
1 v3

18: Scope Designs on Platform 1

v3

2 v3

Analog Scope Example

3 v3

Overview of Scope Design Evolution: What and Why
A. Basic.

Main thread reads A/D result,
plots values on display

B. Polling Trigger.
Main blocks awaiting rising edge of input signal,

then acquires/plots one screen of data.

C. Erase Button.
Main polling loop also checks erase button, erases

display if pressed.

D. Trigger Data Acq. with Comparator Interrupt.
Comparator ISR captures data, plots it.

Main handles LCD erase as in 3.

G. Precise, Adjustable Sample Timing
Comparator ISR starts timer, saves first sample in buffer.
Timer ISR runs once for each sample, saving it to buffer.
With last sample, marks buffer as full and disables timer.

Main polling loop erases LCD, displays new data when buffer is full.

H. Sample Data with DMA
Comparator ISR starts timer and DMA, saves first sample.

Timer triggers each port->buffer DMA transfer
DMA ISR runs after last transfer, disabling timer, marking buffer as full.

Main polling loop erases LCD, displays new data when buffer is full.E. Atomic LCD controller commands
Comparator ISR captures data, plots it.

Main handles LCD erase as in 3, but also disables/
restores interrupts around each LCD command.

F. Defer Display of Data to Thread.
Comparator ISR acquires all input data, saves in buffer, marks buffer as full.
Main polling loop handles LCD erase, displays new data when buffer is full.

LCD no longer shared with ISR, so less sync needed.

Version. Task/Thread,
ISR, HW

Reduce timing interference
to other SW

Add synchronization

Allow faster input sample
rates by deferring plotting

work, reducing sync needed

Allow faster input
sampling rates

Add feature

Improve responsiveness
of synchronization

Share hardware safely

Stable, adjustable timing
for input sampling

Further stabilize timing
for input sampling

4 v3

Detailed Overview of Scope Designs: What and Why
A. Basic.

Main thread reads A/D result,
plots values on display

Add Triggering:
Synchronize data acq/display
to input signal event

Input signal displayed
Unstable timing of signal on display

B. Polling Trigger.
Main blocks in polling loop until detecting rising edge of input

signal, then acquires/plots one screen of data.

Add erase button as digital port
input bit.

Stable display
Want to erase display manually

C. Erase Button.
Main polling loop also checks erase button, erases display if

pressed.

Use analog comparator interrupt
to detect trigger condition

On-demand erasing
Slow trigger response while erasing

D. Trigger Data Acq. with Comparator Interrupt.
Comparator ISR captures data, plots it.

Main handles LCD erase as in 3.

Protect LCD commands
for mutually exclusive execution

Very fast trigger response
Pixels lost if triggered while erase code is

sending an LCD command

After port edge trigger, use timer
peripheral to trigger each data sample.

Much faster sample rate
Want to control sample rate

G. Precise, Adjustable Sample Timing
Comparator ISR starts timer, saves first sample in buffer.

Timer ISR runs once for each sample, saving it to buffer. With last sample,
marks buffer as full and disables timer.

Main polling loop handles LCD erase, displays new data when buffer is full.

Offload sampling/buffering from
CPU software (ISR) to hardware
(DMA)

H. Sample Data with DMA
Comparator ISR starts timer and DMA, saves first sample.

Timer triggers each port->buffer DMA transfer
DMA ISR runs after last transfer, disabling timer and marking buffer as full.
Main polling loop handles LCD erase, displays new data when buffer is full.E. Atomic LCD controller commands

Comparator ISR captures data, plots it.
Main handles LCD erase as in 3, but also disables/ restores

interrupts around each LCD command.

F. Defer Display of Data to Thread.
Comparator ISR acquires screen-full of input data, saves in buffer, marks buffer

as full.
Main polling loop handles LCD erase, displays new data when buffer is full.
LCD no longer shared with ISR, so don’t need to disable interrupt per LCD

command.

Defer non-urgent work until after
ISR using buffer.

Trigger during erase erases part of new signal
Max. sample rate limited by LCD update speed

Main loop syncs scope
work to signal edge.

Main loop syncs scope
work to signal edge, erase
work to button press.

Interrupt system &
Comparator sync scope
work/ISR (data acq. & plot)
to signal edge.
Main loop syncs erase work
to button press

Int. Sys. & Comparator sync scope
work (ISR (data acq. & save) to
signal edge.
Main loop syncs display update to
full buffer, erase work to button
press.

(As in 4) Int. Sys. & Comparator
sync scope work/ISR (data acq. &
plot) to signal edge.
Main loop syncs erase work to
button press, prevents interrupt
during LCD command.

Int. Sys. & Comparator sync start of
data acquisition to signal edge.
Int. Sys. & Timer sync each data
sample and end of acq. to timer.
Main loop syncs display update to
full buffer, erase work to button.

Stable, HW-controlled sample rate
CPU interrupt overhead delays other

processing, limits max. sample rate

Main loop starts scope work
(data acquisition and display)
immediately (no sync).

Int. Sys. & Comparator sync start of
data acquisition to signal edge.
DMA system & Timer sync each
data sample to timer overflow.
Int. Sys. & Comparator sync end of
data acq. to last sample transfer.
Main loop syncs display update to
full buffer, erase work to button.

Process Scheduling,
Synchronization and
Communication Highlights

Version. Task/Thread,
ISR, HW

Changes
to solve problem(s).

Performance, behavior.
Problem(s).

Main limitation? TBD

5 v3

 First synchronization
 Task starts after UI asks scheduler to release it

 Detect Trigger: 2nd set of synchronizations
 Start A/D conversion
 Sync to A/D conversion complete, read result, analyze,

decide if trigger condition met or need to repeat
 Acquire Data: 3rd set of synchronizations

 Sync to time (periodic) for next sample, start A/D
conversion

 Sync to A/D conversion complete, read result, analyze,
decide if trigger condition met or need to repeat

 Plot data on LCD: No sync needed
 LCD controller faster than software & GPIO interface

 Simplify for design examples A-G
 Eliminate sync to A/D conversion by assuming fast

ADC: one A/D conversion per CPU instruction, non-
stop conversions.

I/O-Driven Synchronization Requirements for Scope
User Interface

task asks
scheduler to
release task

Task:
Scope

Detect
Trigger

Acquire Data
Plot Data

Function calls for LCD Interfacing

Synchronize to Event or Time

GPIO LCD

So
ft

w
ar

e
H

ar
dw

ar
e

ADCVIn Timer

6 v3

Scope Triggering:
Synchronizing Data Acquisition to

Input Signal Activity

7 v3

 Input signal
 Pulses with irregular start times, changing pulse widths

 Displaying the signal
 Oscilloscope (“scope”) plots signal value (e.g. voltage) vertically

vs. time horizontally
 Horizontal time base determines amount of time (THoriz)

represented on scope display
 Display stability depends timing relationship between when

scope starts displaying the signal, and when the signal changes
 “Infinite persistence” accumulates all acquired traces on display

until erase button is pressed

Synchronization: Simple Oscilloscope Example

Time

Si
gn

al
 V

al
ue

(e

.g
.v

ol
ta

ge
)

THorizontal

8 v3

 Sequence
 Display signal from 0 to THoriz

 Display signal from THoriz to 2*THoriz

 Display signal from 2*THoriz to 3*THoriz

 Display signal from 3*THoriz to 4*THoriz

 Display signal from 4*THoriz to 5*THoriz

 Display signal from 5*THoriz to 6*THoriz

 Display signal from 6*THoriz to 7*THoriz

 etc.

 Resulting display is unstable, jumps around
over time.

Simple Method: Display Signal Continuously

9 v3

 Scope does nothing until triggered
 Event from input signal (e.g. 0 to 1 edge)

triggers scope to start displaying signal
 Triggering synchronizes the scope’s start of

data display to input signal event

 Resulting display is much more stable
 Rising edge of signal is stable

 Except for last acquisition, where time
between rising edges < Thoriz

 Falling edge is not stable, because pulse
width varies

Stabilize Display with Triggering

10 v3

 Behavior
 Display signal voltage on LCD, synchronized to

signal’s rising edge through threshold
 Simplify: Ignore erasing previous acquisition from

LCD. Ignore user controls
 Hardware Components

 Analog to Digital converter: Fast enough to keep up
with MCU: 48 Msamples/second. (NOT the ADC on
the KL25Z)

 Microcontroller: KL25Z
 LCD: 320x240 display with controller

 Basic flow of operations
 Wait for/detect Vin rising through Vthreshold

 Rising Edge: Vin(previous sample) < Vthreshold AND
Vin(current sample) >= Vthreshold

 Loop to Acquire N data samples and display them
 Sample ADC: acquisition[n] = ADC_data
 Scale acquisition[n], plot on LCD until reaching

end of display

Implementation of Scope with Triggering

ADC GPIO LCD

So
ft

w
ar

e
H

ar
dw

ar
e

VIn

?

11 v3

Scope Design Version: Process and Synchronization Summary

Acquire and Plot DataErase DisplayProcess

Plot DataSync: Indicate
Data Acq.
Done

Read ADC DataStart A/D
Conversion

Sync: Schedule
A/D Conversion
Start

Sync: Trigger
Scope

Erase
Display

Sync:
Trigger
Erase

Design
Version

Main thread---A

Main thread-Main thread-B

Main thread-Main threadMain threadC

Comparator ISR-ComparatorMain threadD, E

Main threadComparator ISR-ComparatorMain threadF

Main threadTimer ISRTimerComparatorMain threadG

Main threadDMA ISRDMATimerTimerComparatorMain threadH

Software: Thread
Software: ISR / IRQ

Handler
Hardware:
Peripheral

12 v3

HardwareSoftwareVer.

ISRsThreads

DMATimerComparatorDMATimerComparatorMain

Sample, DisplayA

Detect Trigger Condition, Sample,
Display

B

Detect Trigger Condition, Sample,
Update Display, Erase Display

C

Detect Trigger
Condition

Take Sample,
Update Display

Erase DisplayD, E

Detect Trigger
Condition

Take SampleErase Display, Update DisplayF

Schedule
Sample

Detect Trigger
Condition

Take
Sample

Erase Display, Update DisplayG

Take
Sample

Schedule
Sample

Detect Trigger
Condition

Erase Display, Update DisplayH

Scope Example Processes: Alternate View

13 v3

Diagram Syntax

Hardware
Peripheral

Sync.
Data

Sync.
Code

Handler-level
Work Code

Sync.
Flow

Interrupt Request
Sync. Flow

Software-
Software
Data Flow

Prog. I/O Data Flow

Interrupt Scheduling,
Dispatching Sync. Flow

SW
H

W CPU Interrupt
System

Sync.
Flow

Hardware
Peripheral

Thread-Level
Work Code

Hardware
PeripheralHW- Driven

Data Flow

Hardware
Peripheral

Hardware
Peripheral

DMA Request
Sync. Flow

DMA
Controller

HW-Driven Data Flow

Arrows: Data and Synchronization (Control) Flows
Software activity data flow
Programmed I/O data flow (software-driven)
Hardware activity data flow (hardware-driven)
Synchronization flow
Interrupt flow

Boxes: Processes, code, and data objects
Do Work Process (thread or handler (interrupt service routine))
Synchronization Code (includes scheduling, dispatching at this level)
Interrupt System (includes scheduling, dispatching at this level)
Synchronization data object
Data buffer in architecturally-visible memory,available to software and
hardware

Data Buffer in
Arch-Visible

Memory

HW- Driven
Data Flow

14 v3

Scope Evolution

ADC Out LCD

SW
H

W VIn

W

A. Basic

ADC Out LCD

SW
H

W VIn

B. Polling Trigger
S W

ADC Out LCD

SW
H

W VIn

C. Erase Button

InErase

S W

WS

Out LCD

SW
H

W

VIn

D. Interrupt Trigger (Bad)

InErase

S

CMP
Int. Sys.

W

W
Cmp

ADC

Out LCD

SW
H

W

E. Safe Interrupt Trigger

S

Int. Sys.

W

W
Cmp

VIn

InErase

CMP

ADC

Sy
nc

hr
on

ou
s

In
pu

t f
or

 T
rig

ge
r D

et
ec

tio
n

15 v3

Scope Evolution

Out LCD

SW
H

W

G. Use Timer

Int. Sys. Timer Int. Sys.

W
Port

S W
Buffer

? S W
Timer

W

VIn

InErase

CMP

ADC

Out LCD

SW
H

W

H. Use DMA and Timer

Int. Sys.
Buffer

Timer
Int. Sys.

DMA

W
Port

W
DMA

S W

? S W

VIn

InErase

CMP

ADC

F. Defer LCD Updates
S

Out LCD

SW
H

W Int. Sys.

W

Buffer

?W S

Port
W

VIn

InErase

CMP

ADC

16 v3

 Synchronize to trigger condition: None
 Schedule: Implicit
 Dispatch: Implicit

A. No Trigger Detection
Thread
…
// No Detector/Synchronizer
// No Scheduler
// No Dispatcher
// Handler process
for (x=n=0; n<NS; n++) {

r = ADC->Result;
y = scale(r);
LCD_Plot(x++, y, tr_clr);

}

ADC Out LCD

SW
H

W VIn

W

LCD_Plot(px, py, pcolor){
Draw rectangle from (px, py)

to (px, py) with pcolor
}

17 v3

 Synchronize to trigger condition: Loop in thread analyzes ADC results
 Schedule: Implicit SW in thread
 Dispatch: Implicit SW in thread

B. Polling Trigger Detection with Busy-Wait Loop

Thread
…
// Detector/Synchronizer
while (ADC->Result < V_Threshold)

;
// No Scheduler
// No Dispatcher
// Handler process
for (x=n=0; n<NS; n++) {

r = ADC->Result;
y = scale(r);
LCD_Plot(x++, y, tr_clr);

}

ADC Out LCD

SW
H

W VIn

S W

18 v3

 Trigger
 Synchronize: Polling/analysis

loop in thread
 Schedule: SW in thread
 Dispatch: Subroutine call

 Erase
 Synchronize: Polling/analysis

test in thread
 Schedule: SW test
 Dispatch: Subroutine call

C. Add Erase Button

ADC Out LCD

SW
H

W VIn

InErase

S W

WS

Thread(s)

…

// Detector/Synchronizer

while (ADC->Result < V_Threshold) {

if (Erase_Pressed)

LCD_Erase();

}

// Do Work: Acquire data

for (x=n=0; n<NS; n++) {

r = ADC->Result;

y = scale(r);

LCD_Plot(x++, y, tr_clr);

}

LCD_Plot(px, py, pcolor){

Draw rectangle from (px, py)
to (px, py) with pcolor

}

LCD_Erase() {

Draw rectangle from (XMIN, YMIN)

to (XMAX, YMAX) filled with

background bg_clr

}

19 v3

 Trigger
 Synchronize: Comparator detects

trigger, requests interrupt
 Schedule: Interrupt System
 Dispatch: Interrupt System

 Erase
 Synchronize: Polling/analysis test in

thread
 Schedule: SW test
 Dispatch: Subroutine call

D. Comparator Interrupt Triggers Data Acquisition

Out LCD

SW
H

W

VIn

InErase

S

CMP
Int. Sys.

W

W
CMP

ADC

CMP Interrupt Handler
for (n=0; n<NS; n++) {

r = ADC->Result;
y = scale(r);
LCD_Plot(x++, y, tr_clr);

}

Thread

…

// Detector/Synchronizer

if (Erase_Pressed)

LCD_Erase();

…

20 v3

 What if scope is triggered during an erase?
 Start to erase screen, get partway through
 Plot trace
 Erase rest of screen, maybe erasing part of new

trace just plotted

 Observation
 LCD_Erase is not executed atomically, can run

concurrently with CMP ISR
 Should LCD_Erase be executed atomically?

Problem #1 with Approach D
CMP Interrupt Handler
for (n=0; n<NS; n++) {

r = ADC->Result;
y = scale(r);
LCD_Plot(x++, y, tr_clr);

}

Thread

…

// Detector/Synchronizer

if (Erase_Pressed)

LCD_Erase();

…

21 v3

 Solution (?) 1.0
 Don’t continue erasing after interrupt?

 May leave old unerased trace in part of screen

 Not clear yet how to make LCD_Erase() give up partway through.

 Solution (?) 1.1
 Disable interrupts (or just comparator interrupt) during LCD_Erase?
 Long synchronization delay possible from trigger condition to CMP

ISR execution

E.1. Handle Trigger During Erase
Thread
…
// Detector/Synchronizer
if (Erase_Pressed)

save CMP interrupt enabled state;
disable CMP interrupt;
LCD_Erase();
restore CMP interrupt enabled state

…

LCD_Erase
CMP ISR

Acquires Data

22 v3

 Solution (?) 1.2
 Break screen into tiles
 Erase each tile atomically, allow interrupts (triggering) between tiles
 Don’t finish erasing if triggered during erase.
 Interrupt handler sets flag, LCD_Erase tests flag
 What about tiles that aren’t erased? Similar to 1.0, but reduces

trigger detection latency
 Solution(?) 1.3

 When ISR runs, acquire data but don’t plot it yet.
 Need to save it, trigger other code to run and plot it.

 More items on the Sync and Comm To Do List
 More complex, will examine deferred plotting in design F

E.1. Handle Trigger During Erase
Thread

…

// Detector/Synchronizer

if (Erase_Pressed)

LCD_Erase();

…

void LCD_Erase(void) {

for each tile {

if (NewDAcqDone) {

NewDAcqDone = 0;

break; // exit for loop

}

save CMP interrupt enabled state;

disable CMP interrupt;

draw background color rect. for tile

restore CMP interrupt enabled state

}

CMP Interrupt Handler
for (n=0; n<NS; n++) {

r = ADC->Result;
y = scale(r);
LCD_Plot(x++,y);

}
NewDAcqDone = 1

23 v3

 MCU writes Command ID byte, then parameters
(data bytes)
 Received Command ID terminates previous

command, starts new command
 Received parameters interpreted based on most

recent command
 Screen coordinates: columns (x) and rows (y)
 Draw rectangle between corners (c1,r1) and (c2,r2)

 Set first and last columns (CASET)
 Set first and last rows (RASET)
 Send pixels to fill in rectangle (RAMWR)

 Use LCD_Plot and LCD_Erase

Background for Problem #2: LCD Controller Interface (ST7789VI)

Parameters (data bytes)Command ID
(byte) …54321

c2c1Column Address
Set (CASET)

r2r1Row Address Set
(RASET)

…d5 d4d3d2d1RAM Write
(RAMWR)

LCD_Plot(px, py, pcolor){

// Draw rectangle

LCD_Command(CASET, px, px)

LCD_Command(RASET, py, py)

LCD_Command(RAMWR, pcolor, 1)

}

LCD_Erase() {

// Draw rectangle

LCD_Command(CASET, XMIN, XMAX)

LCD_Command(RASET, YMIN, YMAX)

n = (XMAX-XMIN + 1) * (YMAX-YMIN + 1)

LCD_Command(RAMWR, bg_color, n)

}

(r1,c1)

(r2,c2)

(XMIN, YMIN)

(XMAX, YMAX)

24 v3

OKFailFa
il

FailFa
il

FailOK

Comparator ISR calls LCD_Plot(px, py, pcolor) once per sample

LCD_Erase calls LCD_Plot(px, py, pcolor)

 Issue 2. What if scope is triggered during an LCD
command sequence during erase?

 Result depends on when trigger occurs relative to LCD_Erase’s command sequence
 Before or after complete command sequence (CASET + data, RASET + data, RAMWR + data)? OK
 Before or after a command and its data: Fail
 Between a command and its data: Fail

Problem #2 with Approach D

c2c1Col Adx
Set dn……d5 d4d3d2d1RAM

Writer2r1Row Adx
Set

c2c1Col Adx
Set d2d1RAM

Write
r2r1Row Adx

Set

25 v3

 Solution (?) 2.1
 Don’t allow triggering within LCD command sequences
 For each command + data sequence (CASET+data, RASET +data,

RAMWR +data) within preemptable code (e.g. thread)…
 Disable comparator interrupt
 Send LCD command + data sequence
 Restore comparator interrupt state

 Display may still be corrupted by erasing newly plotted pixels
 As with 1.0, detection latency can be as long as erase time. Break

screen into tiles? Still have problems

E.2. Trigger during LCD Command Sequence. Make LCD Controller
Commands Atomic? Thread

…

// Detector/Synchronizer

if (Erase_Pressed)

LCD_Erase();

…

void LCD_Erase_Atomic() {

save CMP interrupt enabled state;

disable CMP interrupt;

// Draw rectangle

LCD_Command(CASET, XMIN, XMAX)

LCD_Command(RASET, YMIN, YMAX)

n = (XMAX-XMIN + 1) * (YMAX-YMIN + 1)

LCD_Command(RAMWR, bg_color, n)

restore CMP interrupt enabled state

}

LCD_Erase calls LCD_Plot(px, py, pcolor)

Interrupt disabled

c2c1Col Adx
Set dn…d3d2d1RAM

Writer2r1Row Adx
Set

26 v3

 LCD is shared by main thread and comparator
interrupt handler

 Shared resource bugs for LCD_Plot during
LCD_Erase
 High-level sharing (independent of LCD

communication)
 Problem: want to erase everything but the new

trace
 Critical sections cover up to entire screen
 LCD_Erase: all pixels in each column
 LCD_Plot: one pixel in each column

 Low-level sharing (LCD controller interface)
 Critical sections: Complete command sequence

(CASET + data, RASET + data, RAMWR + data)

 Both designs prevent corruption of LCD
communication and display contents

 But probably not good enough for scope
 Scope triggering is time-critical (real-time system)

 So try Solution(?) 1.3 despite complexity
 When ISR runs, acquire data but don’t plot it yet.
 Need to save data, trigger other code to run and

plot it => More for the Sync and Comm To Do List

Problems with Designs E.1, E.2

Good BadLess Bad

27 v3

Thread
…

if (NewDAcqDone) {
for (x=n=0; n<NS; n++) {

y = scale(Buffer[n]);
LCD_Plot(x++, y);

}
NewDAcqDone = 0

}

if (Erase_Pressed)

LCD_Erase();

 Trigger
 Synchronize: Comparator detects trigger,

requests interrupt
 Schedule & Dispatch: Interrupt System

 Plot Data
 Synchronize: Test integrated w/ thread
 Schedule & Dispatch: Integrated w/ thread

 Erase
 Synchronize: Test integrated w/ thread
 Schedule & Dispatch: Integrated w/ thread

 What about retriggering while plotting?
 Synchronize by having CMP ISR do work if

thread is done plotting data
(NewDAcqDone)

 Consequences
 Skip disabling interrupts for safe LCD

interfacing
 Skip dividing up LCD_Erase for better

responsiveness
 More delay to plot trace on LCD; only after

all samples are acquired

F: Hardware & OS Help: Comparator Interrupt, Deferred Plotting
volatile int NewDAcqDone=0;

CMP Interrupt Handler
if (NewDAcqDone==0) {

for (n=0; n<NS; n++) {
Buffer[n] = ADC->Result;

}
NewDAcqDone = 1;

}

S

Out LCD

SW
H

W Int. Sys.

W

Buffer
?W S

CMP
W

VIn

InErase

CMP

ADC

NewDAcqDone

28 v3

 Trigger: Comparator Interrupt Handler
 Synchronize: Comparator detects trigger,

requests interrupt
 Sample Data: Timer Interrupt Handler

 Synchronize: Timer requests interrupt
 Plot Data

 Synchronize: Integrated w/ thread
 Erase

 Synchronize: Integrated w/thread
 What about retriggering while plotting?

 Test NewDAcqDone in trigger detection
(CMP) interrupt handler

 Consequences
 No need to disable interrupts for LCD safety

or divide LCD_Erase for responsiveness
 More delay to plot trace on LCD; only after all

samples are acquired

G: Precise, Adjustable Sample Timing

Out LCD

SW
H

W Int. Sys. Timer Int. Sys.

W
CMP

S W
Buffer

? S WTimer

VIn

InErase

CMP

ADC

W

Timer Interrupt Handler
Buffer[n_is++] =

ADC->Result;
if (n_is == NS) {

Stop timer
NewDAcqDone = 1;

}

volatile int NewDAcqDone=0;
// input sample number
volatile int n_is=0;

CMP Interrupt Handler
if (NewDAcqDone == 0) {

n_is = 0
Start timer

}
}

Thread
…

if (NewDAcqDone) {
for (x=n=0; n<NS; n++) {

y = scale(Buffer[n]);
LCD_Plot(x++, y);

}
NewDAcqDone = 0

}

if (Erase_Pressed)

LCD_Erase();

NewDAcq
Done

29 v3

 Trigger Detection
 Synchronize: Comparator detects trigger,

requests interrupt
 Sample Data

 HW: DMA transfers from ADC to Buffer
 Plot Data

 Synchronize: Integrated with thread
 Erase

 Synchronize: Integrated with thread
 What about retriggering during plotting?

 Same as F, G

 Consequences
 Responsiveness from trigger condition to

start of sampling is limited by interrupt
latency

 In affordable systems, sample rate is
limited by ADC

H: Sample Data with Timer-Driven DMA

Out LCD

SW
H

W

Int. Sys.
Buffer

Timer Int. Sys.DMA

W
CMP

W
DMA

S W

? S W

VIn

InErase

CMP

ADC

DMA Interrupt Handler
Stop timer
NewDAcqDone = 1;

volatile int NewDAcqDone=0;

CMP Interrupt Handler
if (NewDAcqDone==0){

Start timer
}

Thread
…

if (NewDAcqDone) {
for (x=n=0; n<NS; n++) {

y = scale(Buffer[n]);
LCD_Plot(x++, y);

}
NewDAcqDone = 0

}

if (Erase_Pressed)

LCD_Erase();

NewDAcq
Done

