NC STATE UNIVERSITY

|6: Improving Output Timing
Stability for WaveGen (Part 2)

vl

Overview of Waveform Generator Design Evolution: What and Why

A.Task software busy-waits
Improve output blindly, then writes to DAC
timing stability "4 1

/ Allow fasm N
e ates [F-Timer triggers DMA data transfer,]

{ A2. OS-triggered periodic task J L B. Task softwarg poll/blocks on 1 DMA ISR writes data to buffer

Share CPU core better,
reducing timing interference to
other SW processing

software writes to DAC timer, thendwrites to DAC -
\

S / Lo;::;:i:ﬁ”
N 4
[C.Timer ISR writes next datum to DAC]

Reduce timing
interference to other
SW processing

G.Timer triggers DMA H.Timer triggers DMA,

1 Loosen refill deadline

[D.Ti.mer advancgs data from buffer to DAC,] with double-buffering, DMA ISR writes urgent data
Timer ISR writes next datum to buffer DMA ISR switches buffers to buffer and triggers task to
I and refills with data write rest of data

¥

E.Timer advances data from buffer to DAC.
Timer ISR writes next datum to buffer

Allow faster output Reduce timing interference
update rates to other SW processing

E2.Timer advances data from buffer to DAC.
Low/Empty ISR writes next batch of data to buffer

NC STATE UNIVERSITY

Detailed Overview of What in Design Evolution

Output timing bad: Very unstable, vulnerable to other

A.Task software
writes to DAC

software (processes and handlers), timing errors ———
accumulate. G"eef'y, d.oesn’t share CPU. Add-HW timer (tracks time aceuratel And add DMA with ISR,
And add QS Wl'th ticks And access HW software buffer
from HW timer interrupts . .
timer directly
A2. OS-triggered periodic task B.Task software poll/blocks on F-Timer triggers DMA data transfer,
software writes to DAC timer, then writes to DAC DMA ISR writes data to buffer
Output timing better: Tolerates more Output timing b .
) g better: Tolerates more | 1 D
interference, vulnerable to processes and Put-code in HW timer’sJSR interference, vulnerable to processes an dl -Tight Deadline: ISR m first new sample to
handers, erro_’rf :ozt a;;um_;; late. Shares CPU. V handlers, errors don’t accumulate. Greedy, doesn’t
ight deadiine: | s i ine: 2.Long DMA | rocessing too much
’ [C.Timer ISR writes next data to DAC Sh}]re CPU. Tight deadine:T sy ¢ ¢
Output timing: Even better. o
Vulnerable to other ISRs and interrupt Use |-deep Split into double-byfffer to ease first A
locking f.qmpe times per second DAC input buffer sample’s deadjfhe and cuts ISR ove non-urgent

work to task

D.Timer advances data from buffer to DAC, durggfon in half.

Timer ISR writes next data to buffer

Tight deadline:Tg, . [

Deadline better: 2T, . G.Timer triggers DMA H.Timer triggers DMA,
Interrupt overhead for each Use N-Fieep DAC input with double-buffering, DMA ISR writes urgent data
sample wastes CPU time. buffer with low/empty ISR DMA ISR switches buffers to buffer and triggers task to
E.Timer advances data from buffer to DAC.Timer and refills with data write rest of data
ISR writes next data to buffer
Interrupt overhead for each Add N-deep DAC input
sample wastes CPU time buffer with low/empty ISR

E2.Timer advances data from buffer to DAC.
Low/Empty ISR writes next batch of data to buffer

3 vl

NC STATE UNIVERSITY

Software and Hardware Components in Design Evolution

General Trend: Move operations which need synchronization (update output,
compute new value) from software to hardware to improve stability, performance

v,
L|:|—O>t] 4 Asynchronous I/0: Output is updated by hardware, so it is decoupled from)

A2
D ISR: Next F ISR:
Sample Refill

(asynchronous with) software execution, so sloppy software timing affects output timing less

|

9

B fE,

B .
E ISR: Next ISR: Switch
G

Y
[1]]
S
——

v Buffer
b % PLL
| M Transfer One Sample

Refill Other

V,
»:—ﬂo - :
"1:'—\/0&] [l:'gl—[[‘r:[l [| |_’|)_%er()n‘e Sample .

Done? i
[I
Timer o
C ISR: Next
Sample

E2 ' Run
|s§. fPf\eﬁn O H later

urer ISR: Start to

Refill Buffer

Vo, ri—'-
’:H] i ’[Egjb‘:'&q [| |_’| %ne Sample

§
é
\L

Example Code from ESF

void Play Tone(unsigned int period, unsigned int
num_cycles, unsigned wave_type) {
unsigned step, out_data;

while (num_cycles>@) {
num_cycles--;
for (step = 0; step < NUM_STEPS; step++) {
switch (wave_type) {
case SQUARE:
if (step < NUM_STEPS/2)
out_data = 0;
else
out_data = MAX _DAC_CODE;
break;
case RAMP:
out_data = (step*MAX_DAC_CODE)/NUM_STEPS;
break;

case SINE:
out_data = SineT
break;
default:
break;
}
DACO->DAT[0] .DATH
DACO->DAT[0] .DATL
Delay us(period/NUM

}

NC STATE UNIVERSITY

able[step];

DAC_DATH_DATA1(out_data >> 8);
DAC_DATL_DATA®(out_data);
STEPS);

NC STATE UNIVERSITY

Vulnerability to Timing Interference

A Task busy-waits for constant time (blind), then writes
[to DAC

4 N\

A2. OS runs task periodically, task writes to DAC

- J
4 N
B.Task software poll/blocks on timer, then writes to

DAC

- J
4 R

C.Timer ISR writes data to DAC

- J

J

(D.Timer advances buffer data to DAC, Timer ISR writes
\next data to buffer

(E.Timer advances buffer data to DAC.Timer ISR writes

\data to buffer

J

(EZ.Timer advances buffer data to DAC. Low/Empty ISR
 writes next batch of data to buffer

(F.Timer triggers DMA data transfer, DMA ISR writes
_next batch of data to buffer

p
G.Timer triggers DMA transfer, DMA ISR switches
 buffers and writes next batch of data to previous buffer

p

H.Timer triggers DMA transfer, DMA ISR writes urgent
\data to buffer, triggers task.Task writes rest of data batch)
6 vl

NC STATE UNIVERSITY

v AMP buffer
f A
DACEN |
-H-\-""‘-\-_
r |
‘ 3 LPEN |
4

4096 level

i
- | /

e e

= Load DACDAT with 12-bit data N
= MUX selects a node from resistor divider network to create
V, = (N+1)*V, /212
= V_ is buffered by output amplifier to create V
=V =V

out

out
but V, is high impedance - can’t drive much of a load, so need to buffer it

7 vl

NC STATE UNIVERSITY

DAC Registers

DAC memory map
‘;ZZ:L?: Register name inps Access | Reset value Sention:
(hex) (in bits) page
4003_F000 |DAC Data Low Register (DACO_DATOL) 8 R/W 00h 30.4.1/531
4003_F001 |DAC Data High Register (DACO_DATOH) 8 RW 00h 30.4.2/532
4003_F002 |DAC Data Low Register (DACO_DAT1L) 8 R/W 00h 30.4.1/531
4003_F003 |DAC Data High Register (DACO_DAT1H) 8 RW 00h 30.4.2/532
4003_F020 |DAC Status Register (DACO_SR) 8 R 02h 30.4.3/532
4003_F021 |DAC Control Register (DAC0_CO0) 8 RW 00h 30.4.4/533
4003_F022 |DAC Control Register 1 (DAC0_C1) 8 R/W 00h 30.4.5/534
4003_F023 |DAC Control Register 2 (DAC0_C2) 8 R/W OFh 30.4.6/534

= This peripheral’s registers are only eight = DATA[11:0] stored in two registers
bits long (legacy peripheral). = DATAO: Low byte [7:0] in DACx_DATnL
= DATA1: High nibble [11:8] in DACx_DATnH

8 vl

NC STATE UNIVERSITY

WAVEGEN STARTING POINT: DESIGN A

A. Simple Starter Code

NC STATE UNIVERSITY

- while (1) {
SVV(::::::y_ compute data
// Synchronize: Wait until time for next sample
> for (t = T; t>0; t--); // busy wait loop creates delay
HW Vour // Position of following code implicitly schedules it
- —— :
write data to DAC
N }
A: Task Sofware Writes to DAC
[CPU Aétivity : 0 % | : |
ccmputa—l i | i i |
walt . -IE—I
write | : : L . d . : d : : d !
CPUState/ o i~ L~~~y | : _ i ! t 1 '
<:>< Synch '><>< Synch X - X Synch >®< SyEr: ynch
DAC Output, i i : ™ . | 2 T |
' 4 datal X data2 L data3 X dataa | A
; | R — | R (— S B AY ad ¥ |
0 10 20 30 40 50 60 70 80 30 100 110 120 130
= Timing is unstable. Make T what value? = Using busy-waiting to create time delay js greedy

= What if computing data takes variable time?

*_Vulnerable to interference by other handlers,

processes on CPU

10 v1

because it doesn’t share CPU

= Synchronization and scheduling done completely in
software

NC STATE UNIVERSITY

Unbuffered DAC with Busy-Wait Code

§ Busy-waiting for fixed time

Compute next output value

Write output value

| | | | |
CPU Activiy NN MM MIMHTITIT I I

Ideal Write Window]]
DAC Code ? d, d, d, d,
DACVg,,

11 v1

NC STATE UNIVERSITY

Sequence Diagram

:swo_] Yo s re-

(V,
HW -}D Out]

| Y \ 3
AR
3? ‘w“n@dLl) J__‘
[~ 7DiC }\w* b2
|
N8 | | |

13 v

IMPROVING OUTPUT TIMING STABILITY

NC STATE UNIVERSITY

NC STATE UNIVERSITY

Detailed Overview of What and Why

Output timing bad: Very unstable, vulnerable to other A.Task software
software (processes and handlers), timing errors writes to DAC
accumulate. Greedy, doesn't share CPU. . gy

Add-HW timer (tracks time dccurately)

And add OS with ticks /An e le Add HW timer, DMA with ISR,
i i oftware buffer
from HW timer interrupts timer directly ffe

[AZ. OS-triggered periodic task] { B.Task software poll/blocks on] [F.Timer triggers DMA data transfer,]

software writes to DAC timer, then writes to DAC DMA ISR writes data to buffer

Output timing better: Tolerates m
interference, vulnerable to processes an
handlers, errors don’t accumulate. Shares CPU.

utput timing better: Tolerates more
terference, vulnerable to processes and
- X dlers, errors don’t accumulate. Greedy, doesn’t
Tight deadline:T g share CPU.Tight deadline:T e
Put'eede in HW gimer’s ISR

4

[C.Timer ISR writes next data to DAC]

Output timing: Even better.
Vulnerable to other ISRs and interrupt
locking f. gy times per second

Tight deadline:T,,.c Use I-deep

DAC input buffer
[D.Timer advances data from buffer to DAC,

Timer ISR writes next data to buffer

14 v1

NC STATE UNIVERSITY

Software and Hardware Components

|
N—

et

R - [aO—

)
*
Q<
—
)
_|
=
a <)
g
0
=5
o
o
3
=s
[¢]
é

15 v1

NC STATE UNIVERSITY
A2. Scheduler Releases WaveGen Periodically

Release Task void Task WaveGen (void) { . Interrupt entry/exit overhead

Periodicall
erio |(L>© compute data Task switching overhead

Compute next output value

}
[- Vour | Write output value

Ideal Output Update Time | |
CPU Activity | D] | D -
Write Window Il I[I
DAC Code) d, d, d; d,
DACV,,,

= DAC update is on time if ...
= Task_WVaveGen starts on time (tasks/ISRs finish early enough for scheduler to run it), and
= Task_WVaveGen not preempted by other processing
= DAC update is delayed if other processing (tasks, ISRs) cause timing interference:
= Task_WVaveGen starts late if tasks/ISRs finish too late (delaying scheduler), so DAC is updated late
= Task_WVaveGen updates DAC late if preempted by higher-priority software processes (e.g. ISRs)

16 v1

NC STATE UNIVERSITY

B. Software Polls Hardware Timer

e T - S
] 7Bk U Guder | | | |
?cm | | T
a Ll-e_ s 5 I | n
Sh__ ek b Covder: 8 wAL B
™I C@wn{ @v&f/ S5 o Bl W D B B *]
§E__,, (- Me , efp O N
Voo " Overfen =
- L f _/ T" -
b0 perked Clock >Elgsed Twe | T SRS
e e e, | 'l | compute data
IV an o ’ , // Synchronize: Wait until time for next sample
/ / | — while (TimerValue < TNext); // busy wait polling loop
T A T // Position of following code implicitly schedules it
= 4 | write data to DAC
- TNext += TSample
I !

B. Software Polls Hardware Timer

TNext = TSample

while (1) {

compute data

NC STATE UNIVERSITY

Task switching overhead

Compute next output value

-
y/ Synchronize by busy-waiting

for timer done flag

// Synchronize: Wait until time for next sample

Timer Value

CPU Activity

Write Timing Window
DAC Code

DACVg,,

= Add hardware timer/counter peripheral

= Binary counter (e.g. 16, 32 bits) tracks elapsed time by
counting clock pulses. SW can read (e.g. TimerValue)

* Increments periodically, regardless of SWV activity

18 wvi

vV while (TimerValue < TNext); // busy wait polling loop
Out // Position of following code implicitly schedules it
write data to DAC
TNext += TSample
}
v 7
d, d, d; d,
/

= Synchronization loop tolerates some
timing interference
= How much? Class discussion activity...

= Synch performed in SW with HW help
= Scheduling performed in SW

NC STATE UNIVERSITY
DAC

Sequence Diagram

@

1
Done?i

[4.__§ = vOut]
=1 >

19 v1

Unbuffered DAC with Timer Polling

Timer Overflow

CPU Activity

Write Timing Window
DAC Code

DACVg,,.

20 v1

NC STATE UNIVERSITY

- Interrupt entry/exit overhead

Task switching overhead

Compute next output value

7/ Synchronize by busy-waiting for timer done flag

Write output value

A L
#
#

NN

C. Hardware Timer Periodically Triggers Interrupt for DAC Write

Interrupt Handler {
compute data
write data to DAC

ISR:
Next
Sample

T

o

Timer IRQ

CPU Activity

Write Timing Window
DAC Code

DAC Vg,

NC STATE UNIVERSITY

= Some timing jitter possible if time to compute data varies

= If so, may be able to flip order: write data computed in
previous ISR execution, then pre-compute next data item

21 v1

. Interrupt entry/exit overhead

Task switching overhead

Compute next output value
. Wait for Done. Sync. w/ timer

Write output value

NC STATE UNIVERSITY

Sequence Diagram

C. Timer ISR
Hardware Software Hardware
ISR:
Next Interrupt Main
Sample Controller Thread DAC

[_r'J v_jf | | A

! A
IRQ > Suspe.nd) .
Start handler
: >
|
: Compute
| sample
: d1
|
: Wi
|
|
|
|

. RIS

[
22 v1 : O

NC STATE UNIVERSITY

Example Source Code from ESF: Listings 7.7,7.8

void Init TPM(void)

{
Lf Turn: on clock to: TEM
SIM->SCGC6 |= SIM SCGC6 TPMO MASK;
// Set clock source for tpm
SIM->SOPT2 |= (SIM SOPT2 TPMSRC(1l) | SIM SOPT2 PLLFLLSEL MASK) ;
// Load the counter and mod, given prescaler of 32
TPMO->MOD (F_TPM CLOCK/(F TPM OVFLW*32))-1;
// Set TPM to divide by 32 prescaler, enable counting (CMOD)
TPMO->SC TPM SC CMOD(1) | TPM SC PS(5) | TPM SC TOIE MASK;
// Enable interrupts in NVIC

and interrupts

NVIC SetPriority(TPMO IRQn, 3); void TPMO_IRQHandler()

NVIC ClearPendingIRQ(TPMO IRQn) ;
NVIC_EnableIRQ(TPMO_IRQn);
} FPTD->PSOR

// Do ISR work
out data += change;

= ESF code generates each waveform
sample in ISR (IRQ Handler)

if (out data < STEP
change
} else if (out data
change

}
DACO->DAT[0] .DATH
DACO->DAT[O] .DATL
EPTDR=>PCOR

23 v1 }

static int change=STEP SIZE;
static uintlé t out

MASK (BLUE_LED POS); // Debug signal: Entering ISR
TPMO->SC |= TPM SC TOIE MASK;

MASK (BLUE_LED_ POS);

{

data=0;

// reset overflow flag

SIZE) {

STEP_SIZE;

>= DAC_RESOLUTION-STEP SIZE) {
-STEP_ SIZE;

DAC DATH DATAl (out data >> 8);
DAC DATL DATAO (out data) ;

// Debug signal: Exiting ISR

NC STATE UNIVERSITY

[T

|) | I 1 R
| F OL[STOFIH 2o0us 300e (oo [D 100000000 | [T

— | 500MSals |
)L STOF H s00us 3.00M pts

C.Timing Analysis

0.00000000ps

) o
&
] [43]
(1 4
LT
13 o
B —
EM [Freg=178kHz IPeriod=5.600u IPeriod=10.00us [+¥Width=B00.0ns
s F 1 I [}
1L [BTOR| M 1atns |} oo) [D'_ sozonoonons | [T
-
v
1
rg@i\.ﬁﬁd“ﬂ-wﬂ".’n’?’r:’-‘f.WW{ﬁ“%’/‘M%M;‘A‘j» LERTNS i A, A AR \
' i
| |
i 1
| |
| |
! |
| |
I | 1

24 vl |
B.wm'w‘

NC STATE UNIVERSITY

D. Add |-element Input Data Buffer for DAC

ISR: Interrupt Handler {

Next compute data
Sample write data to DAC
} Error: ds not updated

= Y
o L T
{ > - within its timing window

— 1]

Ideal Output Update Time
Timer IRQ \
CPU Activiey [l 1101 11 1111
Werite Timing Window d, d, d; d, ds dg
Buffer Value | ? d, d, d; d, ds dg
DAC Value) d, d, d, d, d,
DAC Vg, T

= Timer also triggers DAC to update input data register from external data buffer

* Write timing window is now up to T, (50 us) before ideal output update time Result:

d, is repeated
25 v1

NC STATE UNIVERSITY

Seq U e n C e D i a-g ra m D. Add Single-Entry Data Buffer before DAC

Hardware Software Hardware
ISR: Interrupt Main
Next Timer Controller | || Thread DAC
Sample ' | ‘ . .
e V !
D_»D Ou IRQ o | Suspe nd_ Update DAC with dO_
> Lol | »
Update DAC T I Start handler
|

il

|
|
|
|
|
|
|
|
I
|

|
|

= ISR can start slightly late and still
update buffer in time | R

" SIaCk tlme:T Tcompute _Tto be determined .—Resum—>e 1

sample ~

Update DAC with d1_

|

|

|

I I

: :

IRQ - . Suspend_ :
> > |

Start handlér |

| |

te d2_

|
|
I
|
|
|
|
|
|
|
|

Return from handler

26 i l Resume

3

NC STATE UNIVERSITY

DAC Operating Modes

| |
T | |
% W Lg v, : \/‘?“ .
8‘ ; \ | :
N o % A | |
o o = ' /
> 0a AV BT o,
S o
g X
- S = Normal
g = Value written to DACDAT is converted to voltage immediately
—| |selector | ® Buffered mode eases timing requirements
= Value written to DACDAT is stored in data buffer for later conversion
= Next data item is sent to DAC when triggered
= Software Trigger - write to DACSWTRG field in DACx_CO
Overl = Hardware Trigger - from PIT timer peripheral
verriow .
= Normal Mode: Circular buffer

= One-time Scan Mode: Pointer advances, stops at end of buffer
= Status flags in DACx_SR

27 v1

NC STATE UNIVERSITY

Detailed Overview of What and Why

Output timing bad: Very unstable, vulnerable to other A.Task software
software (processes and handlers), timing errors writes to DAC
accumulate. Greedy, doesn't share CPU. . gy

Add-HW timer (tracks time dccurately)

And add OS with ticks /An e le Add HW timer, DMA with ISR,
i i oftware buffer
from HW timer interrupts timer directly ffe

[AZ. OS-triggered periodic task] { B.Task software poll/blocks on] [F.Timer triggers DMA data transfer,]

software writes to DAC timer, then writes to DAC DMA ISR writes data to buffer

Output timing better: Tolerates m
interference, vulnerable to processes an
handlers, errors don’t accumulate. Shares CPU.

utput timing better: Tolerates more
terference, vulnerable to processes and
- X dlers, errors don’t accumulate. Greedy, doesn’t
Tight deadline:T g share CPU.Tight deadline:T e
Put'eede in HW gimer’s ISR

4

[C.Timer ISR writes next data to DAC]

Output timing: Even better.
Vulnerable to other ISRs and interrupt
locking f. gy times per second

Tight deadline:T,,.c Use I-deep

DAC input buffer
[D.Timer advances data from buffer to DAC,

Timer ISR writes next data to buffer

28 w1

F. Use Tlmer-Trlggered DMA to Transfer Data

_Buffer

ISR:
Refill

~N

oS

DMA ISR {

NC STATE UNIVERSITY

Restart DMA channel
Compute new data and refill buffer

9

Transfer One Sample

3 =

Vo

u

Timer Overflow

DMA IRQ

CPU Activity

Write Timing Window

DMA Activity

DAC Code
DACV,,,

29 v1

| [

ISR must save first new data
value d. before next sample time

A

U

| |

d,d, d; d,

T |

|

- \\
\[Z//i

4

f

K—N
é-'- -,

NC STATE UNIVERSITY

DMA Can Read and Write Memory and Peripheral Registers

, ~| controller
ARM® Cortex®-MO0+ Core
Crossbar Switch
o Flash
:II 2 controller
ARM core

MO

High-Speed System Bus unified bus

H SRAML
DMA

USB OTG
SPI

S b3
DMA Controller GPIO SRAMU
ChO Ch1 Ch2 ch3 sl
, Touch-Sensing
UART 1°S usB 2

S2

I I

Peripheral Bus |

Peripheral ’
bridge 0 —>{ Peripherals

= System bus is a crossbar switch: three three-way switches

= Each of three masters (CPU core, DMA, USB) can access a
12-bit DAC LonroNe] different device (flash memory, SRAM, peripheral bus)

LOLERAC Periodic Interrupt Timers

Internal Voltage
ASIRILSEEE = If multiple masters try to access same device, crossbar arbitrates
(decides order for accesses)
= KL25Z Reference Manual
= Ch. 20: Crossbar Switch Lite, Ch. 3 Section 4.6: Crossbar Configuration
= Ch. 21:Peripheral Bridge

simultaneously

30 v1

NC STATE UNIVERSITY

Basic Concepts _
!SOLYCQ

Control and Data

= Hardware which reads data from a source S\ wei7e
and writes it to a destination

= Can copy data quickly . e
= Can eliminate ISRs which just copy data (e.g. /ﬁ;\jj = e

move ADC results into buffer) /
HW

= Example: Data copy ¢
= Source: source memory buffer 5%/ (oug
= Destination: destination memory buffer

Memory/
~Peripheral

4

C—e)
Memory/

D 2
P<peripharal

= Trigger: software command = Operation
= Various configurable options = Initialization: Configure controller
= Number of data items to copy * Transfer: Data is copied
= Source and destination addresses can be fixed = Termination: Channel indicates transfer has
or change (e.g.increment, decrement)

\&r

%c?mpleted i
= Size of data item (I, 2, 4 bytes) il
= When transfer starts &

T M%
w | [wpuy 1RO
31 vl :,’ ’l’ ?ﬁ%&ﬁ:{ O}\,:??)\f@f M 4

NC STATE UNIVERSITY

DMA Controller Details

CPU Memory Peripheral
. Address
" 4 independent channels prmmmmmmme- -y High-Speed & Control
. . i DMAMUX Channel } System B
= Channel 0 has highest priority UARTOL. 2 | S Data
e o | = -- MR [EEEEEE e R g
= 8-, | 6- or 32-bit transfers, data Isnggi { | DMA Controller Channel i
size can differ between source TPMO i 1 [DCR || BCR
IR TPM1-2 : i i
ERQ 1 - i
and destination ADCO 2 ———» Controller SAR DAR Data |1
= Modulo addressability CMPO P r y—
DACO i 1 !
= Pointer wraps around at end of buffer pts ; i DSR i
))) ? i R e e S| [S——| S——
= Enables ring buffers with size of 2N M0 ! { _ 3 i Address
.)] TSI : | DMA Peripheral & Control
= Can trigger with hardware signal or i —— | terrup sus | F T3 Data
software i i

"""""""""""" Peripheral Peripheral

How many data items are transferred per
trigger?
= One:“Cycle stealing”

= All items: grabs bus

Hardware acknowledge/done signal

32 v1

NC STATE UNIVERSITY

Sequence Diagram H\J 1_/1,J

ISR:
Refill
Buffer

]

ot 38 \\%g‘“‘

|_>|)_u
Transfer One Sample

g
&

\| | |
R — I

Transfer next sample

TH

—
N

Transfer next sample

(@]
=N
b3
D
¥

Transfer next sample

€

”E:Transfer next sample, DMA IRQ I
ﬂ Update DMA if neededhl -)3{ \

33 vi1

Example Source Code from ESF: Listings 9.4, 9.5

NC STATE UNIVERSITY

= ESF code initializes buffer (TriangleTable), then replays buffer contents repeatedly

void Play Tone with DMA(void) {
Init RGB LEDs() ;
Control RGB LEDs(0,0,0);
Init DAC();
Init TriangleTable() ;
Init DMA For Playback(TriangleTable, NUM STEPS) ;
Init TPM(10);
Start TPM();
Start DMA Playback() ;
while (1)

#define MAX DAC CODE (4095)
#define NUM_STEPS (512)

uintl6é t TriangleTable[NUM STEPS];

void Init TriangleTable(void) {
unsigned n, sample;

for (n=0; n<NUM STEPS/2; n++) {
sample = (n*(MAX_DAC_CODE+ﬂ)/(NUM_STEPS/;));
TriangleTable[n] = sample; // Fill in from front

TriangleTable [NUM STEPS-1-n] = sample; // Fill in from back

34 v1

TriangleTable

Example Source Code from ESF: Listings 9.6

uintl6_t * Reload_DMA_Source=@g=
uint32_t Reload_DMA_Byte_Count| 1024

NC STATE UNIVERSITY

void Init DMA For Playback(uintl6_t * source, uint32 t count) {
// Save reload information
Reload DMA Source = source;
Reload DMA Byte Count = count*2;

// Gate clocks to DMA and DMAMUX
SIM->SCGC7 |= SIM SCGC7_DMA MASK;
SIM->SCGC6 |= SIM_SCGC6_DMAMUX_MASK;

// Disable DMA channel to allow configuration
DMAMUX0->CHCFG[0] = 0;

// Generate DMA interrupt when done

// Increment source, transfer words (16 bits)

// Enable peripheral request

DMAO->DMA[0] .DCR = DMA DCR_EINT MASK | DMA DCR_SINC MASK |

DMA DCR_SSIZE(2) | DMA DCR DSIZE(2) | DMA DCR_ERQ MASK | DMA DCR _CS_MASK;

// Configure NVIC for DMA ISR
NVIC SetPriority(DMAO IRQn, 2);
NVIC ClearPendingIRQ(DMAO IRQn) ;
NVIC EnableIRQ(DMAO IRQn) ;

// Set DMA MUX channel to use TPM0O overflow as trigger
DMAMUXO0->CHCFG[0] = DMAMUX CHCFG_SOURCE (54) ;

35

vl

== TriangleTable

NC STATE UNIVERSITY

Example Source Code from ESF: Listings 9.6, 9.7, 9.8 MCU Memory
Address Space
volid Start DMA Playback() { .
// initialize source and destination pointers u'lnt32—t Reload_DMA_Byte_Coun1024
DMAQO->DMA[0O] .SAR = DMA_SAR_SAR((u}nt32_t) Reload DMA Source) ; uint16_t * Reload DMA Source=0; -
DMAO->DMA[0] .DAR = DMA DAR DAR((uint32 t) (&(DACO->DAT[01))); - - = TriangleTable
// byte count >
DMAO->DMA[0].DSR_BCR = DMA DSR _BCR BCR(Reload DMA Byte Count) ;
// clear done flag
DMAO->DMA[0].DSR BCR &= ~DMA DSR_BCR_DONE MASK;
// set enable flag
DMAMUX0->CHCFG[0] |= DMAMUX CHCFG_ENBL MASK;
}
void DMAO IRQHandler(void) {
// Turn off blue LED in DMA IRQ handler
Control RGB LEDs(0,0,0); SAR
// Clear done flag
DMAO->DMA[0] .DSR_BCR |= DMA DSR BCR DONE MASK; > DAR
// Start the next DMA playback cycle
Start DMA Playback() ; »| DAT[O
// Turn on blue LED jl
Control RGB LEDs(0,0,1);
}
36 vl

NC STATE UNIVERSITY

F. Timing Analysis

[T | ST — [y -
JL' ™D H soous |3tomns v D 50.0000000us T
4
)
DL TD 'H 10.0us ggnunﬂspatés www D -400.000000ns | [T
" v
B £
&
| |
T ——
o
Freq=194 Hz | [Perigg=ssres IFreg=ssssr I+yidth<10.00us
S 7
| ‘ &
37 v1 . - L -, 4
e l+yidth=s+xss IPerigd=++++x IFreg=srsrss [+¥idth=2 800us

f o= = -

NC STATE UNIVERSITY

LOOSENING DEADLINES

Share CPU core better, reducing timing
interference to other SW processing

38 vl

Overview of Waveform Generator Design Evolution: What and Why

A.Task software busy-waits
Improve output blindly, then writes to DAC
timing stability "4 4

/ Allow fasm Lo
e ates ‘[F-Timer triggers DMA data transfer,]

A2. OS-triggered periodic task B.Task softwarg poll/blocks on DMA ISR writes data to buffer
software writes to DAC timer, thenéwrites to DAC

- ﬂ Loosen refill
- ~

. 4 deadline
LC.Timer ISR writes next datum to DAC]

Share CPU core better,
reducing timing interference to
other SW processing

Reduce timing
interference to other
processing
H.Timer triggers DMA,
DMA ISR writes urgent data

to buffer and triggers task to
write rest of data

1 Loosen refill deadline

G.Timer triggers DMA
[D.Timer advances data from buffer to DAC,] with double-buffering,

Timer ISR writes next datum to buffer DMA ISR switches buffers
and refills with data

A

E.Timer advances data from buffer to DAC.
Timer ISR writes next datum to buffer

Allow faster output Reduce timing interference
update rates to other SW processing

E2.Timer advances data from buffer to DAC.
Low/Empty ISR writes next batch of data to buffer

39 vi1

NC STATE UNIVERSITY

Detailed Overview of What

Output timing bad: Very unstable, vulnerable to other

A.Task software
writes to DAC

software (processes and handlers), timing errors ———
accumulate. G"eef'y, d.oesn’t share CPU. Add-HW timer (tracks time aceuratel And add DMA with ISR,
And add QS Wl'th ticks And access HW software buffer
from HW timer interrupts . .
timer directly
A2. OS-triggered periodic task B.Task software poll/blocks on F-Timer triggers DMA data transfer,
software writes to DAC timer, then writes to DAC DMA ISR writes data to buffer
Output timing better: Tolerates more Output timing b .
) g better: Tolerates more | 1 D
interference, vulnerable to processes and Put-code in HW timer’sJSR interference, vulnerable to processes an dl -Tight Deadline: ISR m first new sample to
handers, erro_’rf :ozt a;;um_;; late. Shares CPU. V handlers, errors don’t accumulate. Greedy, doesn’t
ight deadiine: | s i ine: 2.Long DMA | rocessing too much
’ [C.Timer ISR writes next data to DAC Sh}]re CPU. Tight deadine:T sy ¢ ¢
Output timing: Even better. o
Vulnerable to other ISRs and interrupt Use |-deep Split into double-byfffer to ease first A
locking f.qmpe times per second DAC input buffer sample’s deadjfhe and cuts ISR ove non-urgent

work to task

D.Timer advances data from buffer to DAC, durggfon in half.

Timer ISR writes next data to buffer

Tight deadline:Tg, . [

Deadline better: 2T, . G.Timer triggers DMA H.Timer triggers DMA,
Interrupt overhead for each Use N-Fieep DAC input with double-buffering, DMA ISR writes urgent data
sample wastes CPU time. buffer with low/empty ISR DMA ISR switches buffers to buffer and triggers task to
E.Timer advances data from buffer to DAC.Timer and refills with data write rest of data
ISR writes next data to buffer
Interrupt overhead for each Add N-deep DAC input
sample wastes CPU time buffer with low/empty ISR

E2.Timer advances data from buffer to DAC.
Low/Empty ISR writes next batch of data to buffer

40 v1

NC STATE UNIVERSITY

E.Add Multi-Entry Buffer for DAC

ISR: (code) {
Next O B
Sample \/\U
- L3 | v
S [T
Timer Overflow I /
Buffer IRQ | u AL M an/
CPU Activity | D D \L Y“L
Write Timing Window ~ L I || A
-— : | l |

DAC Code ! d, d, d, d,

DACVg,,.

= Buffer is queue: first-in, first-out (FIFO)
» Byffering delays data, so will not work for all applications

Sequence Diagram

|

ISR:
Next
Sample

-

42 v

NC STATE UNIVERSITY

Tight Timing Requirements for Buffer
o
,5&

Producer: CP u=-_

Al
A 50 ps deadllne eadllne

First buffer ite
Location of mi
read by DMA

Last buffer item

Consumer: DMA J;/ |

FiIl
Fill

e
= Despite fewer interrupts (due to multiple buffe = Consumer reads data item from red buffer entry
entries), still need to save next sample to buffer = Data item in buffer is not needed (old, stale) after

before DMA reads it being read by consumer
= Examine and understand timing requirements for ~ * Producer (Thread_Refill_Sound_Buffer) must stay
buffer ahead of consumer (DMA controller)

= Producer adds data (light blue-green) to fill in buffer

e 1In example, first four items have already been added
Vv

G. DMA with Double Bufferin

-

&

NC STATE UNIVERSITY

Transfer One Sample

ISR: (code) {
Switch Buffers, Q. . }
Refill Other vy v
\\ : : J
- Tk, Vou

44 v1

NC STATE UNIVERSITY

Loosening Timing Reqmrements ith Double-Buffering

Buffer O, first ikes -
ZIWJ\ . 5%50 ps deadline |
Location .
of item Buffer O, last item
<€

read by Buffer |, first item 5%50 s des
DMA

Buffer |, last item

CPU Activity - e ;’: < e
: : : : :
z E F N - z
, : — > Time
= Use two buffers, each half-size (N = 4 entries) = Generalization
= Initialization = After playing last sample from buffer x, switch to
= Start filling buffer 0 playing buffer y, start filling buffer x
= Can start playing buffer O after it has 2| sample " Deadlines
= After buffer 0 is filled, start filling buffer I, * Now have two deadlines, one per buffer ®
= Operation:After playing last sample from buffer 0 * Much looser deadlines: extended to from Tg,. to

*
= Switch to playing buffer | (N+1) TSample ©

* Start refilling buffer 0

NC STATE UNIVERSITY
Sequence Dlagram G. DMA with Double Buffer

Hardware Software Hardware
ISR: Interrupt Main Timer Buffer 0 Buffer 1
Controller ISR in Memory | | in Memory DAC

Samples 0 to 1 =

. Direct Memory
Switch Buffers, Timer | | Access Controller Thread
Refill Other E_E : ‘ T

-) Vo :

Update DACRith d Q

Y

Update DACRith d 1

Y

> £

H Ll Tum l=l > i
Transfer On% Suspend ;

Start 1andlér

: >
Compute d 2

Write d 2

’ Compute d 3 B\

Write d 3
—_ %ﬁﬁ . '7LD 2 _L)LU bq ‘,B‘?ﬁ}!fﬂ.ﬁ?f_?.‘.h?f‘.‘.’.'ﬁix

|

l Resume _ ! |
—>> |

|

1

= R@S}:]\ L’Y]/lts &V\Q_ _ Suspend — |

>

Update DAC wit

4

Update DAC wit

Y

>

1
Start handler !

>
>

Compute d 4

Write d 4

’ Compute d 5 %

; R
I Resuqfe i d
46 1 = ‘ _ :

Write d 5

