
1

Advanced RTOS Issues: Responsiveness

2

Thread Priority

▪ Scheduler runs highest
priority ready thread

▪ Can set thread priority upon
creation
▪ Initialize attributes (attr) first

▪ Then call osThreadNew(func,
arg, &attr)

▪ Can set thread priority during
execution
▪ osThreadGetPriority(threadID)

▪ osThreadSetPriority(threadID,
priority)

Priority Level

osPriorityRealtime7

. . .

osPriorityRealtime1

osPriorityRealtime

osPriorityHigh7

. . .

osPriorityHigh1

osPriorityHigh

osPriorityAboveNormal7

. . .

osPriorityAboveNormal1

osPriorityAboveNormal

osPriorityNormal7

. . .

osPriorityNormal1

osPriorityNormal

osPriorityBelowNormal7

. . .

osPriorityBelowNormal1

osPriorityBelowNormal

osPriorityLow7

. . .

osPriorityLow1

osPriorityLow

osPriorityIdle

int main (void) {
 osThreadAttr_t attr;
 . . .
 //Set initial thread
 // priority to high
 attr.priority = osPriorityHigh;
 osThreadNew(thread1, NULL, &attr);
 . . .
}

3

Which Priorities to Assign to Threads?

▪ Field of real-time systems examines
answers to this question

▪ Covered in ECE 461/561

▪ In general, priority rises with urgency
▪ The sooner the thread must finish, the higher

its priority

▪ Fixed vs. dynamic priority
▪ Fixed:

▪ Thread is assigned a fixed (static) priority

▪ Typically at design time

▪ Priority does not change…

▪ Except for special cases with handling mutexes and
priority inversion

▪ Or when it is explicitly changed by program

▪ Dynamic:

▪ Thread has a deadline

▪ Scheduler uses deadline when running to
determine priority

▪ RTXv5 uses static thread priority
assignment
▪ But with some exceptions

4

Parallel Hardware … but Serialized Software

Control Signals

MCU

ADC PWM

DAC

Dig. In Timer Dig. Out I2C

CMP

DMA USB

CPU Core

Device, System,

Environment…

SensorsActuatorsInterface

Circuits

Interface

Circuits

Main Code (Foreground)

Interrupt Service Routines &

Exception Handlers

(Background)

Int. Ctlr.

Higher Priority

Lower PrioritySoftware

Memory

5

Schedulers: Helping Software Share the CPU Better

MCU
CPU Core

ISRs &

Exception

Handlers

Int. Ctlr.

Tasks A B C D E F

Higher Priority

Lower Priority

If no ISR or Exc.

Handler active,

Scheduler selects

task/thread to run

▪ Build modular program
▪ Separate tasks/threads and ISRs,

each running (mostly)
independently

▪ Easier to develop, maintain, debug

▪ What code does CPU run?
▪ Interrupt controller decides code to

run next.

▪ Checks interrupt/exception
requests before starting each
instruction

▪ If not, task scheduler decides which
task/thread to run next

6

Responsiveness

▪ Task A must run to service event EvA
▪ EvA makes scheduler release task A

▪ Scheduler behavior:

▪ EvA happened? Release A, run A until done.

▪ EvB happened? Release B, run B until done. Et cetera…

▪ Terms: No task preemption, round-robin task ordering. Task i takes Ci time of computation

▪ Task A’s response time (RA): How long from event EvA until task A
finishes servicing it? Ignore time for handlers, scheduler for now.

▪ Best case: EvA happens just before scheduler checks it. RA = CA

▪ Worst case: EvA happened just after scheduler checked, every other event (EvB – EvF) happens before scheduler
checks EvA again. RA = CA + CB + CC + CD + CE + CF

Event EvA

F A B C D E F

Best Case

Worst Case

F B C D E F A

7

Improvement: Prioritized Tasks

MCU
CPU Core

ISRs &

Exception

Handlers

Int. Ctlr.

Tasks

A
B

C
D

E

F

Higher

Priority

Lower Priority

▪ Change scheduler to prioritize A > B > C etc.

▪ New behavior:
▪ If EvA happened, run A until done.

▪ Else if EvB happened, run B until done.

▪ Else if EvC happened, run C until done.

▪ Et cetera

▪ Best case: Same as before. RA = CA

▪ Worst case: Delayed only by longest other task (D). RA
= CA + Max(CB, CC, CD, CE, CF)

F A B C D E F

Best Case

Worst Case

D A

Event EvA, EvB, EvC, EvD, EvE, EvF

8

Improvement: Preemptive, Prioritized Tasks

▪ Improvements
▪ Let scheduler preempt lower priority task to

run higher priority task when ready

▪ And tell scheduler about events sooner, using
interrupts and paying attention to clues from
other tasks

▪ Delay doesn’t depend on other tasks now,
just task A.
▪ RA = CA

Event EvA, EvB, EvC, EvD, EvE, EvF

F A B C D E F

Best Case

Worst Case

A

MCU
CPU Core

ISRs &

Exception

Handlers

Int. Ctlr.

Tasks

A
B

C
D

E

FLower Priority

Beginning
of Task D

Higher

Priority

9

What about Lower Priority Tasks?

▪ Task C’s finish can be delayed only by higher priority
tasks(A, B)
▪ Initial worst-case estimate: Assume A, B will each delay C’s finish

once

▪ RC = CA + CB + CC

▪ What if C still hasn’t finished when A or B is released
again?
▪ A, B preempt C

▪ RC = 2*CA + 2*CB + CC

▪ Must repeat to see if A or B are released again during
this additional vulnerable time
▪ Depends on minimum time between releases (A->A, B->B) in the worst

case (burst)

Worst Case

A B C

Event EvA, EvB, EvC, EvD, EvE, EvF

EvA EvB

BA CC BA

EvA EvB

BA CC BA

EvA? EvB?

10

Periodic Task Model

▪ Periodic task model specifies
▪ How often task is released to run: A minimum period Ti or maximum frequency per task

▪ How long task takes to run once: Constant compute time requirement Ci per task

11

Diagram of Processor Activity

0 1 2 3 4 5 6 7 8 9 10 11 12
Time

P1

P2

P3

P1 P1 P1P2 P2P3 P3 P3

P1 P1

P2

Task Exec.

Time C

Period

T

Priority

P1 1 4 High

P2 2 6 Medium

P3 3 12 Low

Revise to match EvA,

etc. from introduction

12

Repeated Calculation/Iteration until Stable
Event EvA

F A B C D E F

Best Case

Worst Case
Beginning
of Task D

A B C

Complete

13

What about ISRs and Exception Handlers?

▪ Let’s stop ignoring the ISRs/exception
handlers, as they can preempt tasks too

Event EvA

F A B C D E F

Best Case

Worst Case

A
Beginning
of Task D

MCU
CPU Core

ISRs &

Exception

Handlers

Int. Ctlr.

Tasks

A
B

C
D

E

FLower Priority

Higher

Priority

14

Generic Numerical Response Time Analysis

▪ How long could it take for task i to

complete?

▪ Response time = Computation time

+ Delays

▪ Start with estimate Ri of task i’s

response time at critical instant

▪ Then compute new completion

time Ri’ based on blocking and

interference from new job arrivals

▪ Repeat until Ri’ stops changing

𝑅𝑖
′ = 𝐶𝑖 + 𝐷𝑒𝑙𝑎𝑦𝑖(𝑅𝑖)

𝑅𝑖 = 𝐶𝑖 + 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐷𝑒𝑙𝑎𝑦𝑠𝑖

15

Reducing the Delay

▪ Base case: no priority or preemption

▪ Add task prioritization

▪ Splits delays into blocking and interference

▪ Eliminates most effects from lower priority

tasks

▪ Add task preemption

▪ Eliminates blocking of task i by lower priority

tasks if they don’t communicate with it.

▪ Unrealistic, will revisit this.

𝐷𝑒𝑙𝑎𝑦(𝑅𝑖
′) = 𝐵𝑖(𝑅𝑖) + 𝐼𝑖(𝑅𝑖)

𝑅𝑖
′ = 𝐶𝑖 + 𝐷𝑒𝑙𝑎𝑦𝑖(𝑅𝑖)

𝐷𝑒𝑙𝑎𝑦𝑖(𝑅𝑖) = ෍

𝑗≠𝑖

𝑅𝑖

𝑇𝑗
𝐶𝑗

𝐷𝑒𝑙𝑎𝑦(𝑅𝑖
′) = ෍

𝑗∈ℎ𝑝(𝑖)

𝑅𝑖

𝑇𝑗
𝐶𝑗

𝐷𝑒𝑙𝑎𝑦(𝑅𝑖
′) = max𝑗∈𝑙𝑝(𝑖) 𝐶𝑗 + ෍

𝑗∈ℎ𝑝(𝑖)

𝑅𝑖

𝑇𝑗
𝐶𝑗

16

Fixed Priority, Preemptive Response Time Analysis

▪ How long could it take task i being released to completing?

▪ Response time = Task i Computation + Blocking + Interference

▪ Can use this to evaluate schedulability: Will tasks with deadlines
meet them?

▪ Details

▪ Start with estimate Ri of task i’s response time at Critical Instant
(all tasks released simultaneously)

▪ Then determine possible interference from additional job arrivals
and update completion time estimate

▪ Recompute based on any new arrivals until no change in Ri’

𝑅𝑖 = 𝐶𝑖 + 𝐵𝑖 + ෍

𝑗≠𝑖

𝐶𝑗

𝑅𝑖
′ = 𝐶𝑖 + 𝐵𝑖 + ෍

𝑗≠𝑖

𝑅𝑖

𝑇𝑗
𝐶𝑗

𝑅𝑖 = 𝐶𝑖 + 𝐵𝑖 + 𝐼𝑖

17

Response Time Example (Without Blocking)

𝑅3 = 3 + ෍

𝑗=1

𝑖−1

𝐶𝑗 = 3 + 1 ∗ 1 + 1 ∗ 2 = 6

𝑅3 = 3 + ෍

𝑗=1

𝑖−1
6

𝑇𝑗
𝐶𝑗 = 3 +

6

4
∗ 1 +

6

6
∗ 2 = 3 + 2 ∗ 1 + 1 ∗ 2 = 7

𝑅3 = 3 + ෍

𝑗=1

𝑖−1
7

𝑇𝑗
𝐶𝑗 = 3 +

7

4
∗ 1 +

7

6
∗ 2 = 3 + 2 ∗ 1 + 2 ∗ 2 = 9

𝑅3 = 3 + ෍

𝑗=1

𝑖−1
9

𝑇𝑗
𝐶𝑗 = 3 +

9

4
∗ 1 +

9

6
∗ 2 = 3 + 3 ∗ 1 + 2 ∗ 2 = 10

𝑅3 = 3 + ෍

𝑗=1

𝑖−1
10

𝑇𝑗
𝐶𝑗 = 3 +

10

4
∗ 1 +

10

6
∗ 2 = 3 + 3 ∗ 1 + 2 ∗ 2 = 10

Iterate until R3 stops changing

Task
Name

Index
i

Exec.
Time Ci

Period
Ti

Priority

A 1 1 4 High

B 2 2 6 Medium

C 3 3 12 Low

𝑅𝑖 = 𝐶𝑖 + ෍

𝑗=1

𝑖−1

𝐶𝑗

	Advanced RTOS Issues - Responsiveness_v1
	Advanced RTOS Issues: Responsiveness
	Thread Priority
	Which Priorities to Assign to Threads?
	Parallel Hardware … but Serialized Software
	Schedulers: Helping Software Share the CPU Better
	Responsiveness
	Improvement: Prioritized Tasks
	Improvement: Preemptive, Prioritized Tasks
	What about Lower Priority Tasks?
	Periodic Task Model
	Diagram of Processor Activity
	Repeated Calculation/Iteration until Stable
	What about ISRs and Exception Handlers?
	Generic Numerical Response Time Analysis
	Reducing the Delay
	Fixed Priority, Preemptive Response Time Analysis
	Response Time Example (Without Blocking)

