NC STATE UNIVERSITY

| 6:

WaveGen: Improving Output
Timing Stability (part 2)

v3

Overview of Waveform Generator Design Evolution: What and Why

L A. } Share CPU core better,

reducing timing interference to

Improve output .
P P other SW processing

timing stability

/ Allow faster output — P,
Sbddkcli e [FETimer triggers DMA data transfer, 1

A2. ' B. DMA ISR writes data to buffer
2

\

b

S~ / LoC<I>sean.reﬁII
» 4 €adline

[C.Timer ISR writes next datum to DAC]

Reduce timing
interference to other
SW processing

1 Loosen refill deadline

G.Timer triggers DMA H.Timer triggers DMA,
[D.Timer advances data from buffer to DAC, } with double-buffering, DMA ISR writes urgent data
Timer ISR writes next datum to buffer DMA ISR switches buffers to buffer and triggers
I and refills with data

v

[E.Timer advances data from buffer to DAC. }

Timer ISR writes next datum to buffer

Allow faster output Reduce timing interference
update rates to other SW processing

E2.Timer advances data from buffer to DAC.
Low/Empty ISR writes next batch of data to buffer

NC STATE UNIVERSITY

in Design Evolution

Detailed Overview of VWhat and

A.Task software

Output timing bad: Very unstable, vulnerable to other writes to DAC

software (processes and handlers), timing errors ——
accumulate. Greedy, doesn’t share CPU. Add-HW' timer (tracks time aceurately) And add DMA with ISR,
from HW timer interrupts : :
timer directly
A2. OS-triggered periodic task B.Task software poll/blocks on FTimer triggers DMA data transfer,
software writes to DAC timer, then writes to DAC DMA ISR writes data to buffer
Output timing better: Tolerates morc\ Atput timing better: Tolerates more | 1., -
. Inerable to brocesses and . o . .Tight Deadline: ISR m first new sample to
interference, vu p Put.code in HW timer’sdSR™ interference, vulnerable to processes and
handlers, erro1r_§ Icqfor(;t achum_;_J late. Shares CPU. V handlers, errors don’t accumulate. Greedy, doesn’t
ight deadline: 1 gqpe) 1 ' ine: 2.Long DMA ISKi rocessing too much
’ [C.Timer ISR writes next data to DAC Sh}"e CPU.Tight deadline:Tsqnpe g g
Output timing: Even better. N
Vulnerable to other ISRs and interrupt Use |-deep Split into double-byfffer to ease first i
locking fgmpe times per second DAC input buffer sample’s deadjfhe and cuts ISR ove non-urgent

. work to task
D.Timer advances data from buffer to DAC, durggfon in half.

Timer ISR writes next data to buffer

Tight deadline:Ts,. [

Deadline better: 2T, . G.Timer triggers DMA H.Timer triggers DMA,
Interrupt overhead for each Use N'Fjeep DAC input with double-buffering, DMA ISR writes urgent data
sample wastes CPU time. buffer with low/empty ISR DMA ISR switches buffers to buffer and triggers task to
E.Timer advances data from buffer to DAC.Timer and refills with data write rest of data
ISR writes next data to buffer

Interrupt overhead for each Add N—deep DAC input
sample wastes CPU time buffer with low/empty ISR

E2.Timer advances data from buffer to DAC.
Low/Empty ISR writes next batch of data to buffer

3 v3

NC STATE UNIVERSITY

Software and Hardware Components in Design Evolution

A General Trend: Move operations which need synchronization (update output,
[sw compute new value) from software to hardware to improve stability, performance
V,
HW t] (Asynchronous I/0: Output is updated by hardware, so it is decoupled from \

(asynchronous with) software execution, so sloppy software timing affects output timing less
D ISR: Next F ISR: ! O
Sample Refill
V 1 BuffCI | |
t] A pLiic~
| M Transfer One Sample
E ISR: Next G ISR: Switch
Sample Buffers, ’rQ "e

| Refill Othe

»El’»] [D L[D}D&ﬂ [I R Ll EZ’E

E2 ‘ Run
|s§. fPf\eﬁII H later

drer ISR: Start to

: Refill Buffer

] r‘_]—'
b [D_ »[gﬂ@ﬁ% [T

\&

Y
L
%
—

C

i

Y

\&

Example Code from ESF

void Play Tone(unsigned int period, unsigned int
num_cycles, unsigned wave_type) {

unsigned step, out data;

while (num_cycles>0) {
num_cycles--;
for (step = 0; step < NUM STEPS; step++) {
switch (wave_type) {
case SQUARE:
if (step < NUM_STEPS/2)
out _data = 0;
else
out_data = MAX_DAC_CODE;
break;
case RAMP:
out_data = (step*MAX_DAC_CODE)/NUM_STEPS;
break;

NC STATE UNIVERSITY

case SINE:
out_data = SineTable[step];
break;

default:
break;

}
DACO->DAT[0].DATH = DAC_DATH_DATA1l(out_data >> 8);

DACO->DAT[0].DATL = DAC_DATL_DATA@(out_data);
Delay us(period/NUM_STEPS);

}

NC STATE UNIVERSITY

Vulnerability to Timing Interference

A.Task busy-waits for constant time (blind), then writes
to DAC

4)

A2. OS runs task periodically, task writes to DAC
G J

p
B.Task software poll/blocks on timer, then writes to
DAC

G J
-

C.Timer ISR writes data to DAC

. J

(D.Timer advances buffer data to DAC, Timer ISR writes)
next data to buffer

. J

(E.Timer advances buffer data to DAC.Timer ISR writes |
data to buffer

g J

4 N\
E2.Timer advances buffer data to DAC. Low/Empty ISR

\writes next batch of data to buffer)

2

p
FTimer triggers DMA data transfer, DMA ISR writes
_next batch of data to buffer

p
G.Timer triggers DMA transfer, DMA ISR switches
\buffers and writes next batch of data to previous buffer)

~N

p

H.Timer triggers DMA transfer, DMA ISR writes urgent
\data to buffer, triggers task. Task writes rest of data batch)
6 v3

NC STATE UNIVERSITY

DAC Overview

_____ ﬂlDAEEF-_E‘iJ“EHE:—J__________________

| \oMux | DACRFS | :

| v AMP buffer I

| L ,- — — .

| <] DACEN | i I I

| (>—H | I v | :

| s | 3 LYoo

| % g_ 5 | LPEN |—>| ~_ Vout |
& < = v, - |

| S L~ |

| L | _...-f"f |

| s | : |

| = I. . |

——{ DACDAT[11:0] | . / |
| s — — = =

= Load DACDAT with 12-bit data N
= MUX selects a node from resistor divider network to create
V, = (N+1)*V, /212
= V_ is buffered by output amplifier to create V
=V =V

out

out
but V, is high impedance - can’t drive much of a load, so need to buffer it

7 v3

NC STATE UNIVERSITY

DAC Registers

DAC memory map

Absolute . .
address HEgiEtﬂl‘ name {b:lhdt:;} Access | Reset value SEL:“;"I

(hex) 'n Bl pag
4003 _F000 |DAC Data Low Register (DACO_DATOL) 8 R/W 00h 30.4.1/531
4003_F001 |DAC Data High Register (DACO_DATOH) 8 RW 00h 30.4.2/532
4003_F002 |DAC Data Low Register (DACO_DAT1L) 8 R/W 00h 30.4.1/531
4003 _F003 |DAC Data High Register (DACO_DAT1H) 8 R/W 00h 30.4.2/532
4003_F020 |DAC Status Register (DACO_SR) 8 R 02h 30.4.3/532
4003 _F021 |DAC Control Register (DACO_CO0) 8 R/W 00h 30.4.4/533
4003_F022 |DAC Control Register 1 (DACO_CH1) 8 R/W 00h 30.4.5/534
4003_F023 |DAC Control Register 2 (DACO_C2) 8 RW OFh 30.4.6/534

= This peripheral’s registers are only eight = DATA[11:0] stored in two registers

bits long (legacy peripheral). = DATAO: Low byte [7:0] in DACx_DATnL
= DATA1: High nibble [11:8] in DACx_DATnH

8 v3

NC STATE UNIVERSITY

WAVEGEN STARTING POINT: DESIGN A

A. Simple Starter Code

NC STATE UNIVERSITY

while (1) {

compute data
// Blind Synchronization:
// Wait for fixed time (or more if preempted)

wait

EDTT‘IDLIEE!_I

write

—

[I4\A/ \ﬂgm] for (t = T; t>0; t--); // busy wait loop creates delay
— // Position of following code implicitly schedules it
write data to DAC
}
A: Task Sofware Writes to DAC
CPU Activity / i i i ! H

IS e o s G G e

DAC Output,/ 1 o - n . N
| (datal X data2 ¢ data3 X dataa Vot |
0 10 20 0 40 50 &0 90 100 110 150 130 |

= Timing is unstable. Make T what value!?
= What if computing data takes variable time?

Vulnerable to interference by other handlers,

processes on CPU
v3

10

" Usmg busx-waltlng to create time delay is greedy

because it doesn’t share CPU

= Synchronization and scheduling done completely in
software

NC STATE UNIVERSITY

Unbuffered DAC with Busy-Wait Code

& Busy-waiting for fixed time

Compute next output value

Write output value

| | |
cpU Aczv MY NI MM 7T

|deal Write Window || I ‘I I ‘I
DAC Code ? d, d, d; d,
DAC Vg,

11 v3

Sequence Diagram

\Z t
HW :l OUI

while (1) {

12

v3

compute data

// Blind Synchronization:

// Wait for fixed time (or more if preempted)

for (t = T; t>0; t--); // busy wait loop creates delay

write data to DAC

NC STATE UNIVERSITY

A. Starting Design

Software Hardware

Thread DAC
I

N
I

Thread Starts/Resumes
Running

T

Compute d1

| Thread Does
Blind Synchronization

Wait for fixed
number of
instructions

rlllllllll

Thread Updates DAC

Writg d1

AN
d1

Thread Ends/Pauses

13 v

IMPROVING OUTPUT TIMING STABILITY

NC STATE UNIVERSITY

NC STATE UNIVERSITY

Detailed Overview of What and Why

Output timing bad: Very unstable, vulnerable to other A.Task software
software (processes and handlers), timing errors writes to DAC
accumulate. Greedy, doesn’t share CPU. o ey

Add-HW timer (tracks time dccurately)

And add OS with ticks / s le Add HW timer, DMA with ISR,
' ' oftware buffer
from HW timer interrupts timer directly Wi uffe

[AZ. OS-triggered periodic task} [B.Task software poll/blocks on] [F.Timer triggers DMA data transfer,}

software writes to DAC timer, then writes to DAC DMA ISR writes data to buffer

Output timing better: Tolerates m
interference, vulnerable to processes an
handlers, errors don’t accumulate. Shares CPU.

utput timing better: Tolerates more
terference, vulnerable to processes and
‘ . dlers, errors don’t accumulate. Greedy, doesn’t
Tight deadline:T o share CPU.Tight deadline:Tsye
Put'eede in HW gimer’s ISR

V"4

[C.Timer ISR writes next data to DAC]

Output timing: Even better.
Vulnerable to other ISRs and interrupt
locking fsgmpre times per second

Tight deadline:T ;e Use |-deep

DAC input buffer

D.Timer advances data from buffer to DAC,
Timer ISR writes next data to buffer

14 v3

NC STATE UNIVERSITY

Software and Hardware Components

Sample
| |
HW v Ut] [L VOui:I
\

D ESR: Next

Sample

A
SwW C [ISR: Next

15 v3

NC STATE UNIVERSITY

A2. Scheduler Releases WaveGen Periodically

Release Task void Task_WaveGen (void) { . Interrupt entry/exit overhead
T,%»Q compute data Task switching overhead
) D Compute next output value
[:| ﬁ} Write output value
Ideal Output Update Time |
CPU Activity D | D -
Write Window n Il
DAC Code ! d, d, d; d,
DACVg,.

= DAC update is on time if ...
= Task_WVaveGen starts on time (tasks/ISRs finish early enough for scheduler to run it), and
= Task_WVaveGen not preempted by other processing
= DAC update is delayed if other processing (tasks, ISRs) cause timing interference:
= Task_WVaveGen starts late if tasks/ISRs finish too late (delaying scheduler), so DAC is updated late
= Task WVaveGen updates DAC late if preempted by higher-priority software processes (e.g. ISRs)

16 v3

NC STATE UNIVERSITY

B. Software Polls Hardware Timer

Rda&g —ii\gas\c ~P_El_éc‘wm?'?ef |]

Value 5 - “‘L_I"LFUU';_"U'
o : -6 - § |
SA cl C@ V_’V’é’(/\ _ |:> r
I @Ltmjt ovelte/ e
sp__ —J Undefhs Efﬁn ,
Vo p" o
Dheed pered clecke >Eefsed T um Thext = Tsample
\\“l\\lf(i((\((ull L(CU((((Q([(Q’ - ‘ compute data
| rd RS N // Synchronize: Wait until time for next sample
1 | i — while (TimerValue < TNext); // busy wait polling loop

| | // Position of following code implicitly schedules it
e . . e write data to DAC
S0 1 . I TNext += TSample

NC STATE UNIVERSITY

Task switching overhead

B. Software Polls Hardware Timer

TNext = TSample
while (1) { 7
/ Synchronize by busy-waiting
compute dat? . . . / for timer done flag
// Synchronize: Wait until time for next sample
Vv while (rValue < TNext); // busy wait polling loop
_O”; // Position of following code implicitly schedules it
write data to DAC
TNext += TSample

Compute next output value

}
TimerValge -~ | '_i—_
CPU Activity 2. | | F] 7 9
Write Timing Window I I
DAC Code ? d, d, d, d,
DAC Vg, /
= Add hardware timer/counter peripheral = Synchronization loop tolerates some
= Binary counter (e.g. 16, 32 bits) tracks elapsed time by timing interference
counting clock pulses. SW can read (e.g. TimerValue) = How much? Class discussion activity...

* Increments periodically, regardless of SWV activity = Synch performed in SW with HW help
18 3 = Scheduling performed in SW

NC STATE UNIVERSITY

B. Thread Polls Timer

Sequence Diagram

Hardware Software Hardware

Timer Thread

DAC
do™
Thread Starts/Resumes Running
TNext += TSample lﬁ
| L1
Compute d1
I Ll I

Thread Synchronizes to Timer Value

| I

loop / [until TimerValde[>= TNgxt]

ad Timer's Cqunter

...................)

ronized Thread Updates DAC

Write d1

-

19 v3

Thread Ends/Pauses
i |

Unbuffered DAC with Timer Polling

Timer Overflow

CPU Activity

Write Timing Window
DAC Code

DACVg,,

20 v3

NC STATE UNIVERSITY

. Interrupt entry/exit overhead

Task switching overhead

Compute next output value

VA Synchronize by busy-waiting for timer done flag

Write output value

|

NN

NN
NN

C. Hardware Timer Periodically Triggers Interrupt for DAC Write

Interrupt Handler {

= s

ISR:
Next fcompute data
Sample write data to DAC
}

NC STATE UNIVERSITY

Timer IRQ | | | | | | B |
CPU Activity B B 7 T
Write Timing Window I | ————1—_A__
DAC Code ? d, d, q,)
DAC Vg, -

= Some timing jitter possible if time to compute data varies

= |f so, may be able to flip order: write data computed in
previous ISR execution, then pre-compute next data item

21 v3

. Interrupt entry/exit overhead

Task switching overhead

Compute next output value
. Wait for Done. Sync. w/ timer

Write output value

NC STATE UNIVERSITY

Sequence Diagram

C. Timer ISR

Hardware Software Hardware

ISR:
Next Interrupt Main
Sample Timer Controller Thread
] } I
[I I:I VOut |
IRQ | Suspeén

|
>. Start handler

Compute
sample
d1

Wi

Resume
I N I I

22 V3 ' O '

NC STATE UNIVERSITY

Example Source Code from ESF: Listings 7.7, 7.8

void Init TPM(void)

{
// Turn on clock to TPM
SIM->SCGC6 |= SIM SCGC6 TPMO MASK;
// Set clock source for tpm
SIM=->SOPTZ2 |= (SIM SOPTZ TPMSRC(L) | SIM SOPT2 PLLFLLSEL MASK) ;
// Load the counter and mod, given prescaler of 32
TPMO->MOD = (F TPM CLOCK/(F TPM OVELW*32))-1;
// Set TPM to divide by 32 prescaler, enable counting (CMOD)
TPMO->SC = TPM SC CMOD(1) | TPM SC PS(5) | TPM SC TOTE MASK;
// Enable interrupts in NVIC

and interrupts

NVIC SetPriority(TPMO IRQn, 3); void TPMO_ IRQHandler ()

NVIC ClearPendingIRQ(TPMO IRQn) ;
NVIC EnableIRQ(TPMO IRQn) ;

} FPTD->PSOR =

// Do ISR work
out data += change;

= ESF code generates each waveform
sample in ISR (IRQ Handler)

change
} else if (out data
change
}
DACO->DAT[0O] .DATH =
DACO->DAT[O] .DATL =
FPTD->PCOR =

23 v3 }

static int change=STEP STIZE;
static uintleée t out

MASK (BLUE_LED POS);
TPMO->SC |= TPM SC TOIE MASK;

if (out data < STEP_STZE) ({

MASK (BLUE LED_ POS);

{

data=0;

// Debug signal: Entering ISR
// reset overflow flag

= STEP SIZE;
>= DAC RESOLUTION-STEP SIZE) {
= -STEP SIZE;

DAC DATH DATAI (out data >> 8);
DAC_DATL DATAO (out data) ;

// Debug signal: Exiting ISR

NC STATE UNIVERSITY

'C.Timing Analysis

SO0MSs/s]

s00MEarks
'L H &n0us 3.00M pt=

'L H 2n0us 120k pt= Ivawvvvexrwvvwvw D -120.000000ns T 4

=]

0.00000000ps

v v

Save

B ——

Ep Freg=178kHz FPerind=5.600us Period=10.00us Hidth=200.0ns

Tra-ces 'L H 100ns 133??&"3 M/E\J\/\/\/\J\M/\J\M/\/\/\/\/\/\I D 502.000000ns ?

“ b d

= DAC output voltage — triangle wave
» Timer ISR (TPMO_IRQHandler) activity

Periodic ISR execution: every 10 us
Noise on DAC output

= Digital signals switching quickly create crosstalk noise

ISR (TPMO_IRQHandler) duration about | us.

= Varies slightly: control flow paths in ISR have different durations

24 v3

D. Add |-element Input Data Buffer for DAC

NC STATE UNIVERSITY

ISR: Interrupt Handler {
Next compute data
Sample write data to DAC
] Vv } Error: dg not updated
I-> Ou s
gl within its timing window
|deal Output Update Time
Timer IRQ
cpu Acvity [BITE i L1000
Write Timing Window d, d, d; d, ds I d,
Buffer Value | ? d, d, d; d, ds dg
DAC Value) d, d, d, d, d,
DACV,,, I
= Timer also triggers DAC to update input data register from external data buffer Result
esult:

* Write timing window is now up to T, . (50 us) before ideal output update time

25 v3

d, is repeated

NC STATE UNIVERSITY

Seq u e n C e D iag ram D. Add Single-Entry Data Buffer before DAC

Hardware Software Hardware

ISR: Interrupt Main Timer
Next Timer Controller Thread ISR Buffer DAC

Sample I I
v | 77
r> D_»‘_I Ou IRQ - | Suspend) . [l Update DAC with dQ
- g

|
|
I
>

Compute dIIﬁ

Wijte d1_

I
I
" ISR can start slightly late and still |

update buffer in time Rety
T

Update DAC . Start handler
I
I
|
|
I

compute _Tto be determined I Resume |

= Slack time:Tg, e —

IRQ Update DAC with d

> T >
| .
| Compute d2 lﬁ
| Wite g2_
I

|
|
Start dl
I pandier >
|
|
|
|
|

26 v3 lﬂmi)' |

NC STATE UNIVERSITY

DAC Operating Modes

DACEN | |
'l " ! |
2 Voo
T | % LPEN | |
B x | Vout
{ %
g = Voo o
= |
|
|
— |

0 Sa. ®aep

s

./
!

[o:rlvaowa t

* Normal
= Value written to DACDAT is converted to voltage immediately

| Sou eaep

selector | ™ Buffered mode eases timing requirements
= Value written to DACDAT is stored in data buffer for later conversion
= Next data item is sent to DAC when triggered
= Software Trigger - write to DACSWTRG field in DACx_CO
= Hardware Trigger - from PIT timer peripheral
Overflow

= Normal Mode: Circular buffer
= One-time Scan Mode: Pointer advances, stops at end of buffer
= Status flags in DACx_SR

27 v3

NC STATE UNIVERSITY

Detailed Overview of What and Why

Output timing bad: Very unstable, vulnerable to other A.Task software
software (processes and handlers), timing errors writes to DAC
accumulate. Greedy, doesn’t share CPU. o ey

Add-HW timer (tracks time dccurately)

And add OS with ticks / s le Add HW timer, DMA with ISR,
' ' oftware buffer
from HW timer interrupts timer directly Wi uffe

[AZ. OS-triggered periodic task} [B.Task software poll/blocks on] [F.Timer triggers DMA data transfer,}

software writes to DAC timer, then writes to DAC DMA ISR writes data to buffer

Output timing better: Tolerates m
interference, vulnerable to processes an
handlers, errors don’t accumulate. Shares CPU.

utput timing better: Tolerates more
terference, vulnerable to processes and
‘ . dlers, errors don’t accumulate. Greedy, doesn’t
Tight deadline:T o share CPU.Tight deadline:Tsye
Put'eede in HW gimer’s ISR

V"4

[C.Timer ISR writes next data to DAC]

Output timing: Even better.
Vulnerable to other ISRs and interrupt
locking fsgmpre times per second

Tight deadline:T ;e Use |-deep

DAC input buffer

D.Timer advances data from buffer to DAC,
Timer ISR writes next data to buffer

28 v3

F. Use Tlmer-Trlggered DMA to Transfer Data

DMA ISR {
Restart DMA channel

NC STATE UNIVERSITY

Compute new data and refill buffer

Transfer One Sample

N
ISR:
Refill FO—Q
_ Buffer) }
|
~ v
R r | ;b] Ou

Timer Overflow I

ISR must save first new data
value d; before next sample time

v

DMA IRQ |

CPU Activity

d,d,d,d,

Write Timing Window

DMA Activity

DAC Code

DACV,,,

29 v3

1
\
1

NC STATE UNIVERSITY

Sequence Diagram i
Software
Direct Memory Interrupt Main Timer Buffer
ISR: Timer | | Access Controller Controller Thread ISR in Memory DAC
Refill I | L
Buffer El | | 0o B
- - V [| te DAC with d[Q_
> O > e
> : | Q |)
Transfer One Sample > i e DAC with d|1.
- | te DAC with d|2_
Vel Vel
-~ Suspend te DAC with d|3_
Vel Ve | Vel
Start|handler
[
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
'<_R_¢_t_t_r_r_fr_9_r!1_:h?_r3¢_'f-:r____
- Resumg
>
% | te DAC with d|4_
Vel Vel
- : te DAC with d 5;
> | te DAC with d 6;
te DAC with d|7
30 v3 > ! >

NC STATE UNIVERSITY

DMA Can Read and Write Memory and Peripheral Registers

‘ | controller
ARME® Cortex®-MO0+ Core ; A
Crossbar Switch
° | Flash
@ @ “1 controller
| <— ARM core

Y
MO

High-Speed System Bus unified bus

I ﬁ > SRAML
DMA >y ~
DMA Controller USB OTG GPIO @ 2 smamu
Ch0 Chl Ch2 ch3 Flex 10
Touch-Sensing
USB > 2
I][o E . Peripheral | 3| Peripheral
w o brldgeO eripnerals
Peripheral Bus |

= System bus is a crossbar switch: three three-way switches

P = Each of three masters (CPU core, DMA, USB) can access a
12-bit DAC ALl different device (flash memory, SRAM, peripheral bus)

.
BT simultaneously
—— R ook = |f multiple masters try to access same device, crossbar arbitrates

(decides order for accesses)

= KL25Z Reference Manual
= Ch. 20: Crossbar Switch Lite, Ch. 3 Section 4.6: Crossbar Configuration
= Ch. 21:Peripheral Bridge

31 v3

NC STATE UNIVERSITY

Basic Concepts

Source
= Memory copy machine built from hardware S/ wete Control and Data E—
= Reads data from source, writes it to destination \ Read | FeTPheral
= Can eliminate ISRs which just copy data (e.g. copy ADC

results into buffer)

= Key configurable options
= What event starts a transfer: software or hardware triggers

= Source and destination addresses, which can be fixed or
change (e.g. increment, decrement)
i Address Modification
= Number of data items to copy et Data Transfer Behavior
= Size of data item (I, 2, 4 bytes) Source |Destination_
fixed fixed Write value from fixed source location
into fixed destination location

= More features too: chaining, error handling...
= Sequence of operations

changes changes Copy values from source array to
= |nitialization: Configure controller destination array
= Transfer: Data is copied | > fixed changes Write value from fixed source location
= Termination: Channel indicates transfer has completed into array

changes fixed Write array contents to fixed

(status flag, interrupt request, DMA request)

destination location
32 v3

NC STATE UNIVERSITY

DMA Controller Details

CPU Memory Peripheral
* 4 independent channels ¥ s
= Channel 0 has highest priority S ;"9"'55’;"-’“' & Control
i i System Bus Data
= 8-, 16- or 32-bit transfers, UART0,1,2 7} \ N S S— S)
: : SPIO, 1 i | DMA Controller Channel I
= Data size can differ between source 12€0, 1 P " ;
- oo {1 [LDCR [[BCR :
and destination P :
_ . TPM1-2 rq | | :
= Circular/ring buffer support ADCO ———»{ Controller SAR DAR Data |1
CMPO ! i i
= “Address Modulo:” address wraps DACO P — !
around at end of buffer rorts Lh
. Buff . N 2 ; 1 ¥ Address
uffer sizes from 64 B to 256 kB (2™) TSl 2 | oA Peripheral T & Control
. i E B Data
= DMA MUX peripheral selects ' [source || Mermuet R v 3
hardware signal for triggering Peripheral Peripheral

How many data items are transferred per trigger!?
= One:“Cycle stealing”
= All items: grabs bus

Hardware acknowledge/done signal

33 v3

Example Source Code from ESF: Listings 9.4, 9.5

NC STATE UNIVERSITY

= ESF code initializes buffer (TriangleTable), then replays buffer contents repeatedly

vold Play Tone with DMA(void) {
Init RGB LEDs() ;
Control RGB LEDs(0,0,0);
Init DAC();
Init TriangleTable() ;
Init DMA For Playback(TriangleTable, NUM STEPS) ;
Init TPM(10) ;
Start TPM() ;
Start DMA Playback() ;
while (1)

#define MAX DAC CODE (4095)
#define NUM STEPS (512)

uintl6é t TriangleTable[NUM STEPS];

volid Init TriangleTable(void) {
unsigned n, sample;

for (n=0; n<NUM STEPS/2; n++) {
sample = (n* (MAX DAC CODE+1)/(NUM STEPS/2)) ;
TriangleTable[n] = sample; // Fill in from front

TriangleTable [NUM STEPS-1-n] = sample; // Fill in from back

34 v3

TriangleTable

NC STATE UNIVERSITY

Example Source Code from ESF: Listings 9.6

uintle_t * Reload DMA Sourcez@j=
uint32_t Reload DMA Byte Count|1024 == TriangleTable

vold Init DMA For Playback(uintlé t * source, uint32 t count) {
// Save reload information
Reload DMA Source = source;
Reload DMA Byte Count = count*Z;

// Gate clocks to DMA and DMAMUX
SIM->SCGC7 |= SIM SCGC7 DMA MASK;
SIM->SCGC6 |= SIM SCGC6 DMAMUX MASK;

// Disable DMA channel to allow configuration
DMAMUX(0=->CHCFG[0O] = 0O;

// Generate DMA interrupt when done

// Increment source, transfer words (16 bits)

// Enable peripheral reguest

DMAO->DMA[0] .DCR = DMA DCR EINT MASK | DMA DCR SINC MASK |

DMA DCR SSIZE(2) | DMA DCR DSIZE(Z) | DMA DCR ERQ MASK | DMA DCR CS MASK;

// Configure NVIC for DMA ISR
NVIC SetPriority(DMAO IRQn, 2);
NVIC ClearPendingIRQ(DMAQ IRQn) ;
NVIC EnableIRQ(DMAO IRQn) ;

// Set DMA MUX channel to use TPM0O overflow as trigger
DMAMUXO0->CHCFG[0] = DMAMUX CHCFG SOURCE (54) ;

35 v3

Example Source Code from ESF: Listings 9.6,9.7,9.8

volid Start DMA Playback() {

// initialize source and destination pointers
DMAO->DMA[O] .SAR = DMA SAR SAR((uint32 t) Reload DMA Source);
DMAO->DMA[0O] .DAR = DMA DAR DAR((uint32 t) (&(DACO->DAT[0]1)));
// byte count

DMAO->DMA[0].DSR BCR = DMA DSR_BCR BCR(Reload DMA Byte Count) ;
// clear done flag

DMAO->DMA[0].DSR BCR &= ~DMA DSR BCR DONE MASK;

// set enable flag

DMAMUX0->CHCFG[0] |= DMAMUX CHCFG_ENBL_MASK;

volid DMAO IRQHandler (void) {

// Turn off blue LED in DMA IRQ handler
Control RGB LEDs(0,0,0);

// Clear done flag

DMAQO->DMA[0] .DSR BCR |= DMA DSR BCR DONE MASK;
// Start the next DMA playback cycle

Start DMA Playback() ;

// Turn on blue LED

Control RGB LEDs(0,0,1);

uint32_t Reload DMA_Byte_ Count 1024

uintlé_t * Reload DMA Source=0; —

\ 4

36

v3

NC STATE UNIVERSITY

MCU Memory
Address Space
TriangleTable
L
SAR [
DAR
_‘—> DAT[0]

NC STATE UNIVERSITY

F. Timing Analysis

JL ™0 |[H s00us |STniee v D 90.0000000us T
T w
v
DL D 'H 10.0us ggnnhﬁ?f Mwww D -400.000000ns T
i ?
B :
o
§ |
e e —————————————————i ———
1= i
D e e e e e e e s
JFreq=194 Hr T —— IPerind=sssrs | T —— |+4yidth<10.000s
— 7
&
B“I #
37 v3

_IFrepgzsssss | T - IPerind=+s++x [Fregzssss I+Width=2 800us

	Default Section
	Slide 1: 16: WaveGen: Improving Output Timing Stability (part 2)
	Slide 2: Overview of Waveform Generator Design Evolution: What and Why
	Slide 3: Detailed Overview of What and Why in Design Evolution
	Slide 4: Software and Hardware Components in Design Evolution
	Slide 5: Example Code from ESF
	Slide 6: Vulnerability to Timing Interference
	Slide 7: DAC Overview
	Slide 8: DAC Registers
	Slide 9: Wavegen Starting Point: Design A
	Slide 10: Simple Starter Code
	Slide 11: Unbuffered DAC with Busy-Wait Code
	Slide 12: Sequence Diagram

	Timing Stability
	Slide 13: Improving Output Timing Stability
	Slide 14: Detailed Overview of What and Why
	Slide 15: Software and Hardware Components
	Slide 16: A2. Scheduler Releases WaveGen Periodically
	Slide 17: B. Software Polls Hardware Timer
	Slide 18: B. Software Polls Hardware Timer
	Slide 19: Sequence Diagram
	Slide 20: Unbuffered DAC with Timer Polling
	Slide 21: C. Hardware Timer Periodically Triggers Interrupt for DAC Write
	Slide 22: Sequence Diagram
	Slide 23: Example Source Code from ESF: Listings 7.7, 7.8
	Slide 24: C. Timing Analysis
	Slide 25: D. Add 1-element Input Data Buffer for DAC
	Slide 26: Sequence Diagram
	Slide 27: DAC Operating Modes
	Slide 28: Detailed Overview of What and Why
	Slide 29: F. Use Timer-Triggered DMA to Transfer Data
	Slide 30: Sequence Diagram
	Slide 31: DMA Can Read and Write Memory and Peripheral Registers
	Slide 32: Basic Concepts
	Slide 33: DMA Controller Details
	Slide 34: Example Source Code from ESF: Listings 9.4, 9.5
	Slide 35: Example Source Code from ESF: Listings 9.6
	Slide 36: Example Source Code from ESF: Listings 9.6, 9.7, 9.8
	Slide 37: F. Timing Analysis

