
1 v1

16: Improving Output Timing
Stability for WaveGen (Part 2)

v1

2 v1

Overview of Waveform Generator Design Evolution: What and Why
A. Task software busy-waits
blindly, then writes to DAC

E2. Timer advances data from buffer to DAC.
Low/Empty ISR writes next batch of data to buffer

D. Timer advances data from buffer to DAC,
Timer ISR writes next datum to buffer

C. Timer ISR writes next datum to DAC

B. Task software poll/blocks on
timer, then writes to DAC

F. Timer triggers DMA data transfer,
DMA ISR writes data to buffer

G. Timer triggers DMA
with double-buffering,

DMA ISR switches buffers
and refills with data

H. Timer triggers DMA,
DMA ISR writes urgent data
to buffer and triggers task to

write rest of data

A2. OS-triggered periodic task
software writes to DAC

Reduce timing
interference to other

SW processing

E. Timer advances data from buffer to DAC.
Timer ISR writes next datum to buffer

Improve output
timing stability

Loosen refill deadline

Allow faster output
update rates

Allow faster output
update rates

Reduce timing interference
to other SW processing

Loosen refill
deadline

Share CPU core better,
reducing timing interference to

other SW processing

3 v1

Detailed Overview of What and Why in Design Evolution
A. Task software
writes to DAC

E2. Timer advances data from buffer to DAC.
Low/Empty ISR writes next batch of data to buffer

Use N-deep DAC input
buffer with low/empty ISR

D. Timer advances data from buffer to DAC,
Timer ISR writes next data to buffer

Use 1-deep
DAC input buffer

C. Timer ISR writes next data to DAC

B. Task software poll/blocks on
timer, then writes to DAC

And add DMA with ISR,
software buffer

F. Timer triggers DMA data transfer,
DMA ISR writes data to buffer

G. Timer triggers DMA
with double-buffering,

DMA ISR switches buffers
and refills with data

Split into double-buffer to ease first
sample’s deadline and cuts ISR

duration in half.

H. Timer triggers DMA,
DMA ISR writes urgent data
to buffer and triggers task to

write rest of data

Move non-urgent
work to task

Output timing bad: Very unstable, vulnerable to other
software (processes and handlers), timing errors

accumulate. Greedy, doesn’t share CPU.

Output timing better: Tolerates more
interference, vulnerable to processes and

handlers, errors don’t accumulate. Greedy, doesn’t
share CPU. Tight deadline: TSample

Output timing: Even better.
Vulnerable to other ISRs and interrupt

locking fsample times per second
Tight deadline: TSample

Deadline better: 2TSample
Interrupt overhead for each
sample wastes CPU time.

1.Tight Deadline: ISR must write first new sample to
buffer within TSample

2. Long DMA ISR is delays other processing too much

A2. OS-triggered periodic task
software writes to DAC

Add HW timer (tracks time accurately)
And add OS with ticks

from HW timer interrupts
And access HW

timer directly

Put code in HW timer’s ISR

E. Timer advances data from buffer to DAC. Timer
ISR writes next data to buffer

Add N-deep DAC input
buffer with low/empty ISR

Interrupt overhead for each
sample wastes CPU time

Output timing better: Tolerates more
interference, vulnerable to processes and

handlers, errors don’t accumulate. Shares CPU.
Tight deadline: TSample

4 v1

Software and Hardware Components in Design Evolution
A

DAC

SW

HW VOut

B

DAC
VOutTimer

Done?

C

DAC
VOutTimer

ISR: Next
Sample

NVIC

D

DAC
VOutTimer

ISR: Next
Sample

NVIC

E

DAC
VOutTimer

ISR: Next
Sample

NVIC

E2

DAC
VOutTimer

ISR: Refill
Buffer

NVIC

F

DAC
VOut

Timer

ISR:
Refill
Buffer

NVIC
DMA Transfer One Sample

G

DAC
VOut

Timer

ISR: Switch
Buffers,

Refill Other

NVIC
DMA Transfer One Sample

H

DAC
VOut

Timer

ISR: Start to
Refill Buffer

NVIC
DMA Transfer One Sample

Run
later

A2

DAC
VOut

OS
Timer

General Trend: Move operations which need synchronization (update output,
compute new value) from software to hardware to improve stability, performance

Asynchronous I/O: Output is updated by hardware, so it is decoupled from
(asynchronous with) software execution, so sloppy software timing affects output timing less

5 v1

Example Code from ESF

void Play_Tone(unsigned int period, unsigned int
num_cycles, unsigned wave_type) {
 unsigned step, out_data;

 while (num_cycles>0) {
 num_cycles--;
 for (step = 0; step < NUM_STEPS; step++) {
 switch (wave_type) {
 case SQUARE:
 if (step < NUM_STEPS/2)
 out_data = 0;
 else
 out_data = MAX_DAC_CODE;
 break;
 case RAMP:
 out_data = (step*MAX_DAC_CODE)/NUM_STEPS;
 break;

 case SINE:
 out_data = SineTable[step];
 break;
 default:
 break;
 }
 DAC0->DAT[0].DATH = DAC_DATH_DATA1(out_data >> 8);
 DAC0->DAT[0].DATL = DAC_DATL_DATA0(out_data);
 Delay_us(period/NUM_STEPS);
 }
 }
}

6 v1

Vulnerability to Timing Interference
A. Task busy-waits for constant time (blind), then writes
to DAC

E2. Timer advances buffer data to DAC. Low/Empty ISR
writes next batch of data to buffer

D. Timer advances buffer data to DAC, Timer ISR writes
next data to buffer

C. Timer ISR writes data to DAC

B. Task software poll/blocks on timer, then writes to
DAC

F. Timer triggers DMA data transfer, DMA ISR writes
next batch of data to buffer

G. Timer triggers DMA transfer, DMA ISR switches
buffers and writes next batch of data to previous buffer

H. Timer triggers DMA transfer, DMA ISR writes urgent
data to buffer, triggers task. Task writes rest of data batch

A2. OS runs task periodically, task writes to DAC

E. Timer advances buffer data to DAC. Timer ISR writes
data to buffer

7 v1

DAC Overview

 Load DACDAT with 12-bit data N
MUX selects a node from resistor divider network to create

Vo = (N+1)*Vin/212

 Vo is buffered by output amplifier to create Vout
 Vo = Vout but Vo is high impedance - can’t drive much of a load, so need to buffer it

8 v1

DAC Registers

 This peripheral’s registers are only eight
bits long (legacy peripheral).

 DATA[11:0] stored in two registers
 DATA0: Low byte [7:0] in DACx_DATnL
 DATA1: High nibble [11:8] in DACx_DATnH

9 v1

WAVEGEN STARTING POINT: DESIGN A

10 v1

A. Simple Starter Code
while (1) {

compute data
// Synchronize: Wait until time for next sample
for (t = T; t>0; t--); // busy wait loop creates delay
// Position of following code implicitly schedules it
write data to DAC

}

 Timing is unstable. Make T what value?
 What if computing data takes variable time?
 Vulnerable to interference by other handlers,

processes on CPU

 Using busy-waiting to create time delay is greedy
because it doesn’t share CPU

 Synchronization and scheduling done completely in
software

DAC

SW

HW VOut

11 v1

Unbuffered DAC with Busy-Wait Code

CPU Activity

Ideal Write Window

d4d3d2d1?DAC Code

DAC VOut

Busy-waiting for fixed time

Compute next output value

Write output value

d1 d2 d4 d5d3

12 v1

Sequence Diagram

DAC

SW

HW VOut

13 v1

IMPROVING OUTPUT TIMING STABILITY

14 v1

Detailed Overview of What and Why

A. Task software
writes to DAC

D. Timer advances data from buffer to DAC,
Timer ISR writes next data to buffer

Use 1-deep
DAC input buffer

Add HW timer, DMA with ISR,
software buffer

F. Timer triggers DMA data transfer,
DMA ISR writes data to buffer

Output timing bad: Very unstable, vulnerable to other
software (processes and handlers), timing errors

accumulate. Greedy, doesn’t share CPU.
Add HW timer (tracks time accurately)

B. Task software poll/blocks on
timer, then writes to DAC

Output timing better: Tolerates more
interference, vulnerable to processes and

handlers, errors don’t accumulate. Greedy, doesn’t
share CPU. Tight deadline: TSample

And access HW
timer directly

C. Timer ISR writes next data to DAC
Output timing: Even better.

Vulnerable to other ISRs and interrupt
locking fsample times per second

Tight deadline: TSample

Put code in HW timer’s ISR

And add OS with ticks
from HW timer interrupts

A2. OS-triggered periodic task
software writes to DAC

Output timing better: Tolerates more
interference, vulnerable to processes and

handlers, errors don’t accumulate. Shares CPU.
Tight deadline: TSample

15 v1

Software and Hardware Components

A

DAC

SW

HW VOut

B

DAC
VOutTimer

Done?

C

DAC
VOutTimer

ISR: Next
Sample

NVIC

D

DAC
VOutTimer

ISR: Next
Sample

NVIC

F

DAC
VOut

Timer

ISR:
Refill
Buffer

NVIC
DMA Transfer One Sample

A2

DAC
VOut

OS
Timer

16 v1

A2. Scheduler Releases WaveGen Periodically

Ideal Output Update Time

CPU Activity

Write Window

d4d3d2d1?DAC Code

DAC VOut

Task switching overhead

Interrupt entry/exit overhead

Compute next output value

Write output value

d1 d2 d3 d4 d5

void Task_WaveGen (void) {
compute data
write data to DAC

}

DAC
VOut

Release Task
Periodically

OS

Timer

 DAC update is on time if …
 Task_WaveGen starts on time (tasks/ISRs finish early enough for scheduler to run it), and
 Task_WaveGen not preempted by other processing

 DAC update is delayed if other processing (tasks, ISRs) cause timing interference:
 Task_WaveGen starts late if tasks/ISRs finish too late (delaying scheduler), so DAC is updated late
 Task_WaveGen updates DAC late if preempted by higher-priority software processes (e.g. ISRs)

17 v1

B. Software Polls Hardware Timer

TNext = TSample
while (1) {

compute data
// Synchronize: Wait until time for next sample
while (TimerValue < TNext); // busy wait polling loop
// Position of following code implicitly schedules it
write data to DAC
TNext += TSample

}

18 v1

B. Software Polls Hardware Timer
TNext = TSample
while (1) {

compute data
// Synchronize: Wait until time for next sample
while (TimerValue < TNext); // busy wait polling loop
// Position of following code implicitly schedules it
write data to DAC
TNext += TSample

}

 Add hardware timer/counter peripheral
 Binary counter (e.g. 16, 32 bits) tracks elapsed time by

counting clock pulses. SW can read (e.g.TimerValue)
 Increments periodically, regardless of SW activity

 Synchronization loop tolerates some
timing interference
 How much? Class discussion activity…

 Synch performed in SW with HW help
 Scheduling performed in SW

DAC
VOutTimer

Done?

Timer Value

CPU Activity

Write Timing Window

d4d3d2d1?DAC Code

DAC VOut

Task switching overhead

Compute next output value

Synchronize by busy-waiting
for timer done flag

d1 d2 d3 d4 d5

19 v1

Sequence Diagram

DAC
VOutTimer

Done?

20 v1

Unbuffered DAC with Timer Polling

Timer Overflow

CPU Activity

Write Timing Window

d4d3d2d1?DAC Code

DAC VOut

Task switching overhead

Interrupt entry/exit overhead

Compute next output value

Synchronize by busy-waiting for timer done flag

Write output value

d1 d2 d3 d4 d5

21 v1

C. Hardware Timer Periodically Triggers Interrupt for DAC Write
Interrupt Handler {

compute data
write data to DAC

}

 Some timing jitter possible if time to compute data varies
 If so, may be able to flip order: write data computed in

previous ISR execution, then pre-compute next data item

DAC
VOut

Timer

ISR:
Next

Sample

NVIC

Timer IRQ

CPU Activity

Write Timing Window

d4d3d2d1?DAC Code

DAC VOut

d1 d2 d3 d4 d5

Task switching overhead

Interrupt entry/exit overhead

Compute next output value

Wait for Done. Sync. w/ timer

Write output value

22 v1

Sequence Diagram

DAC
VOut

Timer

ISR:
Next

Sample

NVIC

23 v1

Example Source Code from ESF: Listings 7.7, 7.8

 ESF code generates each waveform
sample in ISR (IRQ Handler)

24 v1

C. Timing Analysis

25 v1

D. Add 1-element Input Data Buffer for DAC

 Timer also triggers DAC to update input data register from external data buffer
 Write timing window is now up to Tsample (50 μs) before ideal output update time

DAC
VOut

Timer
Error: d5 not updated

within its timing window
NVIC

Ideal Output Update Time

Timer IRQ

CPU Activity

Write Timing Window

d4d3d2d1?Buffer Value

d4d4d3d2d1?DAC Value

DAC VOut

d6d5d4d3d2d1

d6d5d4d3d2d1?

d1 d2 d3 d4 d5 d6

ISR:
Next

Sample

Result:
d4 is repeated

Interrupt Handler {
compute data
write data to DAC

}

26 v1

Sequence Diagram

DAC
VOut

Timer

ISR:
Next

Sample

NVIC

 ISR can start slightly late and still
update buffer in time
 Slack time: Tsample – Tcompute – Tto be determined

Update DAC

27 v1

DAC Operating Modes

 Normal
 Value written to DACDAT is converted to voltage immediately

 Buffered mode eases timing requirements
 Value written to DACDAT is stored in data buffer for later conversion
 Next data item is sent to DAC when triggered

 Software Trigger - write to DACSWTRG field in DACx_C0
 Hardware Trigger - from PIT timer peripheral

 Normal Mode: Circular buffer
 One-time Scan Mode: Pointer advances, stops at end of buffer
 Status flags in DACx_SR

M
ux

Overflow

data reg 1

Timer (PIT)

data reg 0

Selector

28 v1

Detailed Overview of What and Why

A. Task software
writes to DAC

D. Timer advances data from buffer to DAC,
Timer ISR writes next data to buffer

Use 1-deep
DAC input buffer

Add HW timer, DMA with ISR,
software buffer

F. Timer triggers DMA data transfer,
DMA ISR writes data to buffer

Output timing bad: Very unstable, vulnerable to other
software (processes and handlers), timing errors

accumulate. Greedy, doesn’t share CPU.
Add HW timer (tracks time accurately)

B. Task software poll/blocks on
timer, then writes to DAC

Output timing better: Tolerates more
interference, vulnerable to processes and

handlers, errors don’t accumulate. Greedy, doesn’t
share CPU. Tight deadline: TSample

And access HW
timer directly

C. Timer ISR writes next data to DAC
Output timing: Even better.

Vulnerable to other ISRs and interrupt
locking fsample times per second

Tight deadline: TSample

Put code in HW timer’s ISR

And add OS with ticks
from HW timer interrupts

A2. OS-triggered periodic task
software writes to DAC

Output timing better: Tolerates more
interference, vulnerable to processes and

handlers, errors don’t accumulate. Shares CPU.
Tight deadline: TSample

29 v1

F. Use Timer-Triggered DMA to Transfer Data
DMA ISR {

Restart DMA channel
Compute new data and refill buffer

}

Timer Overflow

DMA IRQ

CPU Activity

Write Timing Window

DMA Activity

d4d3d2d1?DAC Code

DAC VOut

DAC
VOut

Timer

ISR:
Refill
Buffer

NVIC
DMA

Transfer One Sample

ISR must save first new data
value d5 before next sample time

d 1 d2 d3 d4 d5 d6 d7 d8

30 v1

DMA Can Read and Write Memory and Peripheral Registers

 System bus is a crossbar switch: three three-way switches
 Each of three masters (CPU core, DMA, USB) can access a

different device (flash memory, SRAM, peripheral bus)
simultaneously

 If multiple masters try to access same device, crossbar arbitrates
(decides order for accesses)

 KL25Z Reference Manual
 Ch. 20: Crossbar Switch Lite, Ch. 3 Section 4.6: Crossbar Configuration
 Ch. 21: Peripheral Bridge

Analog

Analog Comparator

12-bit DAC

Internal Voltage
Reference

16-bit DAC

Timers

PWM

Low-Power Timer

Periodic Interrupt Timers

Real-Time Clock

GPIO

Touch-Sensing

Memories

I2C

SPI

UART

Flex IO

USB OTG

I2S

DMA Controller

ARM® Cortex®-M0+ Core

High-Speed System Bus

Bridge

Peripheral Bus

Ch 0 Ch 1 Ch 2 Ch 3

31 v1

Basic Concepts

 Hardware which reads data from a source
and writes it to a destination
 Can copy data quickly
 Can eliminate ISRs which just copy data (e.g.

move ADC results into buffer)

 Example: Data copy
 Source: source memory buffer
 Destination: destination memory buffer
 Trigger: software command

 Various configurable options
 Number of data items to copy
 Source and destination addresses can be fixed

or change (e.g. increment, decrement)
 Size of data item (1, 2, 4 bytes)
 When transfer starts

Operation
 Initialization: Configure controller
 Transfer: Data is copied
 Termination: Channel indicates transfer has

completed

32 v1

DMA Controller Details

 4 independent channels
 Channel 0 has highest priority

 8-, 16- or 32-bit transfers, data
size can differ between source
and destination

 Modulo addressability
 Pointer wraps around at end of buffer
 Enables ring buffers with size of 2N

 Can trigger with hardware signal or
software

 How many data items are transferred per
trigger?
 One: “Cycle stealing”
 All items: grabs bus

 Hardware acknowledge/done signal

33 v1

Sequence Diagram

DAC
VOut

Timer

ISR:
Refill
Buffer

NVIC
DMA

Transfer One Sample

34 v1

Example Source Code from ESF: Listings 9.4, 9.5

 ESF code initializes buffer (TriangleTable), then replays buffer contents repeatedly

TriangleTable

35 v1

Example Source Code from ESF: Listings 9.6

TriangleTable1024

36 v1

MCU Memory
Address Space

Example Source Code from ESF: Listings 9.6, 9.7, 9.8

TriangleTable

DAC 0Timer

DMA Channel 0

SAR

DAR
DAT[0]

1024

37 v1

F. Timing Analysis

38 v1

LOOSENING DEADLINES
Share CPU core better, reducing timing
interference to other SW processing

39 v1

Overview of Waveform Generator Design Evolution: What and Why
A. Task software busy-waits
blindly, then writes to DAC

E2. Timer advances data from buffer to DAC.
Low/Empty ISR writes next batch of data to buffer

D. Timer advances data from buffer to DAC,
Timer ISR writes next datum to buffer

C. Timer ISR writes next datum to DAC

B. Task software poll/blocks on
timer, then writes to DAC

F. Timer triggers DMA data transfer,
DMA ISR writes data to buffer

G. Timer triggers DMA
with double-buffering,

DMA ISR switches buffers
and refills with data

H. Timer triggers DMA,
DMA ISR writes urgent data
to buffer and triggers task to

write rest of data

A2. OS-triggered periodic task
software writes to DAC

Reduce timing
interference to other

SW processing

E. Timer advances data from buffer to DAC.
Timer ISR writes next datum to buffer

Improve output
timing stability

Loosen refill deadline

Allow faster output
update rates

Allow faster output
update rates

Reduce timing interference
to other SW processing

Loosen refill
deadline

Share CPU core better,
reducing timing interference to

other SW processing

40 v1

Detailed Overview of What and Why
A. Task software
writes to DAC

E2. Timer advances data from buffer to DAC.
Low/Empty ISR writes next batch of data to buffer

Use N-deep DAC input
buffer with low/empty ISR

D. Timer advances data from buffer to DAC,
Timer ISR writes next data to buffer

Use 1-deep
DAC input buffer

C. Timer ISR writes next data to DAC

B. Task software poll/blocks on
timer, then writes to DAC

And add DMA with ISR,
software buffer

F. Timer triggers DMA data transfer,
DMA ISR writes data to buffer

G. Timer triggers DMA
with double-buffering,

DMA ISR switches buffers
and refills with data

Split into double-buffer to ease first
sample’s deadline and cuts ISR

duration in half.

H. Timer triggers DMA,
DMA ISR writes urgent data
to buffer and triggers task to

write rest of data

Move non-urgent
work to task

Output timing bad: Very unstable, vulnerable to other
software (processes and handlers), timing errors

accumulate. Greedy, doesn’t share CPU.

Output timing better: Tolerates more
interference, vulnerable to processes and

handlers, errors don’t accumulate. Greedy, doesn’t
share CPU. Tight deadline: TSample

Output timing: Even better.
Vulnerable to other ISRs and interrupt

locking fsample times per second
Tight deadline: TSample

Deadline better: 2TSample
Interrupt overhead for each
sample wastes CPU time.

1.Tight Deadline: ISR must write first new sample to
buffer within TSample

2. Long DMA ISR is delays other processing too much

A2. OS-triggered periodic task
software writes to DAC

Add HW timer (tracks time accurately)
And add OS with ticks

from HW timer interrupts
And access HW

timer directly

Put code in HW timer’s ISR

E. Timer advances data from buffer to DAC. Timer
ISR writes next data to buffer

Add N-deep DAC input
buffer with low/empty ISR

Interrupt overhead for each
sample wastes CPU time

Output timing better: Tolerates more
interference, vulnerable to processes and

handlers, errors don’t accumulate. Shares CPU.
Tight deadline: TSample

41 v1

E. Add Multi-Entry Buffer for DAC

 Buffer is queue: first-in, first-out (FIFO)
 Buffering delays data, so will not work for all applications

(code) {
}

DAC
VOut

Timer

ISR:
Next

Sample

NVIC

Timer Overflow

Buffer IRQ

CPU Activity

Write Timing Window

d4d3d2d1?DAC Code

DAC VOut

d1 d2 d3 d4 d5

42 v1

Sequence Diagram

DAC
VOut

Timer

ISR:
Next

Sample

NVIC

43 v1

 Despite fewer interrupts (due to multiple buffer
entries), still need to save next sample to buffer
before DMA reads it

 Examine and understand timing requirements for
buffer

 Producer adds data (light blue-green) to fill in buffer
 In example, first four items have already been added

 Consumer reads data item from red buffer entry
 Data item in buffer is not needed (old, stale) after

being read by consumer

 Producer (Thread_Refill_Sound_Buffer) must stay
ahead of consumer (DMA controller)

Tight Timing Requirements for Buffer

Location of item
read by DMA

First buffer item

Last buffer item

50 µs deadline

Time

50 µs deadline

F
ill

F
ill

F
illProducer: CPU

Consumer: DMA

44 v1

G. DMA with Double Buffering
(code) {
}

DAC
VOut

Timer

ISR:
Switch Buffers,
Refill Other

NVIC
DMA

Transfer One Sample

45 v1

 Use two buffers, each half-size (N = 4 entries)
 Initialization
 Start filling buffer 0
 Can start playing buffer 0 after it has ≥1 sample

 After buffer 0 is filled, start filling buffer 1
 Operation: After playing last sample from buffer 0,
 Switch to playing buffer 1
 Start refilling buffer 0

 Generalization
 After playing last sample from buffer x, switch to

playing buffer y, start filling buffer x

 Deadlines
 Now have two deadlines, one per buffer 
 Much looser deadlines: extended to from TSample to

(N+1)*TSample 

Loosening Timing Requirements with Double-Buffering

Location
of item
read by

DMA

Buffer 0, first item

Buffer 0, last item

5*50 µs deadline

Buffer 1, first item

Buffer 1, last item

5*50 µs deadline

5*50 µs deadline

Time

F
ill

 B
uf

f.
0

F
ill

 B
uf

f.
1

F
ill

 B
uf

f.
0

F
ill

 B
uf

f.
1

F
ill

 B
uf

f.
0CPU Activity

46 v1

Sequence Diagram

DAC
VOut

Timer

ISR:
Switch Buffers,

Refill Other

NVIC
DMA

Transfer One Sample

