NC STATE UNIVERSITY

18: Scope Designs on Platform 1

v3

NC STATE UNIVERSITY

Analog Scope Example

Overview of Scope Design

A. Basic.
Main thread reads A/D result,
plots values on display

Add synchronization

B. Polling Trigger.
Main blocks awaiting rising edge of input signal,
then acquires/plots one screen of data.

Add feature

C. Erase Button.
Main polling loop also checks erase button, erases
display if pressed.

Improve responsiveness

of synchronization to other SW

e - N
D. Trigger Data Acqg. with Comparator Interrupt.
Comparator ISR captures data, plots it.

Main handles LCD erase as in 3.

(& 7
4 B

E. Atomic LCD controller commands
Comparator ISR captures data, plots it.
Main handles LCD erase as in 3, but also disables/
L restores interrupts around each LCD command.)

L

NC STATE UNIVERSITY

Evolution: What and Why

v

F. Defer Display of Data to Thread.

Comparator ISR acquires all input data, saves in buffer, marks buffer as full.

Main polling loop handles LCD erase, displays new data when buffer is full.
LCD no longer shared with ISR, so less sync needed.

Reduce timing interference

3 v3

Stable, adjustable timing
for input sampling

G. Precise, Adjustable Sample Timing
Comparator ISR starts timer, saves first sample in buffer.
Timer ISR runs once for each sample, saving it to buffer.
With last sample, marks buffer as full and disables timer.
Main polling loop erases LCD, displays new data when buffer is full.

Further stabilize timing
for input sampling

Allow faster input
sampling rates

H. Sample Data with DMA
Comparator ISR starts timer and DMA, saves first sample.
Timer triggers each port->buffer DMA transfer
DMA ISR runs after last transfer, disabling timer, marking buffer as full.
Main polling loop erases LCD, displays new data when buffer is full.

llow faster input sample

tes b)’ deferring PIOtting ‘ Version. Task/Thread,
work, reducing sync needed

ISR, HW

|

)

A. Basic.
Main thread reads A/D result,
plots values on display

l

B. Polling Trigger.
Main blocks in polling loop until detecting rising edge of input
signal, then acquires/plots one screen of data.
Add erase button as digital port

l input bit.

C. Erase Button.
Main polling loop also checks erase button, erases display if
pressed.

|

D. Trigger Data Acq. with Comparator Interrupt.
Comparator ISR captures data, plots it.
Main handles LCD erase as in 3.

Input signal displayed
Unstable timing of signal on display Add Triggering:
Synchronize data acq/display

to input signal event

fMain /bbp syncs séobe Vj
work to signal edge. |

Stable display
Want to erase display manually

fwork to signal edge, erase |
work to button press.

On-demand erasing

Slow trigger response while erasing
Use analog comparator interrupt

to detect trigger condition

]nterrupf system &
Comparator sync scope
work/ISR (data acq. & plot)
to signal edge.

“Main loop syncs erase work
ito button press

Very fast trigger response
Pixels lost if triggered while erase code is

sending an LCD command Protect LCD commands

for mutually exclusive execution

E. Atomic LCD controller commands
Comparator ISR captures data, plots it.
Main handles LCD erase as in 3, but also disables/ restores
interrupts around each LCD command.

plot) to signal edge.

Trigger during erase erases part of new signal
I\fl}ax. samp/3e rate limited by LCD update speed
\Z

sync scope work/ISR (data acq. &

Main loop syncs erase work to
button press, prevents interrupt
during LCD command.

NC STATE UNIVERSITY
Detailed Overview of Scope Designs: What and Why

Defer non-urgent work until after
* ISR using buffer.

F. Defer Display of Data to Thread.
Comparator ISR acquires screen-full of input data, saves in buffer, marks buffer
as full.
Main polling loop handles LCD erase, displays new data when buffer is full.
LCD no longer shared with ISR, so don’t need to disable interrupt per LCD
command.

Much faster sample rate
Want to control sample rate

After port edge trigger, use timer
peripheral to trigger each data sample.

G. Precise, Adjustable Sample Timing
Comparator ISR starts timer, saves first sample in buffer.
Timer ISR runs once for each sample, saving it to buffer. With last sample,
marks buffer as full and disables timer.
Main polling loop handles LCD erase, displays new data when buffer is full.

Stable, HW-controlled sample rate
CPU interrupt overhead delays other
processing, limits max. sample rate
Offload sampling/buffering from
CPU software (ISR) to hardware
(DMA)

; H. Sample Data with DMA

{ Comparator ISR starts timer and DMA, saves first sample.

' Timer triggers each port->buffer DMA transfer

DMA ISR runs after last transfer, disabling timer and marking buffer as full.
Main polling loop handles LCD erase, displays new data when buffer is full.

Main limitation? TBD

Int. Sys. & Comparator sync scope
‘work (ISR (data acq. & save)to
3‘signal edge. |
Main loop syncs display update to :
full buffer, erase work to button
press.

Int. Sys. & Comparator sync start of
data acquisition to signal edge. ‘
Int. Sys. & Timer sync each data
$ample and end of acq. to timer.
iMain loop syncs display update to
full buffer, erase work to button. |

Int. Sys. & Comparator sync start of
data acquisition to signal edge.
“‘DMA system & Timer sync each
.data sample to timer overflow.

Int. Sys. & Comparator sync end of
data acq. to last sample transfer.
Main loop syncs display update to

l

Version. Task/Thread,
ISR, HW

Process Scheduling,
Synchronization and
{Communication Highlights

)

Performance, behavior.
Problem(s).

Changes
to solve problem(s).

Software

Hardware

NC STATE UNIVERSITY

|/O-Driven Synchronization Requirements for Scope

User Interface
task asks Task:
scheduler to Scope
release task

Vi

First synchronization

Synchronize to Event or Time

n

Task starts after Ul asks scheduler to release it .

Detect Trigger: 2" set of synchronizations
Start A/D conversion = Simplify for design examples A-G

Sync to A/D conversion complete, read result, analyze,
decide if trigger condition met or need to repeat

Acquire Data: 3" set of synchronizations

v3

Sync to time (periodic) for next sample, start A/D
conversion

Sync to A/D conversion complete, read result, analyze,
decide if trigger condition met or need to repeat

Plot Data

I Function calls for LCD Interfacing |

= Plot data on LCD: No sync needed

LCD controller faster than software & GPIO interface

Eliminate sync to A/D conversion by assuming fast
ADC: one A/D conversion per CPU instruction, non-
stop conversions.

NC STATE UNIVERSITY

Scope Triggering:
Synchronizing Data Acquisition to
Input Signal Activity

NC STATE UNIVERSITY

Synchronization: Simple Oscilloscope Example

| L

= |nput signal
= Pulses with irregular start times, changing pulse widths
= Displaying the signal

= Oscilloscope (“scope”) plots signal value (e.g. voltage) vertically
vs. time horizontally

Signal Value
(e.g. voltage)
]

= Horizontal time base determines amount of time (T,,,;,)
represented on scope display

. " Time
= Display stability depends timing relationship between when
scope starts displaying the signal, and when the signal changes

= “Infinite persistence” accumulates all acquired traces on display
until erase button is pressed

7 v3

Simple Method: Display Signal Continuously

1

H

8 v3

= Sequence

= Display signal fromOto T
= Display signal from T
= Display signal from 2*T
= Display signal from 3*T
= Display signal from 4*T
= Display signal from 5*T
= Display signal from 6*T

= etc.

NC STATE UNIVERSITY

Horiz

t0 2%Ty00,
to 3*T
to 4*T
to 5*T
to 6*T
to 7*T

Horiz
Horiz Horiz
Horiz Horiz
Horiz Horiz
Horiz Horiz

Horiz Horiz

“ = Resulting display is unstable, jumps around

over time.

NC STATE UNIVERSITY

Stabilize Display with Triggering

H ﬂ H = Scope does nothing until triggered

= Event from input signal (e.g. 0 to 1 edge)
triggers scope to start displaying signal

" = Triggering synchronizes the scope’s start of
| | data display to input signal event

i 1 ‘ I—

L

= Resulting display is much more stable
= Rising edge of signal is stable

= Except for last acquisition, where time
between rising edges < T, ..,

= Falling edge is not stable, because pulse
width varies

9 v3

NC STATE UNIVERSITY

Implementation of Scope with Triggering

Software

r
i L

V, =>

In

Hardware

Behavior

Display signal voltage on LCD, synchronized to
signal’s rising edge through threshold

Simplify: Ignore erasing previous acquisition from
LCD. Ignore user controls

= Hardware Components

Analog to Digital converter: Fast enough to keep up
with MCU: 48 Msamples/second. (NOT the ADC on
the KL252)

Microcontroller: KL25Z
LCD: 320x240 display with controller

=

= Basic flow of operations

Wait for/detect V. rising through V. .choi

= Rising Edge: V, (previous sample) < Vi echorg AND
V,,(current sample) >= Vy; ochold

Loop to Acquire N data samples and display them

= Sample ADC: acquisition[n] = ADC_data

= Scale acquisition[n], plot on LCD until reaching
end of display

NC STATE UNIVERSITY

Scope Design Version: Process and Synchronization Summary

m Erase Display Acquire and Plot Data

Design Sync: Sync: Trigger Sync: Schedule Start A/D Read ADC Data | Sync: Indicate | Plot Data
Version | Trigger Scope A/D Conversion Conversion Data Acq.
Erase Start Done

- - - Main thread

- Main thread - Main thread
Main thread Main thread - Main thread
Main thread Comparator - Comparator ISR

Main thread Comparator Comparator ISR Main thread

Main thread Comparator Timer ISR Main thread
Software: Thread

Software: ISR/ IRQ
Handler

Hardware:
Peripheral

NC STATE UNIVERSITY

Scope Example Processes: Alternate View

I T

B S S
= o o =

A Sample, Display

B Detect Trigger Condition, Sample,
Display

C Detect Trigger Condition, Sample,
Update Display, Erase Display

D,E Erase Display Take Sample, Detect Trigger
Update Display Condition
F Erase Display, Update Display Take Sample Detect Trigger
Condition
G Erase Display, Update Display Take Detect Trigger Schedule
Sample Condition Sample
H Erase Display, Update Display Detect Trigger Schedule Take
Condition Sample Sample

Diagram Syntax

Boxes: Processes, code, and data objects

Do Work Process (thread or GGG {ifterupt service foutine))

Synchronization Code (includes scheduling, dispatching at this level)

Interrupt System (includes scheduling, dispatching at this level)

Synchronization data object

Data buffer in architecturally-visible memory,available to software and

hardware
Interrupt Scheduling,
= Dispatching Sync. Flow
wv
= Interrupt Request N CPU Interrupt
T Sync. Flow System

Hardware
Peripheral

i

Hardware Prog. 1/0 Data Flow

Sync.

NC STATE UNIVERSITY

Arrows: Data and Synchronization (Control) Flows

Software activity data flow

Programmed I/0 data flow (software-driven)

Hardware activity data flow (hardware-driven)

Synchronization flow

Interrupt flow

Sync.

Sync. Flow
Sync. ¢ I

Data

Peripheral

Hardware HW-Driven Data Flow

Peripheral

Hardware
Peripheral

Software-
Software
Thread-Level [Data Flow
Work Code Data Buffer in
gy Arch-Visible
Memory
DMA Request
Sync. Flow
HW- Driven

Data Flow

DMA
Controller

HW- Driven
Data Flow

Hardware
Peripheral

Synchronous Input for Trigger Detection

NC STATE UNIVERSITY

Scope Evolution
A. Basic

% w
% VIn
v -LM

E. Safe Interrupt Trigger

C. Erase Button 2
clw
2 =
W Vln
% V, Erase-Pn
Erase In

Scope Evolution

Port

Buffer

> F. Defer LCD Updates
[V}
> Int. Sys.
* Vln AD

Erase-bn

Port

= G. Use Timer
= D Int. Sys.
IV|n AD

H. Use DMA and Timer Port

Int. Sys.
% Y
VIn

SW

DMA

NC STATE UNIVERSITY

Buffer

>

Int. Sys.

5 v;rase-b“

g

A. No Trigger Detection

= LW
(V)]

HW

Synchronize to trigger condition: None
Schedule: Implicit
Dispatch: Implicit

v3

NC STATE UNIVERSITY

Thread

// No Scheduler
// No Dispatcher
// Handler process
for (x=n=0; n<NS; n++) {
r = ADC->Result;
y = scale(r);
LCD Plot(x++, y, tr_clr);

LCD_Plot(px, py, pcolor){

Draw rectangle from (px, py)
to (px, py) with pcolor

NC STATE UNIVERSITY

B. Polling Trigger Detection with Busy-Wait Loop

SW

W Thread

|
|
!
!

In

// No Scheduler

// No Dispatcher

// Handler process

for (x=n=0; n<NS; n++) {
r = ADC->Result;

= Synchronize to trigger condition: Loop in thread analyzes ADC results y = scale(r);

= Schedule: Implicit SW in thread y L) PLOGGSHz Yo Sl
= Dispatch: Implicit SW in thread

C. Add Erase Button

W
é% o
W
% Vln-> ——t —p —
Erase-”
= Trigger = Erase

= Synchronize: Polling/analysis
loop in thread

= Schedule: SW in thread
= Dispatch: Subroutine call

= Synchronize: Polling/analysis
test in thread

= Schedule: SW test
= Dispatch: Subroutine call

NC STATE UNIVERSITY

Thread(s)

LCD_Erase();

// Do Work: Acquire data
for (x=n=0; n<NS; n++) {

r = ADC->Result;

y = scale(r);

LCD_Plot(x++, y, tr_clr);
}

LCD_Plot(px, py, pcolor){

Draw rectangle from (px, py)
to (px, py) with pcolor

}
LCD_Erase() {

Draw rectangle from (XMIN, YMIN)
to (XMAX, YMAX) filled with
background bg_clr

}

NC STATE UNIVERSITY

D. Comparator Interrupt Triggers Data Acquisition

SW

HW

CMP CMP Interrupt Handler
for (n=0; n<NS; n++) {
-ﬁ il r = ADC->Result;
W y = scale(r);
LCD_Plot(x++, y, tr_clr);
I g Int. Sys. }
— -»>
Vln_[: Thread
Erase=»
LCD_Erase();
= Trigger = Erase
= Synchronize: Comparator detects = Synchronize: Polling/analysis test in
trigger, requests interrupt thread
= Schedule: Interrupt System = Schedule: SW test
= Dispatch: Interrupt System = Dispatch: Subroutine call

Problem #1 with Approach D

CMP Interrupt Handler
for (n=0; n<NS; n++) {
r = ADC->Result;

y = scale(r);
LCD_Plot(x++, y, tr_clr);

e — RS i e ;
[Evase
Thread | e S S et e et st i et "

// Detector/Synchronizer /(/~\\~,—___—\
if (Erase_Pressed)
LCD_Erase(); ,/// \\\\‘ \\\\“

= What if scope is triggered during an erase? = Observation
= Start to erase screen, get partway through = LCD_Erase is not executed atomically, can run
= Plot trace concurrently with CMP ISR

= Erase rest of screen, maybe erasing partof new = Should LCD_Erase be executed atomically?
trace just plotted

20 v3

E.1. Handle Trigger During Erase

—

K\
N
/

o

LCD_Erase

CMP ISR
Acquires Data

= Solution (?) 1.0

= Don’t continue erasing after interrupt?

= May leave old unerased trace in part of screen
= Not clear yet how to make LCD_Erase() give up partway through.

= Solution (?) 1.1

= Disable interrupts (or just comparator interrupt) during LCD_Erase?

= Long synchronization delay possible from trigger condition to CMP

ISR execution

21 v3

Thread

LCD_Erase();

NC STATE UNIVERSITY

E.1. Handle Trigger During Erase

22

CMP Interrupt Handler
for (n=0; n<NS; n++) {
r ADC->Result;
y = scale(r);
LCD_Plot(x++,y);
}

Solution (?) 1.2
= Break screen into tiles
= Erase each tile atomically, allow interrupts (triggering) between tiles
= Don’t finish erasing if triggered during erase.
= Interrupt handler sets flag, LCD_Erase tests flag
= What about tiles that aren’t erased? Similar to 1.0, but reduces
trigger detection latency
Solution(?) 1.3
= When ISR runs, acquire data but don’t plot it yet.
= Need to save it, trigger other code to run and plot it.
= More items on the Sync and Comm To Do List

= More complex, will examine deferred plotting in design F
v3

NC STATE UNIVERSITY

Thread

LCD_Erase();

void LCD_Erase(void) {
for each tile {

draw background color rect. for tile

NC STATE UNIVERSITY

Background for Problem #2: LCD Controller Interface (ST7789VI)

(XMIN, YMIN)

(r1,c1

)

Gte e

(r2,c2)

23

= MCU writes Command ID byte, then parameters

(data bytes)

] _ _ Command ID Parameters (data bytes)
= Received Command ID terminates previous (byte) T T T 1
command, starts new command
X i Column Address
= Received parameters interpreted based on most Set (CASET) c1 c2
. recentconvnand Row Address Set 1 5
(XMAX, YMAX) * Screen coordinates: columns (x) and rows (y) (RASET) ' '

v3

= Draw rectangle between corners (c1,rl) and (c2,r2) | RAM write

= Set first and last columns (CASET)

= Set first and last rows (RASET)

= Send pixels to fill in rectangle (RAMWR)
= Use LCD_Plot and LCD_Erase

LCD_Plot(px, py, pcolor){
// Draw rectangle
LCD_Command(CASET, px, px)
LCD_Command (RASET, py, py)
LCD_Command(RAMWR, pcolor, 1)

}

dl [d2 | d3 | d4 | d5

(RAMWR)

LCD_Erase() {
// Draw rectangle
LCD_Command(CASET, XMIN, XMAX)
LCD_Command (RASET, YMIN, YMAX)
n = (XMAX-XMIN + 1) * (YMAX-YMIN + 1)
LCD_Command (RAMWR, bg color, n)

Problem #2 with Approach D

\ CM?EéﬂM(Comparator ISR calls LCD Plot(px, py, pcolor) once per sample
i) | . =
fpa—" = e — i T T “‘*""'; Col Adx ci c2 Row Adx r1 r2 RAM d1ld2
]f et e “A Set Set Write
= Issue 2. What if scope is triggered during an LCD

command sequence during erase?

I |] I I
LCD_Erase calls LCD_Plot(px, py, pcolor)
Col Adx Row Adx RAM
set | ¢ | c2 Set (1 | r2 Write |07[d2|d3[d4[d5] ... |dn
oK Fail 8 Fail & Fail oK
= Result depends on when trigger occurs relative to LCD _Erase’s command sequence

= Before or after complete command sequence (CASET + data, RASET + data, RAMWR + data)? OK
= Before or after a command and its data: Fail

Between a command and its data: Fail

24 v3

E.2. Trigger during LCD Command Sequence. Make LCD Controller
Commands Atomic?

LCD_Erase calls LCD_Plot(px, py, pcolor)

Col Adx
Set

cl

c2

Row Adx
Set

r1

r2

RAM
Write

d1

dz2

d3| ...

Interrupt disabled

= Solution (?) 2.1

= Don’t allow triggering within LCD command sequences
= For each command + data sequence (CASET+data, RASET +data,

RAMWR +data) within preemptable code (e.g. thread)...
= Disable comparator interrupt

= Send LCD command + data sequence

= Restore comparator interrupt state

= Display may still be corrupted by erasing newly plotted pixels

= As with 1.0, detection latency can be as long as erase time. Break

screen into tiles? Still have problems

25 v3

NC STATE UNIVERSITY

Thread

LCD_Erase();

void LCD_Erase_Atomic() {

// Draw rectangle

LCD_Command(CASET, XMIN, XMAX)
LCD_Command(RASET, YMIN, YMAX)

n = (XMAX-XMIN + 1) * (YMAX-YMIN + 1)
LCD_Command(RAMWR, bg color, n)

Problems with Designs E.1, E.2

= LCDis shared by main thread and comparator
interrupt handler

= Shared resource bugs for LCD_Plot during
LCD_Erase

= High-level sharing (independent of LCD
communication)

= Problem: want to erase everything but the new
trace

= Critical sections cover up to entire screen
= LCD_Erase: all pixels in each column
= LCD_Plot: one pixel in each column
= Low-level sharing (LCD controller interface)

= Critical sections: Complete command sequence
(CASET + data, RASET + data, RAMWR + data)

26 v3

NC STATE UNIVERSITY

Both designs prevent corruption of LCD
communication and display contents

But probably not good enough for scope
= Scope triggering is time-critical (real-time system)

~ —]
Bde/ Less Bad Bad

So try Solution(?) 1.3 despite complexity
= When ISR runs, acquire data but don’t plot it yet.
= Need to save data, trigger other code to run and
plot it => More for the Sync and Comm To Do List

NC STATE UNIVERSITY

F: Hardware & OS Help: Comparator Interrupt, Deferred Plotting

CMP Buffer =———p
—p>
Z
™ > W

= _[: —r>{Int. Sys. N N
T

\An

Erase®
Trigger = What about retriggering while plotting?

= Synchronize: Comparator detects trigger,
requests interrupt

= Schedule & Dispatch: Interrupt System
Plot Data

= Synchronize: Test integrated w/ thread

= Schedule & Dispatch: Integrated w/ thread
Erase

= Synchronize: Test integrated w/ thread

= Schedule & Dispatch: Integrated w/ thread

27 v3

= Synchronize by having CMP ISR do work if
thread is done plotting data
()

Consequences

= Skip disabling interrupts for safe LCD
interfacing

= Skip dividing up LCD_Erase for better
responsiveness

= More delay to plot trace on LCD; only after
all samples are acquired

CMP Interrupt Handler

for (n=0; n<NS; n++) {
Buffer[n] = ADC->Result;
}

Thread

for (x=n=0; n<NS; n++) {
y = scale(Buffer[n]);
LCD_Plot(x++, y);

}

LCD_Erase();

G: Precise, Adjustable Sample Timing

NC STATE UNIVERSITY

. W
% CMP -’Tlmer = Buffer
= W > W W
% _[: __r¥{Int. Sys. Int. Sys. N
\An ——1
Timer Interrupt Handler
Erase¥ Buffer[n_is++] =
ADC->Result;

= Trigger: Comparator Interrupt Handler
= Synchronize: Comparator detects trigger,
requests interrupt
= Sample Data: Timer Interrupt Handler
= Synchronize: Timer requests interrupt
= Plot Data
= Synchronize: Integrated w/ thread
= Erase
= Synchronize: Integrated w/thread
= What about retriggering while plotting?
= Test NewDAcgDone in trigger detection
(CMP) interrupt handler

28 v3

= Consequences

= No need to disable interrupts for LCD safety

or divide LCD_Erase for responsiveness

= More delay to plot trace on LCD; only after all

samples are acquired

// input sample number
volatile int n_is=0;

CMP Interrupt Handler

n_is = 0
Start timer

Stop timer

Thread

for (X=n=0; n<NS; n++) {
y = scale(Buffer[n]);
LCD_Plot(x++, y);

}

LCD_Erase();

SW

HW

H: Sample Data with Timer-Driven DMA

vl

Erase®

CMP

__¥|Int. Sys. J

|

NC STATE UNIVERSITY

Buffer

DMA

—

Int. Sys.

[~

= Trigger Detection

29

= Synchronize: Comparator detects trigger,
requests interrupt

Sample Data

= HW: DMA transfers from ADC to Buffer
Plot Data

= Synchronize: Integrated with thread
Erase

= Synchronize: Integrated with thread
What about retriggering during plotting?

= SameasF G

v3

= Consequences

Responsiveness from trigger condition to
start of sampling is limited by interrupt

latency
In affordable systems, sample rate is
limited by ADC

CMP Interrupt Handler

Start timer

DMA Interrupt Handler
Stop timer

Thread

for (x=n=0; n<NS; n++) {
y = scale(Buffer[n]);
LCD_Plot(x++, y);

}

LCD_Erase();

