NC STATE UNIVERSITY

Advanced RTOS Issues: Responsiveness

NC STATE UNIVERSITY

Priority Level

osPriorityRealtime?7

Thread Priority

osPriorityRealtimel
osPriorityRealtime
osPriorityHigh7

= Scheduler runs highest
priority ready thread
.o.s.PriorityHighl

osPriorityHigh
osPriorityAboveNormal7

= Can set thread priority upon
creation
= |nitialize attributes (attr) first

osPriorityAboveNormall

= Then call osThreadNew(func,

A osPriorityAboveNormal
arg, &attr) . . = — osPriorityNormal7
o _ int main (void) { N
= Can set thread priority during osThreadAttr_t attr: T —

execution e . osPriorityNormal
. 1n1ti PriorityBelowN 17
= osThreadGetPriority(threadID) //set it al thrgad _________
. // priority to high ..
priority) osThreadNew(threadl, NULL, &attr); 2FrorityBelowNormal

osPriorityLow7

} osPriorityLow1
osPriorityLow
osPriorityldle

NC STATE UNIVERSITY

Which Priorities to Assign to Threads?

= Field of real-time systems examines = Fixed vs. dynamic priority
answers to this question = Fixed:
= Covered in ECE 461/561 = Thread is assigned a fixed (static) priority

= Typically at design time
= Priority does not change...

= |n general, priority rises with urgency = Except for special cases with handling mutexes and

= The sooner the thread must finish, the higher priority inversion

its priority = Or when it is explicitly changed by program

= Dynamic:
= Thread has a deadline

= Scheduler uses deadline when running to
determine priority

= RTXv5 uses static thread priority

assignment
= But with some exceptions

NC STATE UNIVERSITY
Parallel Hardware ... but Serialized Software

S S

oftware < Lower Priori i

Interrupt Service Routines &
Exception Handlers

(Background) Higher Priority
MCU —w
Memory CPU Core = Int. Ctlr.
Int.erfgce Actuators Sensors Igfﬁf: | S Q/// W\ N |
Circuits A 77 NN~
/ AN \
—> ™ ADC DMA _ USB\\ PWM
it L~ \ g

Device, System,
Environment...

\
l:ontrol Signa’ls

4

T 0= 7T | i
~"cmp | / NDK DAC

—» Dig. In Timer Dig. Out 12C

NC STATE UNIVERSITY

Schedulers: Helping Software Share the CPU Better

. Lower Priority
= Build modular program

Tasks
= Separate tasks/threads and ISKS,
each running (mostly)
independently ‘
= Easier to develop, maintain, debug ISRs & IL';ZCSISS Zztf;f'

Exception Scheduler selects
= What code does CPU run? Handlers task/thread to run
= Interrupt controller decides code to
run next. Higher Priority
= Checks interrupt/exception _
requests before starting each MCU —w
instruction CPU Core [+ Int. Ctlr.

= If not, task scheduler decides which
task/thread to run next

NC STATE UNIVERSITY

Responsiveness
Event EvA
Best Case
= Task A must run to service event EvA A
= EvA makes scheduler release task A
= Scheduler behavior: Worst Case
= EvA happened? Release A, run A until done. J

= EvB happened? Release B, run B until done. Et cetera...
= Terms: No task preemption, round-robin task ordering. Task i takes C. time of computation
= Task A’s response time (R,): How long from event EvA until task A
finishes servicing it? Ignore time for handlers, scheduler for now.
= Best case: EVA happens just before scheduler checks it. R, = C,

= Worst case: EVA happened just after scheduler checked, every other event (EvB — EvF) happens before scheduler
checks EvA again.R,=C, + C; +C+Cy+ C + C,

Improvement: Prioritized Tasks
Event EvA, EvB, EvC, EvD, EvE, EvF

Best Case

Worst Case

|
= Change scheduler to prioritize A > B > C etc.

* New behavior:
= |If EVA happened, run A until done.
= Else if EvB happened, run B until done.
= Else if EvC happened, run C until done.
= Et cetera
= Best case: Same as before. R, =C,

= Worst case: Delayed only by longest other task (D). R,
= C, + Max(Cg, C, Cp,, Ci, Cp)

L |

MCU

CPU Core |+

P

Int. Ctlr.

NC STATE UNIVERSITY

Lower Priority ()

O

Higher
Priority

NC STATE UNIVERSITY
Improvement: Preemptive, Prioritized Tasks

Event EvA, EvB, EvC, EvD, EVE, EvF Lower Priority (_

Best Case

Worst Case

" Improvements

= Let scheduler preempt lower priority task to
run higher priority task when ready

= And tell scheduler about events sooner, using
interrupts and paying attention to clues from
other tasks

= Delay doesn’t depend on other tasks now,
just task A.
* Rya=G4

MCU

—/
Int. Ctlr.

V'y

CPU Core

NC STATE UNIVERSITY

What about Lower Priority Tasks?

Event EvA, EvB, EvC, EvD, EvE, EvF
Worst Case = Task C’s finish can be delayed only by higher priority
tasks(A, B)

= |nitial worst-case estimate: Assume A, B will each delay C’s finish

once
EvA| EvB * Re=Cat G+ C¢
| I = What if C still hasn’t finished when A or B is released
| again?
R = A, BpreemptC

= Rc=2*C,+2*Cy + C.
EvA EvB EvA? EvB? ® Must repeat to see if A or B are released again during
| this additional vulnerable time

= Depends on minimum time between releases (A->A, B->B) in the worst
™™ 1 case (burst)

NC STATE UNIVERSITY

Periodic Task Model

= Periodic task model specifies
= How often task is released to run: A minimum period T, or maximum frequency per task
= How long task takes to run once: Constant compute time requirement C, per task

Diagram of Processor Activity

Task | Exec. Period | Priority
TimeC | T

Pl I 4 High

P2 2 6 Medium

P3 3 12 Low

P1I..
6

Revise to match EvVA,
etc. from introduction

NC STATE UNIVERSITY

0 1 2 3 7 8 9 10 11 12
ﬂnm

P1

P2 P2

NC STATE UNIVERSITY

Repeated Calculation/Iteration until Stable
Event EvA

Best Case

Complete

)
Worst Case

Beginning
of Task D

M

NC STATE UNIVERSITY

What about ISRs and Exception Handlers?

Event EVA Lower Priority O
Best Case .
0 Tasks
Worst Case
Beginning CA ‘
of Task D
= Let’s stop ignoring the ISRs/exception i
handlers, as they can preempt tasks too ISRs & o
Exception
Handlers C ll
» Higher
rl Priority
MCU —w "

CPU Core [+ Int.Ctlr.

NC STATE UNIVERSITY

Generic Numerical Response Time Analysis

* How long could it take for task i to R; = C; + Initial Dela)/'Si
complete!?
= Response time = Computation time

+ Delays
= Start with estimate R, of task i’s R! = C; + Delay;(R;)

response time at critical instant

* Then compute new completion
time R’based on blocking and
interference from new job arrivals

= Repeat until R’ stops changing

Reducing the Delay

R; = C; + Delay;(R;)

= Base case: no priority or preemption

Delayi(Rl-) — Z [%} C]
]

J#FI

= Add task prioritization
= Splits delays into blocking and

= Eliminates most effects from lower priority
tasks

Delay(R;) = BJ(R;) + I{(K;)

/ Ri
Delay(R;) = maxjelp(i)(Cj) + ; T C;
jerp@) '/

= Add task preemption

= Eliminates blocking of task i by lower priority
tasks if they don’t communicate with it.

= Unrealistic, will revisit this.

Delay(R)) = ‘>ﬁ [&} C;
l i T
j€hp(i)

NC STATE UNIVERSITY

Fixed Priority, Preemptive Response Time Analysis

= How long could it take task i being released to completing?
= R time = Task i C tation + Blocking + Interf = (. . .
esponse time asK I CLomputation OCKINg nterrerence Rl — Cl _|_ Bl _|_ Il

= Can use this to evaluate schedulability: Will tasks with deadlines
meet them?

= Details

= Start with estimate R, of task i’s response time at Critical Instant ~ R; = C; + B; + E Cj
(all tasks released simultaneously)

= Then determine possible interference from additional job arrivals

’ — []
and update completion time estimate Ri — Ci + Bi +‘ E [

= Recompute based on any new arrivals until no change in R/

NC STATE UNIVERSITY

NC STATE UNIVERSITY

Response Time Example (Without Blocking)

=

l_

Task |Index| Exec. |Period| Priority
Name i Time C T,
A 1 1 4 High
B 2 2 6 Medium
C 3 3 12 Low

[terate until R, stops changing

Ri:Ci‘l' C]

j=1

i—1
R; =3+ C(i=3+1*x1+1x2=6

j=1

i—1
R 3+ 6 C 3+[6\ 1+[6} 2=34+2x14+1%x2=7

= . = —| * —| *x 2 = * * 2 =

3 £ |T;| 4 6

Jj=1

i—1 7
Ry =3 C—3[}1[}2—32122—9
3 +. [Tj +4 +6 +2*x1+ 2%

Jj=1

i—1

9 9 9

R3=3+Z T C-=3+[ﬂ*1+[g}*2=3+3*1+2*2=10

J

IIMH II

10 10
?C—3+ }*14_[?}*2:3-'_3*14_2*2:10

	Advanced RTOS Issues - Responsiveness_v1
	Advanced RTOS Issues: Responsiveness
	Thread Priority
	Which Priorities to Assign to Threads?
	Parallel Hardware … but Serialized Software
	Schedulers: Helping Software Share the CPU Better
	Responsiveness
	Improvement: Prioritized Tasks
	Improvement: Preemptive, Prioritized Tasks
	What about Lower Priority Tasks?
	Periodic Task Model
	Diagram of Processor Activity
	Repeated Calculation/Iteration until Stable
	What about ISRs and Exception Handlers?
	Generic Numerical Response Time Analysis
	Reducing the Delay
	Fixed Priority, Preemptive Response Time Analysis
	Response Time Example (Without Blocking)

