
1 v2

17:

WaveGen: Loosening Timing Requirements,

Interfering Less with Other Processing

v2

2 v2

Overview of Waveform Generator Design Evolution: What and Why
A. Task software busy-waits

blindly, then writes to DAC

E2. Empty/Low ISR writes next batch of data to N-entry buffer,

Timer advances data from buffer to DAC.

D. Timer ISR writes next datum to 1-entry buffer,

Timer advances data from buffer to DAC

C. Timer ISR writes next datum to DAC

B. Task software poll/blocks on

timer, then writes to DAC

F. Timer triggers DMA data transfer,

DMA ISR writes data to buffer

G. Timer triggers DMA

with double-buffering,

DMA ISR switches buffers

and refills with data

H. Timer triggers DMA,

DMA ISR writes urgent data

to buffer and triggers task to

write rest of data

A2. OS-triggered periodic task

software writes to DAC

Reduce timing

interference to other

SW processing

E. Timer ISR writes next datum to N-entry buffer,

Timer advances data from buffer to DAC.

Improve output

timing stability

Loosen refill deadline

Allow faster output

update rates

Allow faster output

update rates

Reduce timing interference

to other SW processing

Loosen refill

deadline

Share CPU core better,

reducing timing interference to

other SW processing

Loosen refill deadline

3 v2

Detailed Overview of What and Why
A. Task software

writes to DAC

Use N-deep DAC

input buffer

Use 1-deep

DAC input buffer

C. Timer ISR writes next data to DAC

B. Task software poll/blocks on

timer, then writes to DAC

And add DMA with ISR,

software buffer

F. Timer triggers DMA data transfer,

DMA ISR writes data to buffer

G. Timer triggers DMA

with double-buffering,

DMA ISR switches buffers

and refills with data

Split into double-buffer to ease first

sample’s deadline and cuts ISR

duration in half.

H. Timer triggers DMA,

DMA ISR writes urgent data

to buffer and triggers task to

write rest of data

Move non-urgent

work to task

Output timing bad: Very unstable, vulnerable to other

software (processes and handlers), timing errors

accumulate. Greedy, doesn’t share CPU.

Output timing better: Tolerates more

interference, vulnerable to processes and

handlers, errors don’t accumulate. Greedy, doesn’t

share CPU. Tight deadline: TSample

Output timing: Even better.

Vulnerable to preemption and blocking fsample times/sec

Tight deadline: TSample

Deadline better: 2TSample

Interrupt overhead for each

sample wastes CPU time.

1.Tight Deadline: ISR must write first new

sample to buffer within TSample

2. Long DMA ISR is delays other processing too much

A2. OS-triggered periodic task

software writes to DAC

Add HW timer (tracks time accurately)

And add OS with ticks

from HW timer interrupts
And access HW

timer directly

Put code in HW timer’s ISR

Use low/empty ISR

with N-deep DAC input buffer

Interrupt overhead for each

sample wastes CPU time

Output timing better: Tolerates more

interference, vulnerable to processes and

handlers, errors don’t accumulate. Shares CPU.

Tight deadline: TSample

E2. Empty/Low ISR writes next batch of data to N-entry buffer,

Timer advances data from buffer to DAC.

D. Timer ISR writes next datum to 1-entry buffer,

Timer advances data from buffer to DAC

E. Timer ISR writes next datum to N-entry buffer,

Timer advances data from buffer to DAC.

4 v2

Software and Hardware Components in Design Evolution

D

VOut
Timer

ISR: Next

Sample

NVIC

E

VOut
Timer

ISR: Next

Sample

NVIC

E2

VOut

Timer

ISR: Refill

Buffer

NVIC

F

VOut

Timer

ISR:

Refill

Buffer

NVIC
DMA

Transfer One Sample

G

VOut

Timer

ISR: Switch

Buffers,

Refill Other

NVIC
DMA

Transfer One Sample

H

VOut

Timer

ISR: Start to

Refill Buffer

NVIC
DMA

Transfer One Sample

Run

later

General Trend: Move operations which need synchronization (update output, compute new value)
from software to hardware to improve stability, performance

Asynchronous Output: Output is updated by hardware,
so it is decoupled from (asynchronous with) software execution,

so sloppy software timing affects output timing less

DAC

DAC

A SW

HW VOut
DAC

A2

VOut

OS

Timer DAC

B

VOutTimer

Update

output

now?
DAC

C

VOut
Timer

ISR: Next

Sample

NVIC
DAC DAC

DAC

DAC

DAC

Synchronous Output: Software write to
hardware changes output, so sloppy timing

5 v2

LOOSENING DEADLINES

A

C

BA2

D

E

E2

F

G H

6 v2

Reminder of Recent Designs C & D

▪ C. Timer ISR
▪ Output update is still synchronous with software, since

write in ISR updates DAC

▪ Better timing stability because ISR has priority and can

preempt other code

▪ D. Timer triggers DAC to copy data from single

element buffer
▪ Output update is now asynchronous with software,

since timer signal updates DAC

▪ Much better timing stability because of wider write

timing window (Tsample), so easier to make software

meet it

▪ Improves timing stability by loosening deadlines. Can

extend this approach.

Ideal Output Update Time

Timer IRQ

CPU Activity

Write Timing Window

d4d3d2d1?Buffer Value

d4d4d3d2d1?DAC Value

DAC VOut

d6d5d4d3d2d1

d6d5d4d3d2d1?

d1 d2 d3 d4 d5 d6

Timer IRQ

CPU Activity

Write Timing Window

d4d3d2d1?DAC Code

DAC VOut

d1 d2 d3 d4 d5

DAC
VOut

Timer

ISR:

Next

Sample

NVIC

DAC
VOut

Timer

ISR:

Next

Sample

NVIC

Update DAC

A

C

BA2

D

E

E2

F

G H

7 v2

E. Add N-Item Buffer for DAC, Interrupt per Sample

▪ Extend buffer to multiple-entry queue, aka FIFO (first-in, first-out)

▪ Note: is part of peripheral hardware design. More likely to be available in higher-performance peripherals.

Timer ISR {
 compute next sample
 write sample to buffer
}

Timer Overflow

Buffer IRQ

CPU Activity

Write Timing

Windows

DAC Code ? d1 d2 d3 d4

DAC VOut ?

d1 d2 d3 d4 d5

One interrupt

per sample

Deadline window is N * TSample

VOut
Timer

ISR:

Next

Sample

NVIC N entries

DAC

Data ready

Data ready

Data ready

Data ready

Data ready

A

C

BA2

D

E

E2

F

G H

8 v2

Sequence Diagram

VOut
Timer

ISR:

Next

Sample

NVIC
DAC

9 v2

Concepts: Buffering Data for an Asynchronous Output

▪ Is example of Asynchronous I/O

▪ Output data samples are generated when ISR runs

▪ DAC output changes when timer signal triggers
update

▪ Async I/O requires storing data temporarily

▪ From producer generating the data (timer ISR)

▪ Until consumer reads the data for use (timer overflow
signal triggers DAC)

▪ Inherent limitations of buffering

▪ Delays when data reaches output signal

▪ Buffering and requires pre-computation, so not
possible if outputs depend on future unknown data
(e.g. control system)

▪ Producer, consumer must synchronize buffer
accesses

▪ Producer: don’t add data if buffer is full

▪ Consumer: don’t read data if buffer is empty

▪ Both: don’t interfere with each other’s buffer accesses.

▪ Some buffer implementations have critical sections of
code which must be protected

▪ Need deeper buffers as producer, consumer timing
characteristics diverge

▪ Timing tolerance mismatches:

▪ Producer runs once per 100 us, but within 100 us
window, so has timing jitter of up to 100 us

▪ Output allows much less timing jitter (e.g. 10 us)

▪ Peak data rate mismatch:

▪ Producer’s maximum rate > consumer’s maximum rate

▪ Timing uncertainty from blocking and preemption:

▪ Consumer may not get run enough for unknown range
of times (jitter for task completion time)

Producer Consumer

10 v2

Reminder of Design F. Use Timer-Triggered DMA to Transfer Data
DMA ISR {
 Restart DMA channel
 Compute new data and refill buffer
}

Timer Overflow

DMA IRQ

CPU Activity

Write Timing Window

DMA Activity

DAC Code ? d1 d2 d3 d4

DAC VOut

ISR must save first new data
value d5 before next sample time

d 1 d2 d3 d4 d5 d6 d7 d8

DAC
VOut

Timer

ISR:

Refill

Buffer

NVIC

DMA
Transfer One Sample

A

C

BA2

D

E

E2

F

G H

11 v2

▪ Behavior

▪ CPU (producer) adds data to fill buffer

▪ DMA (consumer) reads data items

▪ Data item in buffer is not needed (old, stale) after
being read by consumer

▪ Producer (Thread_Refill_Sound_Buffer) must stay
ahead of consumer (DMA controller)

▪ Behavior after DMA transfers last data item

▪ DMA generates interrupt request

▪ ISR contains producer

▪ Must refill 1st buffer entry within TSample, 2nd entry
within 2*TSample, etc.

▪ First deadline may be too tight to meet easily

Examining Timing Requirements for Buffer Refill

Location of item

read by DMA

First buffer item

Last buffer item

50 µs deadline

Time

50 µs deadline

F
il
l

F
il
l

F
il
l

Producer: CPU

Consumer: DMA

12 v2

▪ Use two buffers, each half-size (N = 4 entries)

▪ Initialization
▪ Start filling buffer 0

▪ Can start playing buffer 0 after it has ≥1 sample

▪ After buffer 0 is filled, start filling buffer 1

▪ Operation: After playing last sample from buffer 0,
▪ Switch to playing buffer 1

▪ Start refilling buffer 0

▪ Generalization
▪ After playing last sample from buffer x, switch to playing

buffer y, start filling buffer x

▪ Deadlines
▪ Now have two deadlines, one per buffer 

▪ Much looser deadlines: extended to from TSample to

(N+1)*TSample ☺

Loosening Timing Requirements with Double-Buffering

Item read

by DMA

Buffer 0, first item

Buffer 0, last item

5*50 µs deadline

Buffer 1, first item

Buffer 1, last item

5*50 µs deadline

5*50 µs deadline

F
il
l

B
u

ff
. 0

F
il
l

B
u

ff
. 1

F
il
l

B
u

ff
. 0

F
il
l

B
u

ff
. 1

F
il
l

B
u

ff
. 0

Time

A

C

BA2

D

E

E2

F

G H

Consumer: DMA

Producer:

CPU

13 v2

G. DMA with Double Buffering

DAC
VOut

Timer

ISR:

Switch Buffers,

Refill Other

NVIC

DMA
Transfer One Sample

int rbn = 0; // reader’s buffer number
uint16_t buffer[2][1024];
Initialization code prefills buffer[0]

DMA IRQ Handler {
 old_bn = rbn;
 rbn = 1 – rbn; // Switch buffers
 Restart DMA with buffer[rbn]
 Refill buffer[old_bn]
}

14 v2

REDUCE TIMING INTERFERENCE FOR OTHER SW
PROCESSING (SHARE CPU BETTER)

15 v2

Overview of Waveform Generator Design Evolution: What and Why
A. Task software busy-waits

blindly, then writes to DAC

E2. Timer advances data from buffer to DAC.

Low/Empty ISR writes next batch of data to buffer

D. Timer advances data from buffer to DAC,

Timer ISR writes next datum to buffer

C. Timer ISR writes next datum to DAC

B. Task software poll/blocks on

timer, then writes to DAC

F. Timer triggers DMA data transfer,

DMA ISR writes data to buffer

G. Timer triggers DMA

with double-buffering,

DMA ISR switches buffers

and refills with data

H. Timer triggers DMA,

DMA ISR writes urgent data

to buffer and triggers task to

write rest of data

A2. OS-triggered periodic task

software writes to DAC

Reduce timing

interference to other

SW processing

E. Timer advances data from buffer to DAC.

Timer ISR writes next datum to buffer

Improve output

timing stability

Loosen refill deadline

Allow faster output

update rates

Allow faster output

update rates

Reduce timing interference

to other SW processing

Loosen refill

deadline

Share CPU core better,

reducing timing interference to

other SW processing

16 v2

Detailed Overview of What and Why
A. Task software

writes to DAC

E2. Timer advances data from buffer to DAC.

Low/Empty ISR writes next batch of data to buffer

Use N-deep DAC input

buffer with low/empty ISR

D. Timer advances data from buffer to DAC,

Timer ISR writes next data to buffer

Use 1-deep

DAC input buffer

C. Timer ISR writes next data to DAC

B. Task software poll/blocks on

timer, then writes to DAC

And add DMA with ISR,

software buffer

F. Timer triggers DMA data transfer,

DMA ISR writes data to buffer

G. Timer triggers DMA

with double-buffering,

DMA ISR switches buffers

and refills with data

Split into double-buffer to ease first

sample’s deadline and cuts ISR

duration in half.

H. Timer triggers DMA,

DMA ISR writes urgent data

to buffer and triggers task to

write rest of data

Move non-urgent

work to task

Output timing bad: Very unstable, vulnerable to other

software (processes and handlers), timing errors

accumulate. Greedy, doesn’t share CPU.

Output timing better: Tolerates more

interference, vulnerable to processes and

handlers, errors don’t accumulate. Greedy, doesn’t

share CPU. Tight deadline: TSample

Output timing: Even better.

Vulnerable to other ISRs and interrupt

locking fsample times per second

Tight deadline: TSample

Deadline better: 2TSample

Interrupt overhead for each

sample wastes CPU time.

1.Tight Deadline: ISR must write first new

sample to buffer within TSample

2. Long DMA ISR is delays other processing too much

A2. OS-triggered periodic task

software writes to DAC

Add HW timer (tracks time accurately)

And add OS with ticks

from HW timer interrupts
And access HW

timer directly

Put code in HW timer’s ISR

E. Timer advances data from buffer to DAC. Timer

ISR writes next data to buffer

Add N-deep DAC input

buffer with low/empty ISR

Interrupt overhead for each

sample wastes CPU time

Output timing better: Tolerates more

interference, vulnerable to processes and

handlers, errors don’t accumulate. Shares CPU.

Tight deadline: TSample

17 v2

Timer Overflow

Buffer IRQ

CPU Activity

Write Timing

Windows

DAC Code ? d1 d2 d3 d4

DAC VOut ?

E2. DAC Buffer Generates Interrupt Only When Buffer is Empty

▪ Reduce timing interference to other processing by generating fewer interrupts. Burst/batch processing

▪ Divides number of interrupts by buffer size

d1 d2 d3 d4 d5 d6 d7 d8

DAC
VOut

Timer

ISR: Refill

Buffer

NVIC

DAC Buffer ISR {
 while (buffer not full) {
 compute next sample
 write sample to buffer
 }
}

Deadline window is N * TSample

d1 ready
d2 ready

d3 ready
d4 ready

A

C

BA2

D

E

E2

F

G H

18 v2

Sequence Diagram

DAC
VOut

Timer

ISR: Refill

Buffer

NVIC

19 v2

Timer Overflow

Buffer IRQ

CPU Activity

Write Timing

Windows

DAC Code ? d1 d2 d3 d4

DAC VOut ?

Tighter Timing Requirements for Refilling Buffer

▪ First sample has deadline of TSample

▪ Second sample has deadline of 2*TSample

▪ Third sample has deadline of 3*TSample

▪ Deadline is shorter than window because interrupt occurs late – when last sample is read

▪ Same as problem with DMA design F (solved F with double buffering in G)

▪ Can DAC Buffer give us an early warning interrupt before the buffer is full?

d1 d2 d3 d4 d5 d6 d7 d8

Deadline window is N * TSample

d1 ready
d2 ready

d3 ready
d4 ready

A

C

BA2

D

E

E2

F

G H

20 v2

Timer Overflow

Buffer IRQ

CPU Activity

Write Timing

Windows

DAC Code ? d1 d2 d3 d4

DAC VOut ?

E3. DAC Buffer Generates Interrupt when Buffer is ¾ Empty

▪ Interrupt occurs (N/4)*Tsample earlier

▪ Deadline to refill first entry is now (1+N/4)*TSample

▪ Make sure that none of the last N/4 samples are overwritten

▪ Must synchronize within the ISR to the DMA. Put on Sync To Do List

d1 d2 d3 d4

DAC
VOut

Timer

ISR:

Refill

Buffer

NVIC

DAC Buffer ISR {
 while (buffer not full) {
 compute next sample
 write sample to buffer
 }
}

Deadline window is N * TSample

d1 ready d5 ready
d2 ready d6 ready

d3 ready d7 ready
d4 ready d8 ready

d5 d6 d7 d8

A

C

BA2

D

E

E2

F

G H

21 v2

H. Split Work into Urgent and Deferred

▪ When refill buffer ISR runs, it can delay ISRs (with same or lower priority) and all threads
▪ Want to reduce time spent in ISR to improve responsiveness for other software processing

▪ Observation: Don’t need to refill entire buffer in ISR
▪ Refilling first sample in buffer is highest urgency

▪ Lower urgency for second, even lower for third…

▪ Procrastinate!
▪ Change ISR to refill N most urgent samples (e.g. 1 & 2), and request thread to finish the work

▪ Defer remaining BUFSIZE – N samples (e.g. 3 & 4) for thread to refill

▪ Depends on some form of thread scheduler to run the refill thread

ISR {
 do urgent work now
 request deferred proc’g for rest of work
}

thread_Deferred_Work {
 do remaining work
}

DAC
VOut

Timer

ISR:

Start to

Refill Buffer

NVIC

DMA
Transfer One Sample

Run

later

A

C

BA2

D

E

E2

F

G H

22 v2

Sequence Diagram

DAC
VOut

Timer

ISR:

Start to

Refill Buffer

NVIC

DMA
Transfer One Sample

Run

later

23 v2

SUMMARY

24 v2

Implementation Analysis
A. Task busy-waits for constant time (blind), then writes

to DAC

E2. Timer advances buffer data to DAC. Low/Empty ISR

writes next batch of data to buffer

D. Timer advances buffer data to DAC, Timer ISR writes

next data to buffer

C. Timer ISR writes data to DAC

B. Task software poll/blocks on timer, then writes to

DAC

F. Timer triggers DMA data transfer, DMA ISR writes

next batch of data to buffer

G. Timer triggers DMA transfer, DMA ISR switches

buffers and writes next batch of data to previous buffer

H. Timer triggers DMA transfer, DMA ISR writes urgent

data to buffer, triggers task. Task writes rest of data batch

A2. OS runs task periodically, task writes to DAC

E. Timer advances buffer data to DAC. Timer ISR writes

data to buffer

25 v2

Implementation Comparison
Issue A. SW ->

DAC
B. SW Polls
Timer

C. Timer ISR D. Add
single DAC
buffer

E. Multi-
Entry DAC
Buffer

F. DMA
Transfer

G. Double
Buffering

H. Defer
Some Work

CPU Sharing Greedy Greedy Good

Time Tracking SW fixed
busy-wait
delay loop

SW polls HW
timer

HW timer

Resynch on
next sample?

No Yes Yes

Vulnerable to
other tasks

Yes Yes No

Vulnerable to
ISRs, Handlers

Yes Yes Only higher-
priority

Width of timing
window

TCPU TCPU TCPU Tsample

Relative
Deadline: from
notification
until updating
first sample in
buffer

Tsample

26 v2

DIGITAL TO ANALOG CONVERTER

27 v2

DAC Overview

▪ Load DACDAT with 12-bit data N

▪ MUX selects a node from resistor divider network to create
 Vo = (N+1)*Vin/212

▪ Vo is buffered by output amplifier to create Vout

▪ Vo = Vout but Vo is high impedance - can’t drive much of a load, so need to buffer it

28 v2

DAC Registers

▪ This peripheral’s registers are only eight
bits long (legacy peripheral).

▪ DATA[11:0] stored in two registers
▪ DATA0: Low byte [7:0] in DACx_DATnL

▪ DATA1: High nibble [11:0] in DACx_DATnH

29 v2

DAC Control Register 0: DACx_C0

▪ DACEN - DAC Enabled when 1

▪ DACRFS - DAC reference voltage select

▪ 0: DACREF_1. Connected to VREFH

▪ 1: DACREF_2. Connected to VDDA

▪ LPEN - low-power mode

▪ 0: High-speed mode. Fast (15 us settling
time) but uses more power (up to 900 uA
supply current)

▪ 1: Low-power mode. Slow (100 us settling time) but more power-
efficient (up to 250 uA supply current)

▪ Additional control registers used for buffered mode

30 v2

M
u
x

DAC Operating Modes

▪ Normal
▪ Value written to DACDAT is converted to voltage immediately

▪ Buffered mode eases timing requirements
▪ Value written to DACDAT is stored in data buffer for later

conversion

▪ Next data item is sent to DAC when triggered

▪ Software Trigger - write to DACSWTRG field in DACx_C0

▪ Hardware Trigger - from PIT timer peripheral

▪ Normal Mode: Circular buffer

▪ One-time Scan Mode: Pointer advances, stops at end of buffer

▪ Status flags in DACx_SR

Overflow

d
ata re

g 1

Timer (PIT)

d
ata re

g 0

31 v2

DAC Control Register 1: DACx_C1

▪ DACBFEN
▪ 0: Disable buffer mode

▪ 1: Enable buffer mode

▪ DACBFMD - Buffer mode select
▪ 0: Normal mode (circular buffer)

▪ 1: One-time scan mode

32 v2

Direct Memory Access (DMA) Controller

33 v2

DMA Can Read and Write Memory and Peripheral Registers

Analog

Analog Comparator

12-bit DAC

Internal Voltage Reference

16-bit DAC

Timers

PWM

Low-Power Timer

Periodic Interrupt Timers

Real-Time Clock

HMI

GPIO

Touch-Sensing

Memories

Communications

I2C

SPI

UART

Flex IO

USB OTG

I2S

DMA Controller

ARM® Cortex®-M0+ Core

High-Speed System Bus

Bridge

Peripheral Bus

Ch 0 Ch 1 Ch 2 Ch 3

34 v2

Basic Concepts

▪ Memory copy machine built from hardware

▪ Reads data from source, writes it to destination

▪ Can eliminate ISRs which just copy data (e.g. copy ADC

results into buffer)

▪ Key configurable options

▪ What event starts a transfer: software or hardware triggers

▪ Source and destination addresses, which can be fixed or

change (e.g. increment, decrement)

▪ Number of data items to copy

▪ Size of data item (1, 2, 4 bytes)

▪ More features too: chaining, error handling…

▪ Sequence of operations

▪ Initialization: Configure controller

▪ Transfer: Data is copied

▪ Termination: Channel indicates transfer has completed

(status flag, interrupt request, DMA request)

Address Modification
Data Transfer Behavior

Source Destination

fixed fixed Write value from fixed source location

into fixed destination location

changes changes Copy values from source array to

destination array

fixed changes Write value from fixed source location

into array

changes fixed Write array contents to fixed

destination location

35 v2

DMA Controller Details

▪ 4 independent channels

▪ Channel 0 has highest priority

▪ 8-, 16- or 32-bit transfers,

▪ Data size can differ between source

and destination

▪ Circular/ring buffer support

▪ “Address Modulo:” address wraps

around at end of buffer

▪ Buffer sizes from 64 B to 256 kB (2N
)

▪ DMA MUX peripheral selects

hardware signal for triggering

▪ How many data items are transferred per trigger?

▪ One: “Cycle stealing”

▪ All items: grabs bus

▪ Hardware acknowledge/done signal

36 v2

Address Registers

▪ These registers determine from where the DMA will read its data, and to where it will write that data

▪ DMA_SARn

▪ Source address register,

▪ Valid values 0 to 0x000f ffff

▪ DMA_DARn

▪ Destination address register

▪ Valid values 0 to 0x000f ffff

37 v2

Byte Count Register

▪ BCR: Bytes remaining to transfer

▪ Decremented by 1, 2 or 4 after completing write (determined by destination data size)

38 v2

Status Register/Byte Count Register DMA_DSR_BCRn

▪ Status flags: 1 indicates error

▪ CE: Configuration error

▪ BES: Bus error on source

▪ BED: Bus error on destination

▪ REQ: A transfer request is pending (more transfers to perform)

▪ BSY: DMA channel is busy

▪ DONE: Channel transfers have completed or an error occurred. Clear this bit in an ISR.

39 v2

DMA Control Register (DMA_DCRn)

▪ EINT: Enable interrupt on transfer completion

▪ ERQ: Enable peripheral request to start transfer

▪ CS: Cycle steal

▪ 0: Greedy - DMA makes continuous transfers until BCR == 0

▪ 1: DMA shares bus, performs only one transfer per request

▪ AA: Autoalign

40 v2

DMA Control Register (DMA_DCRn)

▪ EADRQ – Enable asynchronous DMA requests when

MCU is in Stop mode

▪ SINC/DINC – Increment SAR/DAR by 1,2 or 4

based on size of data

▪ SSIZE/DSIZE – Source/Destination data size.

▪ Don’t need to match – controller will perform extra

reads or writes as needed (e.g. read one word, write

two bytes).

▪ 00: longword (32 bits)

▪ 01: byte (8 bits)

▪ 10: word (16 bits)

▪ START – Write 1 to start transfer

41 v2

DMA Control Register (DMA_DCRn)

▪ SMOD, DMOD – Source/Destination address

modulo
▪ When non-zero, supports circular data buffer – address

wraps around after 2n+3 bytes (16 bytes to 64 kilobytes)

▪ When zero, circular buffer is disabled

▪ D_REQ: If 1, then when BCR reaches zero, channel

will clear ERQ bit, preventing further hardware

triggers of channel

▪ LINKCC: Enables this channel to trigger another

channel
▪ 00: Disabled

▪ 01: Two stages:
▪ Link to channel LCH1 after each cycle-steal transfer

▪ Link to channel LCH2 after BCR reaches 0

▪ 10: Link to channel LCH1 after each cycle-steal transfer

▪ 11: Link to channel LCH1 after BCR reaches 0

▪ LCH1, LCH2: Values 00 to 11 specify linked DMA

channel (0 to 3)

42 v2

Trigger Sources

▪ A variety of peripherals can trigger

DMA activity

▪ Trigger sources are chip-specific, so

see KL25 Sub-Family Reference

Manual (rev. 1), Chapter 3 - Chip

Configuration, Section 3.4.8.1 DMA

MUX Request Sources

Source # Module Description

0 - Disabled

2-7 UART0,1, 2 Receive, Transmit

16-19 SPI0, 1 Receive, Transmit

22-23 I2C0, 1

24-29 TPM0 Channels 0-5

32-35 TPM1-2 Channels 0-1

40 ADC0

42 CMP0

45 DAC0

49-53 Port Control Module Port A-E

54-56 TPM0-2 Overflow

57 TSI

60-63 DMAMUX Always enabled

43 v2

Triggering DMA Activity Using Peripherals

▪ Can use trigger events from peripherals to start DMA transfer

▪ Upon triggering, DMA can perform:

▪ One transfer (cycle steal mode)

▪ All transfers until BCR == 0 (continuous mode)

▪ DMA Multiplexer (DMAMUX)

▪ Selects which source will trigger a DMA channel

▪ Each DMA channel n has a configuration register

DMAMUX_CHCFGn

▪ ENBL: Enable DMA channel

▪ TRIG: Enables triggering of DMA channel

▪ SOURCE: Selects triggering source

44 v2

Diagrams

To Do

• Review development flow – when

does scheduler appear?

• Use same set of compute output

data durations (d1-d5)

• Complete diagrams

• When to introduce task switching

overhead?

• Complete text notes per slide

• (Convert diagrams from

horizontal to vertical HW/SW

split?)

45 v2

Task switching overhead

Interrupt entry/exit overhead

Compute next output value

Wait for Done. Sync. w/ timer

Write output value

Timer Overflow

Buffer IRQ

CPU Activity

Write Timing Window

DAC Code ? d1 d2 d3 d4

DAC VOut

d1 d2 d3 d4 d5 d6 d7 d8

46 v2

N-Entry DAC Buffer with Empty Interrupt

Task switching overhead

Interrupt entry/exit overhead

Compute next output value

Wait for Done. Sync. w/ timer

Write output value

Timer Overflow

Buffer IRQ

CPU Activity

Buffer Write Timing

Windows and

Contents

DAC Code ? d1 d2 d3 d4

DAC VOut

d5 d6 d7 d8

d1

d2

d3

d5

d6

d7

d8d4

d1 d2 d3 d4

47 v2

Task switching overhead

Interrupt entry/exit overhead

Compute next output value

Wait for Done. Sync. w/ timer

Write output value

Timer Overflow

Buffer IRQ

CPU Activity

Write Timing Window

DAC Code ? d1 d2 d3 d4

DAC VOut

d1 d2 d3 d4 d5 d6 d7 d8

d1 d2 d3 d4 d5

48 v2

Template for Software and Hardware Components and Timing

Timer → DMA Trigger

DMA IRQ

CPU Activity: ISR

ISR →Task Trigger

CPU Activity: Task

Buffer A Timing Window

Buffer A

Buffer B Timing Window

Buffer B

DAC Code

DAC VOut

Task switching overhead

Interrupt entry/exit overhead

Compute next output value

Write output value

49 v2

Software and Hardware

Timer

ISR

DMA DACTask

event

SoundBuffer

DACTask

DACTask

Timer

50 v2

Shield Audio Software and Hardware Architecture

Timer

ISR

DMA DACTask

event

SoundBuffer

51 v2

Voice_mutex

Shield Audio Software and Hardware Architecture

TPM

DMA

ISR

DMA DAC

Refill

Sound

Buffer

Sound

Manager

EV_REFILL_

REMAINING_SB

EV_REFILL_

ENTIRE_SB

Speaker

Voice

SoundBuffer

52 v2

ROUGH DIAGRAMS FROM ECE 560, MONDAY 9/23/24

53 v2

A. Simple Starter Code

54 v2

55 v2

	Default Section
	Slide 1: 17: WaveGen: Loosening Timing Requirements, Interfering Less with Other Processing
	Slide 2: Overview of Waveform Generator Design Evolution: What and Why
	Slide 3: Detailed Overview of What and Why
	Slide 4: Software and Hardware Components in Design Evolution

	Loosening Deadlines
	Slide 5: Loosening Deadlines
	Slide 6: Reminder of Recent Designs C & D
	Slide 7: E. Add N-Item Buffer for DAC, Interrupt per Sample
	Slide 8: Sequence Diagram
	Slide 9: Concepts: Buffering Data for an Asynchronous Output
	Slide 10: Reminder of Design F. Use Timer-Triggered DMA to Transfer Data
	Slide 11: Examining Timing Requirements for Buffer Refill
	Slide 12: Loosening Timing Requirements with Double-Buffering
	Slide 13: G. DMA with Double Buffering

	Timing Interference
	Slide 14: Reduce Timing Interference for Other SW Processing (Share CPU better)
	Slide 15: Overview of Waveform Generator Design Evolution: What and Why
	Slide 16: Detailed Overview of What and Why
	Slide 17: E2. DAC Buffer Generates Interrupt Only When Buffer is Empty
	Slide 18: Sequence Diagram
	Slide 19: Tighter Timing Requirements for Refilling Buffer
	Slide 20: E3. DAC Buffer Generates Interrupt when Buffer is ¾ Empty
	Slide 21: H. Split Work into Urgent and Deferred
	Slide 22: Sequence Diagram

	Summary
	Slide 23: Summary
	Slide 24: Implementation Analysis
	Slide 25: Implementation Comparison

	DAC Intro
	Slide 26: Digital to Analog Converter
	Slide 27: DAC Overview
	Slide 28: DAC Registers
	Slide 29: DAC Control Register 0: DACx_C0
	Slide 30: DAC Operating Modes
	Slide 31: DAC Control Register 1: DACx_C1

	DMA Intro
	Slide 32: Direct Memory Access (DMA) Controller
	Slide 33: DMA Can Read and Write Memory and Peripheral Registers
	Slide 34: Basic Concepts
	Slide 35: DMA Controller Details
	Slide 36: Address Registers
	Slide 37: Byte Count Register
	Slide 38: Status Register/Byte Count Register DMA_DSR_BCRn
	Slide 39: DMA Control Register (DMA_DCRn)
	Slide 40: DMA Control Register (DMA_DCRn)
	Slide 41: DMA Control Register (DMA_DCRn)
	Slide 42: Trigger Sources
	Slide 43: Triggering DMA Activity Using Peripherals

	Diagrams
	Slide 44: Diagrams
	Slide 45
	Slide 46: N-Entry DAC Buffer with Empty Interrupt
	Slide 47
	Slide 48: Template for Software and Hardware Components and Timing
	Slide 49: Software and Hardware
	Slide 50: Shield Audio Software and Hardware Architecture
	Slide 51: Shield Audio Software and Hardware Architecture

	First Diagrams
	Slide 52: Rough Diagrams from ECE 560, Monday 9/23/24
	Slide 53: A. Simple Starter Code
	Slide 54
	Slide 55

