Start

= Any timing challenges? Very likely!

= Must synchronize software and hardware: Can’t send
byte until previous byte has been sent
= |2C bus runs much slower than CPU, so can’t just run
straight through all the code at full speed.
= 400 kilobits/second -> 1 bit takes 2.5 ps, 1 byte takes 20
s
= For CPU, 20 ps at 48 MHz = 960 instruction cycles

i NC STATE UNIVERSITY

Ity 12C
S

Timing Analysis: Linking Code and I°C Bus Activ

read_full xyz())

~
i2c_start() 8 :'9‘" SW HI\N
I2C_TRAN; /*set to transmit mode */
I2C_M_START; /*send start * = >
e e i2c_read_setup(dev, address) 7"/f
ey 12C0->D = dev; /*send dev address (write)¥/ o .

uint8_t datal[6]: ; "
i2c_wait() /
i2c_start(): -
i2c_read setup (MMA ADDR , REG_XHI); while ((I2CO->S&I2C_S IICIF_MASK)==0); L
for(i=0;i<5;i++) I2C0->S |= I2C_S_TIICIC_MASK; /
data[i] = i2 ted_read(0) ;
datad] = 42 mepeated =aad(E]y 12C0->D = address; /*send read address =

i2c_wait(); /*wait for completion */

sn op

acc_X = (((intlé_t) data[0])<<8) | da
acc_Y = (((intlé_t) data[2])<<8) | da I2C_M_RSTART; /*repeated start */
acc_Z = (((intl6_t) data[4])<<8) | da - =
} 12C0->D = (dev|@x1); /*send dev address (read)*fe=—"
i2c_wait(); /*wait for completion *L
I2C_REC; /*set to receive mode */ = I
i2c_repeated_read(isLastRead) »
data = I2C0->D; /*dummy read starts rx (if not=""_|
already receiving) */ 8
i2c_wait(); /*wait for completion * '&" == L
data = I2C0->D; /*read data, start next rx */ | ."'
i2c_repeated_read(isLastRead) /’

data = I2C0->D; /*read data, start next rx */ A

data = I2C0->D; /*dummy read starts rx (if no
o e g
already receiving) *{// = I
i2c_wait(); /*wait for completion ‘
* i2 ted_read(isLastRead - '
i2c_repeated_read(isLastRead) ’], ~

NC STATE UNIVERSITY

Structure of Example I°C Communication Code

void read full xyz()

{
i2c_start():

i2c_read setup (MMA ADDR , REG_XHI):;

for(i=0;i<57i++)
datal[i] =
data[i] =

/

{
I2C0->D = dev;
i2c_wait ()

//send start sequence
void i2c_start()
{

I2C_TRAN;

I2C_M START;

/*set to transmit mode */
/*send start */

I2C0->D =
i2c wait():

address;

}

I2C_M RSTART;

I2C0->D = (dev|0xl):;
" i2c_wait ()

#define I2C M START

#define I2C TRAN I2C0->Cl |= I2C_Cl MST MASK

I2C0->C1 |= I2C Cl TX MASK| }

I2C_REC;

i2c_repeated read(0):
i2c repeated read(l):;

/send device and register addresses
void i2c_read_setup(uint8_t dev, uint8_t address)

/*send dev address

Jaaie Eonvcomplation & NACK; /*set NACK after read */
P } else {
fraend anglater sddmmm % : ACK: /*ACK after read */
/*wait for completion */
data = I2C0->D; /*dummy read */

/*repeated start */
/*send dev address (read)*/
/*wait for completion */

/*set to receive mode */

//read a byte arrxdiéék"/h!i(as appropriate
uint8_t i2c_repeated read(uint8_t isLastRead)
{

y if (isLastRead) {

i2c_wait ()

if (isLastRead) {
I2C_M_STOP;

}

data = I2C0->D;

return data;

/*wait for completion */
/*send stop */

/*read data */

void 120_wait (void) { #define IZC_M_RSTART

lock_detect = 0;

12C0->C1 |= I2C_Cl_RSTA MASKT

define 1I2C
r2Cc0->C1

TXi‘ MASK

STOP
#define I2C_REC [&= ~I2C Cl MST MASK
I2C0->Cl &= ~I2C_Cl TX MASi#define ACK

I2C0->Cl &= ~I2C Cl

while (((I2C0->S & I2C_S IICIF MASK)==0) &
lock_detect++;

(lock_detect < 200)) {

}
if (lock _detect >= 200)
i2c_busy():

I2C0->S |= I2C_S_IICIF MASK;
}

#define NACK
12C0->Cl |= I2C_C1_TXAK_MASK|

NC STATE UNIVERSITY

Looking at the Timing

= CPU could execute up to one instruction per cycle = Work per message

= Work per byte (and its ACK and other overhead) ® Three address bytes, six data bytes
= 26 us per byte * 48 MHz = 1248 CPU cycles = 11,500 cycles total
= 8 cycles of work, 1240 cycles of waiting = 1240 * 9 = 11,160 cycles waiting
= |Is it worth recovering these 11,160 cycles per
message”?
‘240 us x 48 MHz = 11 500 CPU cycles .
8 cycjes of work
Stort ACK Reg;c;t;ed // 124p CYCI@S of wcung Stop
Device Register Device NACK
Address Address l Address Data yi Data 2 Data 3 Data 4 Data 5 Data 6
| N T R DA B v
= s T —hiowr ||ho1 —lhiorD | |hFF hEd hFF haD h41 h30 —
- WL UL LU U L LI T L1
sCL o 1 1 | L L e OV

X - -7.5us ‘ 46 us 99,5 us 153 us 206.5 us

NC STATE UNIVERSITY

Try to Recover Time Wasted on Synchronization? 12C
54 SW HW
‘ = Example Design Points for shield application |
= Read Accelerometer: 12C

= How can we recover it? » ﬂ\) * Granularity: ~¥960 CPU cycles long
= Use scheduler to reallocate CPL to Vel = Total per event: ~¥11,160 CPU cycles per message

useful code I W :F;M = Total per second: =
50 Hz * 11,160 = 558,000 CPU cycles/second
= Interrupt system 7 M /r g, qp\ y

out of 48,000,000) = ~1%
(,000,000)

= How much time is used?
= Add up all the pieces

= Explicit software scheduler cooperatlve preemptive

= Probably not worth recovering [
= Implicitly scheduled code: integrate other useful code
into code doing synchronization w Read Touchserasr: ADC
= |s it worth recovering? = Granularity: ~96 CPU cycles ,
= |s there enough time? = Total per event: ~¥192 CPU cycles per TS read '
= Bound: How much relative to CPU speed? ° = Total per second:
= Refined: How much relative to CPU’s currently 10 Hz * 192 = 1,920 CPU cycles/second
available free time? (out of 48,000,000) << 1%
= |s granularity suitable? * Not worth recovering
= Are time chunks big enough to be worth recovering,
considering time overhead of recovery? =S

= Must consider scheduler time overhead vs. granularity
= ISR response overhead, OS context switch, etc.

43

NC STATE UNIVERSITY

Refine: Accelerometer HW & SW Where and how to split?

XY, Z Accelerations How to synchronize?

XY, Z Accelerations
(I°C messages)

(I*C messages)

R Less Urgent
ead Code
) Accelerometer = -
from Read
Accelerometer
= |nitial solution = Complex problem
= Principle: Functionality First, Elegant = Want to recover idle time while ensuring urgent
Performance Later (if ever) code runs at right times
= Use busy-waiting, and don’t try to recover idle = Generic solution puts urgent work into ISR,
time yet defers other work to thread. How do we split up

this 12C driver code?

= Possible solutions — coming up soon
= Finite State Machines

= Task/Thread scheduler (heart of operating
system)

44

NC STATE UNIVERSITY

Updated Difficult Areas

Commands

A DN e

Throughput:
Update Need to send a lot of data
to update entire screen

L JUILV \/

Untouched or Touched
X,Y Positions if Touched Screen
(Format TBD)

Read

Touchscreen

Timing Precision,

Generate
Sounds

Responsiveness: —>

Need DAC to generate samples
at precise times. Need to
generate waveforms in time.

XY, Z Accelerations
(I°C messages)

Read
Accelerometer Brightness

Not Run-to-Completion: Drive LED Timing Isrécision
Internal Delays from at Specified Responsiveness:, —>
Synchronization with Hardware. Current Need ADC to sample
C’; li much faster thlazn Cbgs’ S0 Currerl synchronously with PWM.
o e waiting e oyt Need update duty cycle output
transmission completion. in time.

45

NC STATE UNIVERSITY

Synchronizing Activities

= Interrupt System example = Use synchronization to
= HW Peripheral generates IRQ, which triggers CPU = start running code
to run ISR " thread - external
= Timing relationships between activities " code within-thread - internal
= Triggering: does one trigger the other? = stop running code within thread - internal :
= Order: Must one be first? = Synchronization Triggers ‘
= Concurrency: Overlap in time allowed? = Event
= General Examples = When something happens, do something else.
. Event: IRQ -> Activity: ISR
= Neither: ,
= A and B can overlap in any order =l
P y = At absolute time T, do something m/

= Concurrency:

= After time delay AT, do something
= A and B can’t be concurrent. A must finish before

B starts. or B must finish before A starts = What if some activities are in software, and
= A and B must be concurrent. A and B must others in hardware?
overlap in time.
= Order:

“ = A must finish before B starts.

NC STATE UNIVERSITY

Timelines of Major Processing Activities and Synchronization
Update Read CCLED Sound Read

("CE Touchscreen Driver p\ é Generator \\&\}\’bb 0 Accelerometer
(v/lazlY\ e M}é /ﬁ\)\ @L 459\' . c‘é’wv*‘“ 4% \VWQ\\’N Man F2C
~ ! 5 D i
" I RS &l
: ﬁ b ol b HZ
(() Dokl Tr(e
Sl 4 / il
4 e
& “I’;l’
mm
(VoS
) M 7
L CYi %
2. B

NC STATE UNIVERSITY

Synchronization between Software and Hardware

" |f some processing is done in hardware and
some in software, how do we synchronize
them?

.. to ... to Software
Hardware

From * Write to * Subroutine calls

Software peripheral * Software interrupts

register * Polled shared variables
Scheduler task control
mechanisms: enable, disable,
release, etc.

* OS synch/comm.
mechanisms: semaphore,
mutex, event flag, message,
etc.

MA

From * Hardware signals [* Interrupt System:|IRQ->ISR

Hardware (handler)
* SW Polling HW status

48

NC STATE UNIVERSITY

Software Overview

= Optional/Later: Return if screen isn’t pressed

= Read X position

= Configure GPIO XL and XR as outputs, YU as input
Configure GPIO YD as analog input
Write 0 to XL and 1 to XR
Start conversion on ADC channel connected to YD
Wait for conversion complete flag

= Read ADC result
= Read Y position

= Configure GPIO YD and YU as outputs, XL as input
Configure GPIO XR as analog input
Write 0 to YD and 1 to YU
Start conversion on ADC channel connected to XR
Wait for conversion complete flag
Read ADC result

= Convert X, Y voltages to positions

49

NC STATE UNIVERSITY

Designh Refinement

Start Application
r
. Buck
LCD & Amplifier & Converter &
Backlight Speaker White LED

Identify Major Components Accsleromete
*

3 Axis

Identify I/O Devices D PC Accsromete
| |

I

)

=
- - 9
.-.-. ..

1}
LCD Backiight IPC DAC Output Amplifier IPC L 2t IPC
¢ i o Sense Converter

Controller

Analog output.
Analog & C
i i i i : Pressed, Share roll & i Current
Identify Interfaces, Communication and Synchronization FIEETH [l B el Inerface Whie LEDs o 20 [l A e wSurren: N Drive ot
kHz

-.-
IS
2 5
] & S
-
m
{5}
- - o

n bus
1 1 1 1
: . . fressed bl Cenunandy PWM signal Digital output
Identify Data Requirements and Formats (if known) e N ncorooco I s, B nivs Y e (g AL
— Atomicity? -
i i i fvfe e SW to read 2C protocel | [Update output Sample |_LED,
Identify Major Separate Processing Activities o to Touchscreon [N ivpicenace e Cvery 5005 ChEEDy
digital il
1 1 1
Identify High-Level Communication and Synchronization - - -
1 1 1
Throughput,
Identify Risks, Difficult Performance Requirements - o GO
W
1
Decompose into Hardware and Software -

50

NC STATE UNIVERSITY

Timelines of Major Processing Activities and Synchronization

Update Read CCLED Sound Read
CD Touchscreen Driver Generator b 0 Accelerometer
(‘6 \(/ bé ‘)\ p\ QL $“$
(man AN - 45 . o™ A win T
a E 7)(0&)(i &\ B :
‘2(ok ,&(\G\ RS "’>W) | fée N
xé /| 5 - / »Fu. “Sub 7|
0T el T
i i P (€ { —
| ! L
. — r l/
| 1. Wasted Time:ls it OK for the CPU to waste 11,000 out of \K'\ Tf"ﬁi_,
1 1,500 cycles for each 12C message!? E U
2. Delays: (\/ Pt 4
|. If no scheduler priority system for tasks, Is it OK to delay N, (‘B A\ ?
code with same or lower priority for 230 ps + 2? L Cy Y P
2. If scheduler supports prioritized tasks, Is it OK to delay Ne B
code with same or lower priority for 230 ps + 2?

