NC STATE UNIVERSITY

| 7:

WaveGen: Loosening Timing Requirements,
Interfering Less with Other Processing

v2

Overview of Waveform Generator Design Evolution: What and Why

A.Task software busy-waits Share CPU core better,
blindly, then writes to DAC reducing timing interference to

Improve output

timing stability
/ Allow faster output T P,
Sbddkcli e FETimer triggers DMA data transfer, [T
A2. OS-triggered periodic task B.Task software poll/blocks on DMA ISR writes data to buffer
software writes to DAC timer, thendwrites to DAC

b

Loosen refill
deadline

\
» 4

[C.Timer ISR writes next datum to DAC

Reduce timing
interference to othe
W processing
H.Timer triggers DMA,
DMA ISR writes urgent data |[]

to buffer and triggers task to
write rest of data

I Loosen refill deadline

G.Timer triggers DMA
D. Timer ISR writes next datum to |-entry buffer,} with double-buffering,

Timer advances data from buffer to DAC DMA ISR switches buffers

and refills with data

[1]

1 Loosen refill deadline

N
E.Timer ISR writes next datum to N-entry buffer,

Timer advances data from buffer to DAC.

Allow faster output Reduce timing interference
update rates to other SW processing

1T E2. Empty/Low ISR writes next batch of data to N-entry buffer,
Timer advances data from buffer to DAC.

NC STATE UNIVERSITY

Detailed Overview of VWhat and

A.Task software

Output timing bad: Very unstable, vulnerable to other writes to DAC

software (processes and handlers), timing errors ——
accumulate. Greedy; doesn’t share CPU. AddHW timer(tracks-time-aeenraiely) And-add-DMAWith ISK.
from HW timer interrupts : :
timer directly
A2. OS-triggered periodic task B.Task software poll/blocks on FTimer triggers DMA data transfer,
software writes to DAC timer, then writes to DAC DMA ISR writes data to buffer
. Output timing better: Tolerates morc\ Atput timing better: Tolerates more I T rite first new
interference, vulnerable to processes and Pat.code in HW timer’sdSR™ interference, vulnerable to processes and ' T
handlers, errors ‘don’t accumulate. Shares CPU. V handlers, errors don’t accumulate. Greedy, doesp Sample
Tight deadline: T,y : ' ine: ’ er processing too much
’ LC.Timer ISR writes next data to DAC Sh}"e CPU.Tight deadline:Tgqnpe processing u
Outp

Vulnerable to pre Move non-urgent

iming: Even better. et rteeb

tion and blocking f, times/sec >° TUEEP
P sample DAC input buffer sample’s deadjfhe and cuts ISR
work to task

ight deadline:T,,, .
¢ sampt durgyfon in half.

Timer advances data from buffer to DAC

[D. Timer ISR writes next datum to |-entry buffer,

H.Timer triggers DMA,
DMA ISR writes urgent data
to buffer and triggers task te
write rest of data

G.Timer triggers DMA
with double-buffering,
DMA ISR switches buffe
and refills with

Deadline better: 2T
Interrupt overhead for each Use N-deep DAC
sample wastes CPU time. input buffer

E.Timer ISR writes next datum to N-entry buffer,
Timer advances data from buffer to DAC.

Interrupt overhead for each Use low/empty ISR
sample wastes CPU time with N-deep DAC input buffer

[E2. Empty/Low ISR writes next batch of data to N-entry buffer,

Timer advances data from buffer to DAC.

NC STATE UNIVERSITY

Software and Hardware Components in Design Evolution

General Trend: Move operations which need synchronization (update output, compute new value)
from software to hardware to improve stability, performance

Synchronous Output: Software write to Asynchronous Output: Output is updated by hardware,
hardware changes output, so sloppy timing so it is decoupled from (asynchronous with) software execution,
(A so sloppy software timing affects output timing less

\

HW m D ISR: Next F ISR:
Sample TO Refill
Buffer
A2 I:I I: E Vo I . L}i{ }-—q
I [| |_>| Transfer One Sample
VOut
D E ISR: Next G ISR: Switch
Sample Buffers,
B Refill Othe
Vo
[:'_g [[‘IMED—% [| L)_IL — ngﬂ
- Transfer One Sample

E2 ISR: Refill H
ISR: Next Buffer rO ISR: Start to
r@ Refill Buffer

Sample :] v
\ I:I o VOut
\[l:'-r|—,-' Eﬁ% |_|_ [l [| |—>| %‘ne Sample QE'-._%

4 v2

O)
i
*g\

——/

NC STATE UNIVERSITY

LOOSENING DEADLINES

= C.Timer ISR
= Qutput update is still synchronous with software, since
write in ISR updates DAC
= Better timing stability because ISR has priority and can
preempt other code

ISR:
Next
Sample

Timer IRQ

CPU Activity
Write Timing Window

DAC Code

DACV,,,

NC STATE UNIVERSITY

ISR:
Next
Sample
VOut
Update DAC

Reminder of Recent Designs C & D

Timer IRQ
CPU Activity I I I I I
Write Timing Window d, d, d;
Buffer Value | ’ d, d, d;
DAC Value ? d, d,
DAC Vg, T

= D.Timer triggers DAC to copy data from single

element buffer

= Qutput update is now asynchronous with software,
since timer signal updates DAC

= Much better timing stability because of wider write
timing window (T), so easier to make software
meet it

= Improves timing stability by loosening deadlines. Can
extend this approach.

sample

NC STATE UNIVERSITY

E.Add N-ltem Buffer for DAC, Interrupt per Sample

Ja/ [7) ISR: Timer ISR {
Next compute next sample
Sample write sample to buffer
|
) — N entries Vv ;
[(=] I Ny Ou
: L

= Extend buffer to multiple-entry queue, aka FIFO (first-in, first-out)
= Note:is part of peripheral hardware design. More likely to be available in higher-performance peripherals.

Timer Overflow | | | | | One interrupt
Buffer IRQ | I]] e compic
CPU Activity o d)

| Data ready

. L | Data ready
Write Timing | Dataready

Windows S | __Data ready

Deadline window is N *anm,r,,,,

DAC Code ? d, d, d; d,
DAC Vg, 4

v

A

Sequence Diagram

ISR:
Next [
Sample \
|

= 3210 2|7 [¢

S &ﬂ_’ﬁ"&b' 'Z\iao 2ly[x| AW
\
Sl ——- =3
C J¢ |Z[Y X
9-”“@] _\Alpﬁzr

@u sl 2 /
7| 2.
\\"‘ C =)

’ \
8 2 ‘ L [¢« % \

NC STATE UNIVERSITY

Concepts: Buffering Data for an Asynchronous Output

= Producer, consumer must synchronize buffer
accesses
= Producer: don’t add data if buffer is full
= Consumer: don’t read data if buffer is empty

Is example of Asynchronous I/0O

« Output data samples are generated when ISR runs = Both: don’t interfere with each other’s buffer accesses.

= Some buffer implementations have critical sections of
code which must be protected

= Need deeper buffers as producer, consumer timing
characteristics diverge

= Timing tolerance mismatches:

= Producer runs once per 100 us, but within 100 us
window, so has timing jitter of up to 100 us

= DAC output changes when timer signal triggers
update

Async 1/O requires storing data temporarily
= From producer generating the data (timer ISR)

= Until consumer reads the data for use (timer overflow
signal triggers DAC)

= Inherent limitations of buffering = Qutput allows much less timing jitter (e.g. 10 us)
= Delays when data reaches output signal = Peak data rate mismatch:
= Buffering and requires pre-computation, so not = Producer’s maximum rate > consumer’s maximum rate
possible if outputs depend on future unknown data = Timing uncertainty from blocking and preemption:
(e.g. control system) = Consumer may not get run enough for unknown range

9 W2 of times (jitter for task completion time)

Remlnder of De5|gn F. Use Timer-Triggered DMA to Transfer Data

DMA ISR {

DAC Code ?
DACV,,,

ISR: b Restart DMA channel
Refill I"O_ﬁ Compute new data and refill buffer
_Buffer) }
— v ISR must save first new data
> : ' - value erore next sampie time
[ey [] <L lue d; bef t le ti
Transfer One Sample
v
Timer Overflow I [I /I /I /I
DMA IRQ | / / iR
. f (
CPU Activity [(d.d, d, d,] / | Mdd.o,q,
Write Timing Window \ \ NN
~N
DMA Activity L \}1
|

|
d, d, ‘!/ d, ‘!/ d,
i i

10 v2

NC STATE UNIVERSITY

Examining Timing Requirements for Buffer Refill

Q\&
Producer: CPU = /yfr = T
50 ps deadline 50 ps@sleadline
First buffer item s -
Location of item
read by DMA
Last buffer item
Consumer:DMA | | | | | | | @ 1 1 1 1 1 |
Time R
= Behavior = Behavior after DMA transfers last data item
= CPU (producer) adds data to fill buffer = DMA generates interrupt request
= DMA (consumer) reads data items = ISR contains producer
= Data item in buffer is not needed (old, stale) after = Must refill 15t buffer entry within Tg, ., 2" entry
being read by consumer within 2*Tg, ., etc.
= Producer (Thread_Refill_Sound_Buffer) must stay = First deadline may be too tight to meet easily

ahead of consumer (DMA controller)
11 v2

NC STATE UNIVERSITY

Loosening Timing Requirements with Double-Buffering

o — (=] — o
Producer: & E = g =
CPU @ @ @ @ @

Buffer 0, first item
5*50 us-d | < 5*50-us-deadli -
ltem read B tfer 0, last item -

by DMA
/ Buffer 1, first item 5*50 us d -
<€
Buffer I, last item]
Consumer:DMA | | | | [| | o 1 I © | | | 1 | |
= Use two buffers, each half-size (N = 4 entries) = Generalization Time
= |nitialization = After playing last sample from buffer x, switch to playing
= Start filling buffer 0 buffer y, start filling buffer x
= Can start playing buffer 0 after it has 2| sample » Deadlines

= After buffer O is filled, start filling buffer | = Now have two deadlines, one per buffer &

= Operation: After playing last sample from buffer 0, * Much looser deadlines: extended to from T, to
= Switch to playing buffer | (N+1)* Tmpie ©

= Start refilling buffer 0
12 w2

NC STATE UNIVERSITY

G. DMA with Double Buffer

G. DMA with Double Buffering

int rbn = @; // reader’s buffer number
uintl6_t buffer[2][1024];

| Computed 3 Iﬁ

Hardware Software Hardware
ISR: Direct Memory Interrupt Main Timer Buffer 0 Buffer 1
. ' Timer | | Access Controller Controller Thread ISR in Memory in Memory DAC
Switch Buffers, I I T I
Refill Other N
El El | | | Samples O0to1 27
] | | te DACith
- I;| ‘|:| Vo, ~ | 5 [Update ith d
—> ’ ! fu {L» - Suspgnd_ . [l Update DACKRith d 1
Transfer One Sample > > | >
tart handlgr |
Vel
! Computed 2
I
| Write d 2
I
I
I

Initialization code prefills buffer[0] | Hillid 8
Wi LB ¢
DMA IRQ Handler { [l Resume 1 |
old bn = rbn; 5> ! : o JJ Upcate DAC wit
rbn = 1 - rbn; // Switch buffers 5> Isuspend;' | Update DAC wit
Restart DMA with buffer[rbn] Start handidr |

Refill buffer[old bn]

Computed 4

I
I
| Write d 4
I
I

Computed 5 Iﬁ

[Write d 5

13 v2 'ResumeE ! :

14 v

NC STATE UNIVERSITY

REDUCE TIMING INTERFERENCE FOR OTHER SW
PROCESSING (SHARE CPU BETTER)

Overview of Waveform Generator Design Evolution: What and Why

A Share CPU core better,
| reducing timing interference to
mprove output

timing stability — 4 B W

/ Allow faster output — P,
Sbddkcli e [FETimer triggers DMA data transfer, 1

[A2. ' } [B. } DMA ISR writes data to buffer

- / Loosen refill
\

™ 4 deadline
[C.Timer ISR writes next datum to DAC]

Reduce timing
interference to other
SW processing

I Loosen refill deadline

G.Timer triggers DMA H.Timer triggers DMA,
[D.Timer advances data from buffer to DAC, } with double-buffering, DMA ISR writes urgent data
Timer ISR writes next datum to buffer DMA ISR switches buffers to buffer and triggers
1 and refills with data

E.Timer advances data from buffer to DAC.
Timer ISR writes next datum to buffer

Allow faster output Reduce timing interference
update rates to other SW processing

[E2.Timer advances data from buffer to DAC. }

15 2 Low/Empty ISR writes next batch of data to buffer

NC STATE UNIVERSITY

Detailed Overview of VWhat and

A.Task software

Output timing bad: Very unstable, vulnerable to other writes to DAC

software (processes and handlers), timing errors ——
accumulate. Greedy; doesn’t share CPU. AddEW timeraftrack ately) And-add-DMAWith ISR,
from HW timer interrupts : :
timer directly
A2. OS-triggered periodic task B.Task software poll/blocks on FTimer triggers DMA data transfer,
software writes to DAC timer, then writes to DAC DMA ISR writes data to buffer
. Output timing better: Tolerates more\ Atput timing better: Tolerates more I Tioht Deadline:
interference, vulnerable to processes and Put.code in HW timer’sdSR™ interference, vulnerable to processes and o '
handlers, erro1r_§ gogt achFum_;_J late. Shares CPU. \/ handlers, errors don’t accumulate. Greedy, doesn’t
ight deadline: T, . ; .) ing t h
P [C.Timer ISR writes next data to DAC Sh}"e CPU.Tight deadline: g er processing too muc
Output timing: Even better. N
Vulnerable to other ISRs and interrupt Use |-deep Split into double-byfffer to ease first :
locking fgmpe times per second DAC input buffer sample’s deadjfhe and cuts ISR OV€ non-urgent

. work to task
D.Timer advances data from buffer to DAC, durggfon in half.

Timer ISR writes next data to buffer

Tight deadline:Ts,. [

Deadline better: 2T, . G.Timer triggers DMA H.Timer triggers DMA,
Interrupt overhead for each Use N'Fjeep DAC input with double-buffering, DMA ISR writes urgent data
sample wastes CPU time. buffer with low/empty ISR DMA ISR switches buffers to buffer and triggers task to
E.Timer advances data from buffer to DAC.Timer and refills with data write rest of data
ISR writes next data to buffer

Interrupt.overhead for each | | Add-N-deep~DAC input
sample wastes CPU time buffer with low/empty ISR

E2.Timer advances data from buffer to DAC.
Low/Empty ISR writes next batch of data to buffer

16 v2

NC STATE UNIVERSITY

E2 DAC Buffer Generates Interrupt Only When Buffer is Empty

|

ISR: Refill
Buffer

>

Vo

™~

u

4

DAC Buffer ISR {
while (buffer not full) {
compute next sample
write sample to buffer

}
}

= Reduce timing interference to other processing by generating fewer interrupts. Burst/batch processing

= Divides number of interrupts by buffer size

Timer Overflow |

Buffer IRQ]

CPU Activity .

d, ready

d, ready

Write Timing

d. ready

d, ready

Windows

Deadline windovl is N *T

Sample

DAC Code

d,

d,

DACV,,,

17 v2

aly i,
Sequence Diagram k P \ " W wcl

= \ AN

r -~ // —
Y/ >
it = — / %’;

1
—
B
F

Tighter Timing Requirements for Refilling Buffer

Timer Overflow
Buffer IRQ
CPU Activity

Write Timing
Windows

DAC Code
DACVg,,

M

19 v2

| d,ready I

d, ready

d, ready

d, ready

v

Deadline windovl is N * Tsompie

d, d,

= First sample has deadline of T
= Second sample has deadline of 2*T
= Third sample has deadline of 3*T
= Deadline is shorter than window because interrupt occurs late — when last sample is read
= Same as problem with DMA design F (solved F with double buffering in G)

= Can DAC Buffer give us an early warning interrupt before the buffer is full?

Sample
Sample

Sample

NC STATE UNIVERSITY

E3. DAC Buffer Generates Interrupt when Buffer is 74 Empty

ISR: DAC Buffer ISR {
Refill O while (buffer not full) {
Buffer compute next sample

write sample to buffer

M B t
Vo }

u

* Interrupt occurs (N/4)*T, . earlier = Make sure that none of the last N/4 samples are overwritten
= Deadline to refill first entry is now (| +N/4)>'<TSarnple = Must synchronize within the ISR to the DMA. Put on SyncTo Do List

Timer Overflow |

|
Buffer IRQ 1

CPU Activity | | |]]
d, ready i : d- ready
. .. d, ready d, ready
Write Tlmlng d, ready d, ready
Windows d; ready dg ready
Deadline windovl is N *Tg. e =
DAC Code 4 d, d, d, d,
DACV,,, ?

20 v2

NC STATE UNIVERSITY

A

H. Split Work into Urgent and Deferred

P ISR {
.Ja e 31({ do urgent work now

ISR: request deferred proc’g for rest of work
1 () Start to }
10 Refill Buffer

s
Z
| o v thread_Deferred Work {
R r . o I Ou do remaining work
Transfer One Sample }

= When refill buffer ISR runs, it can delay ISRs (with same or lower priority) and all threads
= Want to reduce time spent in ISR to improve responsiveness for other software processing
= Observation: Don’t need to refill entire buffer in ISR
= Refilling first sample in buffer is highest urgency
= Lower urgency for second, even lower for third...
= Procrastinate!
= Change ISR to refill N most urgent samples (e.g. 1 & 2), and request thread to finish the work
= Defer remaining BUFSIZE — N samples (e.g. 3 & 4) for thread to refill

= Depends on some form of thread scheduler to run the refill thread

21 v2

NC STATE UNIVERSITY

Sequence Diagram

H. DMA with Deferred Work (Arbitrary Scheduler)

Hardware Software
Direct Memory Interrupt Main and Timer | | Deferred Work Buffer
Timer | | Access Controller Controller | | Other Threads ISR Thread in Memory DAC
. L | I
ISR: ! !
N
Start to | | | | Samples0to 3 5
Refill Buffer E \"' | | | [l Update DAC with d|Q_
H g | | | g Update DAC 'thd,
e wi
|] I—L 2 Vou > i a | g 4
Transfer One Sample > | | | > [Update DAC with d|2_
Suspend | | - B Update DAC with d|3_
Start handler -~
I Zr |
| | Computed 4 |
' ! Wited4 |
I I I
I I | Computed 5 Iﬁ I
I I Writed5 |
I | I
Return from handler \y
i ------------------- R A |
Resume | [[
| D | |
! ! Computed 6
I I I
I | | Write d 6
| | | Computed 7
| | |
Write d 7
I 1 I
l | | [l Update DAC with d|4_
~ ~
| | | [l Update DAC with d|5_
~ ~
I I I
- - [l Updatte DAC with d|6_
22 v2 > | | | > Update DAC with d 7>

NC STATE UNIVERSITY

SUMMARY

NC STATE UNIVERSITY

Implementation Analysis

A.Task busy-waits for constant time (blind), then writes
to DAC

4)

A2. OS runs task periodically, task writes to DAC
G J

p
B.Task software poll/blocks on timer, then writes to
DAC

G J
-

C.Timer ISR writes data to DAC

. J

(D.Timer advances buffer data to DAC, Timer ISR writes)
next data to buffer

. J

(E.Timer advances buffer data to DAC.Timer ISR writes |
data to buffer

g J
4 N\
E2.Timer advances buffer data to DAC. Low/Empty ISR
\writes next batch of data to buffer)

2

p
FTimer triggers DMA data transfer, DMA ISR writes
_next batch of data to buffer

p
G.Timer triggers DMA transfer, DMA ISR switches
\buffers and writes next batch of data to previous buffer)

~N

p

H.Timer triggers DMA transfer, DMA ISR writes urgent
\data to buffer, triggers task. Task writes rest of data batch)
24 v2

NC STATE UNIVERSITY

Implementation Comparison

B. SW Polls |C. Timer ISR |D. Add E. Multi- F. DMA G. Double [H. Defer
Timer single DAC |[Entry DAC |Transfer Buffering Some Work
buffer Buffer
CPU Sharing Greedy Greedy Good
Time Tracking SW fixed SW polls HW ~ HW timer
busy-wait timer
delay loop
Resynch on No Yes Yes

next sample?

Vulnerableto Yes Yes No
other tasks

Vulnerableto Yes Yes Only higher-
ISRs, Handlers priority

Width of timing TCPU Tch TCPU Tsample
window

Relative Teample
Deadline: from

notification

until updating

first sample in

buffer

26 v

DIGITAL TO ANALOG CONVERTER

NC STATE UNIVERSITY

NC STATE UNIVERSITY

DAC Overview

_____ ﬂlDAEEF-_E‘iJ“EHE:—J__________________

| \oMux | DACRFS | :

| v AMP buffer I

| L ,- — — .

| <] DACEN | i I I

| (>—H | I v | :

| s | 3 LYoo

| % g_ 5 | LPEN |—>| ~_ Vout |
& < = v, - |

| S L~ |

| L | _...-f"f |

| s | : |

| = I. . |

——{ DACDAT[11:0] | . / |
| s — — = =

= Load DACDAT with 12-bit data N
= MUX selects a node from resistor divider network to create
V, = (N+1)*V, /212
= V_ is buffered by output amplifier to create V
=V =V

out

out
but V, is high impedance - can’t drive much of a load, so need to buffer it

27 v2

NC STATE UNIVERSITY

DAC Registers

DAC memory map

Absolute . .
address HEgiEtﬂl‘ name {b:lhdt:;} Access | Reset value SEL:“;"I

(hex) 'n Bl pag
4003 _F000 |DAC Data Low Register (DACO_DATOL) 8 R/W 00h 30.4.1/531
4003_F001 |DAC Data High Register (DACO_DATOH) 8 RW 00h 30.4.2/532
4003_F002 |DAC Data Low Register (DACO_DAT1L) 8 R/W 00h 30.4.1/531
4003 _F003 |DAC Data High Register (DACO_DAT1H) 8 R/W 00h 30.4.2/532
4003_F020 |DAC Status Register (DACO_SR) 8 R 02h 30.4.3/532
4003 _F021 |DAC Control Register (DACO_CO0) 8 R/W 00h 30.4.4/533
4003_F022 |DAC Control Register 1 (DACO_CH1) 8 R/W 00h 30.4.5/534
4003_F023 |DAC Control Register 2 (DACO_C2) 8 RW OFh 30.4.6/534

= This peripheral’s registers are only eight = DATA[11:0] stored in two registers

bits long (legacy peripheral). = DATAO: Low byte [7:0] in DACx_DATnL
= DATA1: High nibble [11:0] in DACx_DATnH

28 v2

DAC Control Register 0: DACx_CO

Bit
Head
Write

Heset

7

G

b

1

0

DACEN

DACRFS

DACTRGSE
L

4 3 2
0
LPEM DACEBTIEN
DACSWTRG

0

DACEN - DAC Enabled when 1
DACRFS - DAC reference voltage select

0

= 0: DACREF_1. Connected to VREFH
= 1: DACREF_2. Connected to VDDA

= LPEN - low-power mode

= 0: High-speed mode. Fast (15 us settling

time) but uses more power (up to 900 uA

supply current)

0

0 | S

= 1: Low-power mode. Slow (100 us settling time) but more power-
efficient (up to 250 uA supply current)

29 v2

Additional control registers used for buffered mode

0

_Mux <

DACBBIEN

0

DACREF 2 JTD‘EHEFA _

0

Vin

{ DACRFs

4096-level

4 DACEM '

NC STATE UNIVERSITY

NC STATE UNIVERSITY

[o:rlvaowva t

DAC Operating Modes T
_‘ i’ ‘l \ N\ff’\“} (
o [e S R L I ﬂ
5 } i " l Norws
WE _I—\ { !‘ J: Fﬁ
g f C - % b r"—!"—\—"\ n _— ‘
o /
& | * Normal
,of_é Overflow = Value written to DACDAT is converted to voltage immediately
B = Buffered mode eases timing requirements

= Value written to DACDAT is stored in data buffer for later
conversion

= Next data item is sent to DAC when triggered
= Software Trigger - write to DACSWTRG field in DACx_CO
= Hardware Trigger - from PIT timer peripheral

= Normal Mode: Circular buffer
= One-time Scan Mode: Pointer advances, stops at end of buffer
0 v = Status flags in DACx_SR

DAC Control Register 1: DACx_C1

NC STATE UNIVERSITY

0

Bit 7 5] 5 4 2 1
Read | pyAEN 0 DACBFMD ‘ 0 DACBFEN
Write
Reset 0 0 0 0 0 0 0
= DACBFEN

= 0: Disable buffer mode
= 1: Enable buffer mode
= DACBFMD - Buffer mode select
= 0: Normal mode (circular buffer)
= 1: One-time scan mode

31 v2

32 v

NC STATE UNIVERSITY

Direct Memory Access (DMA) Controller

NC STATE UNIVERSITY

DMA Can Read and Write Memory and Peripheral Registers

e —

High-Speed System Bus

i

HMI

I

GPIO

Touch-Sensing

|

Peripheral Bus

Analog Comparator
12-bit DAC

16-bit DAC

Internal Voltage Reference

33 v2

NC STATE UNIVERSITY

Basic Concepts

Source
= Memory copy machine built from hardware S/ wete Control and Data E—
= Reads data from source, writes it to destination \ Read | FeTPheral
= Can eliminate ISRs which just copy data (e.g. copy ADC

results into buffer)

= Key configurable options
= What event starts a transfer: software or hardware triggers

= Source and destination addresses, which can be fixed or
change (e.g. increment, decrement)
i Address Modification
= Number of data items to copy et Data Transfer Behavior
= Size of data item (I, 2, 4 bytes) Source |Destination_
fixed fixed Write value from fixed source location
into fixed destination location

= More features too: chaining, error handling...
= Sequence of operations

changes changes Copy values from source array to
= |nitialization: Configure controller destination array
= Transfer: Data is copied | > fixed changes Write value from fixed source location
= Termination: Channel indicates transfer has completed into array

changes fixed Write array contents to fixed

(status flag, interrupt request, DMA request)

destination location
34 v2

NC STATE UNIVERSITY

DMA Controller Details

CPU Memory Peripheral
* 4 independent channels ¥ s
= Channel 0 has highest priority S ;"9"'55’;"-’“' & Control
i i System Bus Data
= 8-, 16- or 32-bit transfers, UART0,1,2 7} \ N S S— S)
: : SPIO, 1 i | DMA Controller Channel I
= Data size can differ between source 12€0, 1 P " ;
- oo {1 [LDCR [[BCR :
and destination P :
_ . TPM1-2 rq | | :
= Circular/ring buffer support ADCO ———»{ Controller SAR DAR Data |1
CMPO ! i i
= “Address Modulo:” address wraps DACO P — !
around at end of buffer rorts Lh
. Buff . N 2 ; 1 ¥ Address
uffer sizes from 64 B to 256 kB (2™) TSl 2 | oA Peripheral T & Control
. i E B Data
= DMA MUX peripheral selects ' [source || Mermuet R v 3
hardware signal for triggering Peripheral Peripheral

How many data items are transferred per trigger!?
= One:“Cycle stealing”
= All items: grabs bus

Hardware acknowledge/done signal

35 v2

NC STATE UNIVERSITY

Address Registers

= These registers determine from where the DMA will read its data, and to where it will write that data

= DMA_SARn Control and Data \

Vl Memory/
= Source address register, Read | Peripheral
= Valid values 0 to Ox000f ffff

DMA

= DMA_ DARnN Mﬁte Memory/

N .
= Destination address register Control and Data X Peripheral
= Valid values 0 to 0x000f ffff /

36 v2

NC STATE UNIVERSITY

Byte Count Register

37

bl 30 29 2B 27 28 2B 24 23 22 21 20 18 18 17 16

]
Rl © CE | BES (BED | 0 BSY 5 1]
&

REQ

Resst 0 0] 0 1] 1] 0] 1] 0 0] 0] 0 1]

Bit 1B 14 13 12 11 10] B | T L] B 4 3 2 1 0

BCH

W

Fosat 0 0] 0 0 0 0] 0 0 0] 0 0 0 0

= BCR: Bytes remaining to transfer
= Decremented by |, 2 or 4 after completing write (determined by destination data size)

v2

Status Register/Byte Count Register DMA DSR_BCRn

Bit 31 30 29 2B 2T 26 25 24 23 22 21 20 8 18 17 il

Rl O CE | BES | BED 0

BSY

REQ
DOME
=

Fesat 0O 0 Q 0 0 1] 0 1] 1] 0 0 1] 0 1] 0 0

= Status flags: | indicates error
= CE: Configuration error

BES: Bus error on source

BED: Bus error on destination

REQ:A transfer request is pending (more transfers to perform)
BSY: DMA channel is busy
DONE: Channel transfers have completed or an error occurred. Clear this bit in an ISR.

38 v2

NC STATE UNIVERSITY

DMA Control Register (DMA_DCRn)

Bit 31 ao 29 28

EINT | ERQ | CS AA

Reset O 0 0 0

= EINT: Enable interrupt on transfer completion
= ERQ: Enable peripheral request to start transfer

= CS: Cycle steal
= 0: Greedy - DMA makes continuous transfers until BCR ==
= |: DMA shares bus, performs only one transfer per request

= AA:Autoalign

39 v2

NC STATE UNIVERSITY

DMA Control Register (DMA_DCRn)

23 22 21 20 19 18 17 16
a
L
& | SINC SSIZE DINC DSIZE
N -
i
=
iy
0 0 0 0 0 0 0 0

= EADRQ — Enable asynchronous DMA requests when = SSIZE/DSIZE — Source/Destination data size.
MCU is in Stop mode = Don’t need to match — controller will perform extra
= SINC/DINC - Increment SAR/DAR by 1,2 or 4 reads or writes as needed (e.g. read one word, write

based on size of data two bytes).
= 00: longword (32 bits)

= 0I: byte (8 bits)
= 10: word (16 bits)
= START —Write | to start transfer

40 v2

DMA Control Register (DMA_DC

R

Reset

SMOD

DMOD

0

= SMOD, DMOD - Source/Destination address

modulo

= When non-zero, supports circular data buffer — address
wraps around after 2"*3 bytes (16 bytes to 64 kilobytes)
= When zero, circular buffer is disabled

= D _REQ:If |, then when BCR reaches zero, channel

will clear ERQ bit, preventing further hardware

triggers of channel

41 v2

LINKCC

LCHA

LCH2

NC STATE UNIVERSITY

= LINKCC: Enables this channel to trigger another

channel
= 00: Disabled

= 0l:Two stages:

= Link to channel LCHI after each cycle-steal transfer
= Link to channel LCH2 after BCR reaches 0

= 10: Link to channel LCHI after each cycle-steal transfer
= |1:Link to channel LCHI after BCR reaches 0

= LCHI, LCH2:Values 00 to || specify linked DMA
channel (0 to 3)

Trigger Sources

= A variety of peripherals can trigger
DMA activity

= Trigger sources are chip-specific, so
see KL25 Sub-Family Reference
Manual (rev. |), Chapter 3 - Chip
Configuration, Section 3.4.8.1 DMA
MUX Request Sources

42 v2

NC STATE UNIVERSITY

Source # Module Description

0 - Disabled

2-7 UARTO,1, 2 Receive, Transmit
16-19 SPI0, 1 Receive, Transmit
22-23 12CO0, 1

24-29 TPMO Channels 0-5
32-35 TPM1-2 Channels 0-1

40 ADCO

42 CMPO

45 DACO

49-53 Port Control Module Port A-E

54-56 TPMO-2 Overflow

57 TSI

60-63 DMAMUX Always enabled

Triggering DMA Activity Using Peripherals

= Can use trigger events from peripherals to start DMA transfer <<% > g
= Upon triggering, DMA can perform: ‘z—i" """"""" N
= One transfer (cycle steal mode) 4 DMAC;Z:? ~
= All transfers until BCR == 0 (continuous mode) | '
= DMA Multiplexer (DMAMUX)
= Selects which source will trigger a DMA channel sorcere |
= Each DMA channel n has a configuration register R A B e ~—
DMAMUX_CHCFGn
= ENBL: Enable DMA channel U R S -
= TRIG: Enables triggering of DMA channel
= SOURCE: Selects triggering source . . . i P , _ .
nead | ENBL TRIG SOURCE
Reset 0 0 0 0 | 0 0 0 0

DMAMUXx_CHCFGn field descriptions

43 v2

To Do
Review development flow — when
does scheduler appear?
Use same set of compute output
data durations (d1-d5)
Complete diagrams
When to introduce task switching
overhead!?
Complete text notes per slide
(Convert diagrams from
horizontal to vertical HW/SW
split?)

44

v2

NC STATE UNIVERSITY

Diagrams

45

v2

Timer Overflow I

NC STATE UNIVERSITY

. Interrupt entry/exit overhead

Task switching overhead

Compute next output value
. Wait for Done. Sync. w/ timer

Write output value

Buffer IRQ |

CPU Activity |

Write Timing Window

DAC Code

DACV,,,

N-Entry DAC Buffer with Empty Interrupt

Timer Overflow |

NC STATE UNIVERSITY

. Interrupt entry/exit overhead

Task switching overhead

Compute next output value
. Wait for Done. Sync. w/ timer

Write output value

Buffer IRQ |

CPU Activity] [

Buffer Write Timing
Windows and

Contents

DAC Code 4

DACV,,,

46 v2

47

v2

Timer Overflow |

NC STATE UNIVERSITY

. Interrupt entry/exit overhead

Task switching overhead

Compute next output value
. Wait for Done. Sync. w/ timer

Write output value

4

Buffer IRQ |

CPU Activity |

Write Timing Window

DAC Code

DACV,,,

Template for Software and Hardware Components and Timing

. Interrupt entry/exit overhead

Task switching overhead

Compute next output value

Write output value

Timer -> DMA Trigger
DMA IRQ

CPU Activity: ISR

ISR - Task Trigger

CPU Activity: Task
Buffer A Timing Window
Buffer A

Buffer B Timing Window
Buffer B

DAC Code

DAC Vg,

48 v2

NC STATE UNIVERSITY

Software and Hardware

—
o—

SoundBuffer H
event ¢

49 v2

NC STATE UNIVERSITY

Shield Audio Software and Hardware Architecture

SoundBuffer i
|
event ¢

50 v2

NC STATE UNIVERSITY

Shield Audio Software and Hardware Architecture

Voice _mutex

Voice

SoundBuffer i

EV_REFILL_
ENTIRE SB

EV_REFILL_
REMAINING SB

51 v2

52 v

NC STATE UNIVERSITY

ROUGH DIAGRAMS FROM ECE 560, MONDAY 9/23/24

NC STATE UNIVERSITY

A.Simple Starter Code

(

F——
Guheabl Fug
Fitne “ﬂ,w’? “"@rezé/é'{’@:%
LIS W Toee —
wﬁﬁ!:l,f |
o lew T —

NC STATE UNIVERSITY

NC STATE UNIVERSITY

o0 Q\r—§\%;é\\[
o B TS, \o®
W 40{5'@32;‘5‘5’@@7 % L1 J={PAC
@’\Mf } —
evev)/ Mec e,\rew{’

	Default Section
	Slide 1: 17: WaveGen: Loosening Timing Requirements, Interfering Less with Other Processing
	Slide 2: Overview of Waveform Generator Design Evolution: What and Why
	Slide 3: Detailed Overview of What and Why
	Slide 4: Software and Hardware Components in Design Evolution

	Loosening Deadlines
	Slide 5: Loosening Deadlines
	Slide 6: Reminder of Recent Designs C & D
	Slide 7: E. Add N-Item Buffer for DAC, Interrupt per Sample
	Slide 8: Sequence Diagram
	Slide 9: Concepts: Buffering Data for an Asynchronous Output
	Slide 10: Reminder of Design F. Use Timer-Triggered DMA to Transfer Data
	Slide 11: Examining Timing Requirements for Buffer Refill
	Slide 12: Loosening Timing Requirements with Double-Buffering
	Slide 13: G. DMA with Double Buffering

	Timing Interference
	Slide 14: Reduce Timing Interference for Other SW Processing (Share CPU better)
	Slide 15: Overview of Waveform Generator Design Evolution: What and Why
	Slide 16: Detailed Overview of What and Why
	Slide 17: E2. DAC Buffer Generates Interrupt Only When Buffer is Empty
	Slide 18: Sequence Diagram
	Slide 19: Tighter Timing Requirements for Refilling Buffer
	Slide 20: E3. DAC Buffer Generates Interrupt when Buffer is ¾ Empty
	Slide 21: H. Split Work into Urgent and Deferred
	Slide 22: Sequence Diagram

	Summary
	Slide 23: Summary
	Slide 24: Implementation Analysis
	Slide 25: Implementation Comparison

	DAC Intro
	Slide 26: Digital to Analog Converter
	Slide 27: DAC Overview
	Slide 28: DAC Registers
	Slide 29: DAC Control Register 0: DACx_C0
	Slide 30: DAC Operating Modes
	Slide 31: DAC Control Register 1: DACx_C1

	DMA Intro
	Slide 32: Direct Memory Access (DMA) Controller
	Slide 33: DMA Can Read and Write Memory and Peripheral Registers
	Slide 34: Basic Concepts
	Slide 35: DMA Controller Details
	Slide 36: Address Registers
	Slide 37: Byte Count Register
	Slide 38: Status Register/Byte Count Register DMA_DSR_BCRn
	Slide 39: DMA Control Register (DMA_DCRn)
	Slide 40: DMA Control Register (DMA_DCRn)
	Slide 41: DMA Control Register (DMA_DCRn)
	Slide 42: Trigger Sources
	Slide 43: Triggering DMA Activity Using Peripherals

	Diagrams
	Slide 44: Diagrams
	Slide 45
	Slide 46: N-Entry DAC Buffer with Empty Interrupt
	Slide 47
	Slide 48: Template for Software and Hardware Components and Timing
	Slide 49: Software and Hardware
	Slide 50: Shield Audio Software and Hardware Architecture
	Slide 51: Shield Audio Software and Hardware Architecture

	First Diagrams
	Slide 52: Rough Diagrams from ECE 560, Monday 9/23/24
	Slide 53: A. Simple Starter Code
	Slide 54
	Slide 55

