
1 v3

16: 

WaveGen: Improving Output 

Timing Stability (part 2)

v3



2 v3

Overview of Waveform Generator Design Evolution:  What and Why
A. Task software busy-waits 

blindly, then writes to DAC

E2. Timer advances data from buffer to DAC. 

Low/Empty ISR writes next batch of data to buffer

D. Timer advances data from buffer to DAC, 

Timer ISR writes next datum to buffer

C. Timer ISR writes next datum to DAC

B. Task software poll/blocks on 

timer, then writes to DAC

F. Timer triggers DMA data transfer, 

DMA ISR writes data to buffer

G. Timer triggers DMA 

with double-buffering, 

DMA ISR switches buffers 

and refills with data

H. Timer triggers DMA, 

DMA ISR writes urgent data 

to buffer and triggers task to 

write rest of data

A2. OS-triggered periodic task 

software writes to DAC

Reduce timing 

interference to other 

SW processing

E. Timer advances data from buffer to DAC. 

Timer ISR writes next datum to buffer

Improve output 

timing stability 

Loosen refill deadline

Allow faster output 

update rates

Allow faster output 

update rates

Reduce timing interference 

to other SW processing

Loosen refill 

deadline

Share CPU core better, 

reducing timing interference to 

other SW processing



3 v3

Detailed Overview of What and Why in Design Evolution
A. Task software 

writes to DAC

E2. Timer advances data from buffer to DAC. 

Low/Empty ISR writes next batch of data to buffer

Use N-deep DAC input 

buffer with low/empty ISR

D. Timer advances data from buffer to DAC, 

Timer ISR writes next data to buffer

Use 1-deep 

DAC input buffer

C. Timer ISR writes next data to DAC

B. Task software poll/blocks on 

timer, then writes to DAC

And add DMA with ISR, 

software buffer

F. Timer triggers DMA data transfer, 

DMA ISR writes data to buffer

G. Timer triggers DMA 

with double-buffering, 

DMA ISR switches buffers 

and refills with data

Split into double-buffer to ease first 

sample’s deadline and cuts ISR 

duration in half.

H. Timer triggers DMA, 

DMA ISR writes urgent data 

to buffer and triggers task to 

write rest of data

Move non-urgent 

work to task

Output timing bad:  Very unstable, vulnerable to other 

software (processes and handlers), timing errors 

accumulate. Greedy, doesn’t share CPU.

Output timing better:  Tolerates more 

interference, vulnerable to processes and 

handlers, errors don’t accumulate. Greedy, doesn’t 

share CPU. Tight deadline: TSample

Output timing: Even better. 

Vulnerable to other ISRs and interrupt 

locking fsample times per second

Tight deadline: TSample

Deadline better: 2TSample

Interrupt overhead for each 

sample wastes CPU time. 

1.Tight Deadline: ISR must write first new sample to 

buffer within TSample

2. Long DMA ISR is delays other processing too much

A2. OS-triggered periodic task 

software writes to DAC

Add HW timer (tracks time accurately)

And add OS with ticks 

from HW timer interrupts
And access HW 

timer directly

Put code in HW timer’s ISR

E. Timer advances data from buffer to DAC. Timer 

ISR writes next data to buffer

Add N-deep DAC input 

buffer with low/empty ISR

Interrupt overhead for each 

sample wastes CPU time

Output timing better:  Tolerates more 

interference, vulnerable to processes and 

handlers, errors don’t accumulate.  Shares CPU. 

Tight deadline: TSample



4 v3

Software and Hardware Components in Design Evolution

A

DAC

SW

HW VOut

B

DAC
VOutTimer

Done?

C

DAC
VOut

Timer

ISR: Next 

Sample

NVIC

D

DAC
VOut

Timer

ISR: Next 

Sample

NVIC

E

DAC
VOut

Timer

ISR: Next 

Sample

NVIC

E2

DAC
VOut

Timer

ISR: Refill 

Buffer

NVIC

F

DAC
VOut

Timer

ISR: 

Refill 

Buffer

NVIC
DMA

Transfer One Sample

G

DAC
VOut

Timer

ISR: Switch 

Buffers, 

Refill Other

NVIC
DMA

Transfer One Sample

H

DAC
VOut

Timer

ISR: Start to 

Refill Buffer

NVIC
DMA

Transfer One Sample

Run

later

A2

DAC
VOut

OS

Timer

General Trend: Move operations which need synchronization (update output, 
compute new value) from software to hardware to improve stability, performance

Asynchronous I/O: Output is updated by hardware, so it is decoupled from 
(asynchronous with) software execution, so sloppy software timing affects output timing less



5 v3

Example Code from ESF

void Play_Tone(unsigned int period, unsigned int
num_cycles, unsigned wave_type) {

unsigned step, out_data;

 

while (num_cycles>0) {

num_cycles--;

for (step = 0; step < NUM_STEPS; step++) {

switch (wave_type) {

case SQUARE: 

if (step < NUM_STEPS/2)

out_data = 0; 

else

out_data = MAX_DAC_CODE;

break;

case RAMP:

out_data = (step*MAX_DAC_CODE)/NUM_STEPS;

break;

case SINE:

out_data = SineTable[step];

break;

default:

break;

}

DAC0->DAT[0].DATH = DAC_DATH_DATA1(out_data >> 8);

DAC0->DAT[0].DATL = DAC_DATL_DATA0(out_data);

Delay_us(period/NUM_STEPS);

}

}

}



6 v3

Vulnerability to Timing Interference
A. Task busy-waits for constant time (blind), then writes 

to DAC

E2. Timer advances buffer data to DAC. Low/Empty ISR 

writes next batch of data to buffer

D. Timer advances buffer data to DAC, Timer ISR writes 

next data to buffer

C. Timer ISR writes data to DAC

B. Task software poll/blocks on timer, then writes to 

DAC

F. Timer triggers DMA data transfer, DMA ISR writes 

next batch of data to buffer

G. Timer triggers DMA transfer, DMA ISR switches 

buffers and writes next batch of data to previous buffer

H. Timer triggers DMA transfer, DMA ISR writes urgent 

data to buffer, triggers task. Task writes rest of data batch

A2. OS runs task periodically, task writes to DAC

E. Timer advances buffer data to DAC. Timer ISR writes 

data to buffer



7 v3

DAC Overview

▪ Load DACDAT with 12-bit data N

▪ MUX selects a node from resistor divider network to create 
   Vo = (N+1)*Vin/212

▪ Vo is buffered by output amplifier to create Vout 

▪ Vo = Vout but Vo is high impedance - can’t drive much of a load, so need to buffer it



8 v3

DAC Registers

▪ This peripheral’s registers are only eight 
bits long (legacy peripheral).

▪ DATA[11:0] stored in two registers
▪ DATA0: Low byte [7:0] in DACx_DATnL

▪ DATA1: High nibble [11:8] in DACx_DATnH



9 v3

WAVEGEN STARTING POINT: DESIGN A



10 v3

A. Simple Starter Code

▪ Timing is unstable. Make T what value?

▪ What if computing data takes variable time?

▪ Vulnerable to interference by other handlers, 

processes on CPU

▪ Using busy-waiting to create time delay is greedy 

because it doesn’t share CPU

▪ Synchronization and scheduling done completely in 

software

DAC

SW

HW VOut

while (1) {
 compute data
 // Blind Synchronization: 
 // Wait for fixed time (or more if preempted)
 for (t = T; t>0; t--); // busy wait loop creates delay
 // Position of following code implicitly schedules it
 write data to DAC
}



11 v3

Unbuffered DAC with Busy-Wait Code

CPU Activity

Ideal Write Window

DAC Code ? d1 d2 d3 d4

DAC VOut

Busy-waiting for fixed time

Compute next output value

Write output value

d1 d2 d4
d5d3



12 v3

Sequence Diagram

DAC

SW

HW VOut

                

                  

         

  

                     

       

          

           

                     

              

         

            

                  

        

  

                  

while (1) {
 compute data
 // Blind Synchronization: 
 // Wait for fixed time (or more if preempted)
 for (t = T; t>0; t--); // busy wait loop creates delay
 // Position of following code implicitly schedules it
 write data to DAC
}



13 v3

IMPROVING OUTPUT TIMING STABILITY



14 v3

Detailed Overview of What and Why

A. Task software 

writes to DAC

D. Timer advances data from buffer to DAC, 

Timer ISR writes next data to buffer

Use 1-deep 

DAC input buffer

Add HW timer, DMA with ISR, 

software buffer

F. Timer triggers DMA data transfer, 

DMA ISR writes data to buffer

Output timing bad:  Very unstable, vulnerable to other 

software (processes and handlers), timing errors 

accumulate. Greedy, doesn’t share CPU.

Add HW timer (tracks time accurately)

B. Task software poll/blocks on 

timer, then writes to DAC

Output timing better:  Tolerates more 

interference, vulnerable to processes and 

handlers, errors don’t accumulate. Greedy, doesn’t 

share CPU. Tight deadline: TSample

And access HW 

timer directly

C. Timer ISR writes next data to DAC
Output timing: Even better. 

Vulnerable to other ISRs and interrupt 

locking fsample times per second

Tight deadline: TSample

Put code in HW timer’s ISR

And add OS with ticks 

from HW timer interrupts

A2. OS-triggered periodic task 

software writes to DAC

Output timing better:  Tolerates more 

interference, vulnerable to processes and 

handlers, errors don’t accumulate.  Shares CPU. 

Tight deadline: TSample



15 v3

Software and Hardware Components

A

DAC

SW

HW VOut

B

DAC
VOutTimer

Done?

C

DAC
VOut

Timer

ISR: Next 

Sample

NVIC

D

DAC
VOut

Timer

ISR: Next 

Sample

NVIC

F

DAC
VOut

Timer

ISR: 

Refill 

Buffer

NVIC
DMA

Transfer One Sample

A2

DAC
VOut

OS

Timer



16 v3

A2.  Scheduler Releases WaveGen Periodically

Ideal Output Update Time

CPU Activity

Write Window

DAC Code ? d1 d2 d3 d4

DAC VOut

Task switching overhead

Interrupt entry/exit overhead

Compute next output value

Write output value

d1 d2 d3 d4 d5

void Task_WaveGen (void) {
 compute data
 write data to DAC
}

DAC
VOut

Release Task 

Periodically

OS

Timer

▪ DAC update is on time if …  

▪ Task_WaveGen starts on time (tasks/ISRs finish early enough for scheduler to run it), and 

▪ Task_WaveGen not preempted by other processing

▪ DAC update is delayed if other processing (tasks, ISRs) cause timing interference: 

▪ Task_WaveGen starts late if tasks/ISRs finish too late (delaying scheduler), so DAC is updated late

▪ Task_WaveGen updates DAC late if preempted by higher-priority software processes (e.g. ISRs)



17 v3

B. Software Polls Hardware Timer

TNext = TSample
while (1) {
 compute data
 // Synchronize: Wait until time for next sample
 while (TimerValue < TNext); // busy wait polling loop
 // Position of following code implicitly schedules it
 write data to DAC
 TNext += TSample
}



18 v3

B. Software Polls Hardware Timer
TNext = TSample
while (1) {
 compute data
 // Synchronize: Wait until time for next sample
 while (TimerValue < TNext); // busy wait polling loop
 // Position of following code implicitly schedules it
 write data to DAC
 TNext += TSample
}

▪ Add hardware timer/counter peripheral 

▪ Binary counter (e.g. 16, 32 bits) tracks elapsed time by 

counting clock pulses. SW can read (e.g. TimerValue)

▪ Increments periodically, regardless of SW activity

▪ Synchronization loop tolerates some 

timing interference

▪ How much? Class discussion activity…

▪ Synch performed in SW with HW help

▪ Scheduling performed in SW

DAC
VOut

Timer

Done?

Timer Value

CPU Activity

Write Timing Window

DAC Code ? d1 d2 d3 d4

DAC VOut

Task switching overhead

Compute next output value

Synchronize by busy-waiting 

for timer done flag

d1 d2 d3 d4 d5



19 v3

Sequence Diagram

DAC
VOut

Timer

Done?

                        

                     

              

  

                             

                

          

                                  

                               

                    

          

                               

        

  

                  



20 v3

Unbuffered DAC with Timer Polling

Timer Overflow

CPU Activity

Write Timing Window

DAC Code ? d1 d2 d3 d4

DAC VOut

Task switching overhead

Interrupt entry/exit overhead

Compute next output value

Synchronize by busy-waiting for timer done flag

Write output value

d1 d2 d3 d4 d5



21 v3

C.  Hardware Timer Periodically Triggers Interrupt for DAC Write
Interrupt Handler {
 compute data
 write data to DAC
}

▪ Some timing jitter possible if time to compute data varies

▪ If so, may be able to flip order: write data computed in 

previous ISR execution, then pre-compute next data item

DAC
VOut

Timer

ISR: 

Next 

Sample

NVIC

Timer IRQ

CPU Activity

Write Timing Window

DAC Code ? d1 d2 d3 d4

DAC VOut

d1 d2 d3 d4 d5

Task switching overhead

Interrupt entry/exit overhead

Compute next output value

Wait for Done. Sync. w/ timer

Write output value



22 v3

Sequence Diagram

DAC
VOut

Timer

ISR: 

Next 

Sample

NVIC

                        

            

     

         

          

    

      

     

      

  

          

             

       

      

  

        

  

                   

      



23 v3

Example Source Code from ESF: Listings 7.7, 7.8

▪ ESF code generates each waveform 

sample in ISR (IRQ Handler)



24 v3

C. Timing Analysis

▪ Traces

▪ DAC output voltage – triangle wave

▪ Timer ISR (TPM0_IRQHandler) activity

▪ Periodic ISR execution: every 10 us

▪ Noise on DAC output 

▪ Digital signals switching quickly create crosstalk noise

▪ ISR (TPM0_IRQHandler) duration about 1 us. 

▪ Varies slightly: control flow paths in ISR have different durations



25 v3

D.  Add 1-element Input Data Buffer for DAC

▪ Timer also triggers DAC to update input data register from external data buffer

▪ Write timing window is now up to Tsample (50 μs) before ideal output update time

DAC
VOut

Timer

Error: d5 not updated 

within its timing window
NVIC

Ideal Output Update Time

Timer IRQ

CPU Activity

Write Timing Window

Buffer Value ? d1 d2 d3 d4

DAC Value ? d1 d2 d3 d4 d4

DAC VOut

d1 d2 d3 d4 d5 d6

? d1 d2 d3 d4 d5 d6

d1 d2 d3 d4 d5 d6

ISR: 

Next 

Sample

Result: 

d4 is repeated

Interrupt Handler {
 compute data
 write data to DAC
}



26 v3

Sequence Diagram

DAC
VOut

Timer

ISR: 

Next 

Sample

NVIC

▪ ISR can start slightly late and still 

update buffer in time

▪ Slack time: Tsample – Tcompute – Tto be determined

Update DAC

                        

                                          

     

         

          

    

      

     

            

    

                            

  
             

          

        

  

                   

      

                            

  
             

          

        

  

                   

      



27 v3

DAC Operating Modes

▪ Normal
▪ Value written to DACDAT is converted to voltage immediately

▪ Buffered mode eases timing requirements
▪ Value written to DACDAT is stored in data buffer for later conversion
▪ Next data item is sent to DAC when triggered

▪ Software Trigger - write to DACSWTRG field in DACx_C0

▪ Hardware Trigger - from PIT timer peripheral

▪ Normal Mode: Circular buffer

▪ One-time Scan Mode: Pointer advances, stops at end of buffer
▪ Status flags in DACx_SR

M
u
x

Overflow

d
ata re

g 1

Timer (PIT)

d
ata re

g 0

Selector



28 v3

Detailed Overview of What and Why

A. Task software 

writes to DAC

D. Timer advances data from buffer to DAC, 

Timer ISR writes next data to buffer

Use 1-deep 

DAC input buffer

Add HW timer, DMA with ISR, 

software buffer

F. Timer triggers DMA data transfer, 

DMA ISR writes data to buffer

Output timing bad:  Very unstable, vulnerable to other 

software (processes and handlers), timing errors 

accumulate. Greedy, doesn’t share CPU.

Add HW timer (tracks time accurately)

B. Task software poll/blocks on 

timer, then writes to DAC

Output timing better:  Tolerates more 

interference, vulnerable to processes and 

handlers, errors don’t accumulate. Greedy, doesn’t 

share CPU. Tight deadline: TSample

And access HW 

timer directly

C. Timer ISR writes next data to DAC
Output timing: Even better. 

Vulnerable to other ISRs and interrupt 

locking fsample times per second

Tight deadline: TSample

Put code in HW timer’s ISR

And add OS with ticks 

from HW timer interrupts

A2. OS-triggered periodic task 

software writes to DAC

Output timing better:  Tolerates more 

interference, vulnerable to processes and 

handlers, errors don’t accumulate.  Shares CPU. 

Tight deadline: TSample



29 v3

F.  Use Timer-Triggered DMA to Transfer Data
DMA ISR {
 Restart DMA channel
 Compute new data and refill buffer
}

Timer Overflow

DMA IRQ

CPU Activity

Write Timing Window

DMA Activity

DAC Code ? d1 d2 d3 d4

DAC VOut

DAC
VOut

Timer

ISR: 

Refill 

Buffer

NVIC

DMA
Transfer One Sample

ISR must save first new data 
value d5 before next sample time

d 1 d2  d3  d4 d5  d6  d7  d8 



30 v3

        

            

     

             

                 

         

          

    

      

     

   

      

            

       

                   

                   

                   

                          

             

           

         

           

         

           

         

           

         

                   

      

                   

                   

                   

                   

Sequence Diagram

DAC
VOut

Timer

ISR: 

Refill 

Buffer

NVIC

DMA
Transfer One Sample



31 v3

DMA Can Read and Write Memory and Peripheral Registers

▪ System bus is a crossbar switch: three three-way switches

▪ Each of three masters (CPU core, DMA, USB) can access a 

different device (flash memory, SRAM, peripheral bus) 

simultaneously

▪ If multiple masters try to access same device, crossbar arbitrates 

(decides order for accesses)

▪ KL25Z Reference Manual

▪ Ch. 20: Crossbar Switch Lite, Ch. 3 Section 4.6: Crossbar Configuration

▪ Ch. 21: Peripheral Bridge

Analog

Analog Comparator

12-bit DAC

Internal Voltage 
Reference

16-bit DAC

Timers

PWM

Low-Power Timer

Periodic Interrupt Timers

Real-Time Clock

GPIO

Touch-Sensing

Memories

I2C

SPI

UART

Flex IO

USB OTG

I2S

DMA Controller

ARM® Cortex®-M0+ Core

High-Speed System Bus

Bridge

Peripheral Bus

Ch 0 Ch 1 Ch 2 Ch 3



32 v3

Basic Concepts

▪ Memory copy machine built from hardware 

▪ Reads data from source, writes it to destination

▪ Can eliminate ISRs which just copy data (e.g. copy ADC 

results into buffer)

▪ Key configurable options

▪ What event starts a transfer: software or hardware triggers

▪ Source and destination addresses, which can be fixed or 

change (e.g. increment, decrement)

▪ Number of data items to copy

▪ Size of data item (1, 2, 4 bytes)

▪ More features too: chaining, error handling…

▪ Sequence of operations

▪ Initialization: Configure controller

▪ Transfer: Data is copied

▪ Termination: Channel indicates transfer has completed 

(status flag, interrupt request, DMA request)

Address Modification
Data Transfer Behavior

Source Destination

fixed fixed Write value from fixed source location 

into fixed destination location

changes changes Copy values from source array to 

destination array

fixed changes Write value from fixed source location 

into array

changes fixed Write array contents to fixed 

destination location



33 v3

DMA Controller Details

▪ 4 independent channels

▪ Channel 0 has highest priority

▪ 8-, 16- or 32-bit transfers, 

▪ Data size can differ between source 

and destination

▪ Circular/ring buffer support

▪ “Address Modulo:” address wraps 

around at end of buffer

▪ Buffer sizes from 64 B to 256 kB (2N
 )

▪ DMA MUX peripheral selects 

hardware signal for triggering

▪ How many data items are transferred per trigger?

▪ One: “Cycle stealing”

▪ All items: grabs bus

▪ Hardware acknowledge/done signal



34 v3

Example Source Code from ESF: Listings 9.4, 9.5

▪ ESF code initializes buffer (TriangleTable), then replays buffer contents repeatedly

TriangleTable



35 v3

Example Source Code from ESF: Listings 9.6

TriangleTable1024



36 v3

MCU Memory 
Address Space

Example Source Code from ESF: Listings 9.6, 9.7, 9.8

TriangleTable

DAC 0Timer

DMA Channel 0

SAR

DAR
DAT[0]

1024



37 v3

F.  Timing Analysis


	Default Section
	Slide 1: 16:   WaveGen: Improving Output Timing Stability (part 2)
	Slide 2: Overview of Waveform Generator Design Evolution:  What and Why
	Slide 3: Detailed Overview of What and Why in Design Evolution
	Slide 4: Software and Hardware Components in Design Evolution
	Slide 5: Example Code from ESF
	Slide 6: Vulnerability to Timing Interference
	Slide 7: DAC Overview
	Slide 8: DAC Registers
	Slide 9: Wavegen Starting Point: Design A
	Slide 10: Simple Starter Code
	Slide 11: Unbuffered DAC with Busy-Wait Code
	Slide 12: Sequence Diagram

	Timing Stability
	Slide 13: Improving Output Timing Stability
	Slide 14: Detailed Overview of What and Why
	Slide 15: Software and Hardware Components
	Slide 16: A2.  Scheduler Releases WaveGen Periodically
	Slide 17: B. Software Polls Hardware Timer
	Slide 18: B. Software Polls Hardware Timer
	Slide 19: Sequence Diagram
	Slide 20: Unbuffered DAC with Timer Polling
	Slide 21: C.  Hardware Timer Periodically Triggers Interrupt for DAC Write
	Slide 22: Sequence Diagram
	Slide 23: Example Source Code from ESF: Listings 7.7, 7.8
	Slide 24: C. Timing Analysis
	Slide 25: D.  Add 1-element Input Data Buffer for DAC
	Slide 26: Sequence Diagram
	Slide 27: DAC Operating Modes
	Slide 28: Detailed Overview of What and Why
	Slide 29: F.  Use Timer-Triggered DMA to Transfer Data
	Slide 30: Sequence Diagram
	Slide 31: DMA Can Read and Write Memory and Peripheral Registers
	Slide 32: Basic Concepts
	Slide 33: DMA Controller Details
	Slide 34: Example Source Code from ESF: Listings 9.4, 9.5
	Slide 35: Example Source Code from ESF: Listings 9.6
	Slide 36: Example Source Code from ESF: Listings 9.6, 9.7, 9.8
	Slide 37: F.  Timing Analysis


