V2

NC STATE UNIVERSITY

Improving Output Timing Stability

V2

NC STATE UNIVERSITY

Topics Covered

= Qutput timing requirements
= Hardware and software methods to improve timing stability

Overall Challenge: Update Analog Output Signal at Correct Times

= Some outputs need to be updated at specific times . I
= Audio signal reconstruction: change output every Tg, e il e |
= For control system, periodic output updates make design
& analysis easier
Y 7[/‘7\/\{_ >

= Some control systems require output update to be synchronized

2/
with other events in system \/l I
= To push someone on a swing, when do you extend your arms? J
T

= Examples: Anything switched-mode
= Switched-mode power converters and drivers
= Brushless DC motor drivers.

= “Specific time” = timing window “~
= System performance falls if output changes before or after window <& —
= Harder to design system which meets timing requirements as window

narrows
“Titme_ >

3 V2

NC STATE UNIVERSITY

Precise, Stable Timing for Software May Be Difficult

= Currently no feasible programming language support to define timing.
Need hardware, OS support.
= Translation of program source code specification to object code
implementation disconnects developer from timing more
= Source code is translated to executable machine code:

/ N
compilation, assembly, linking g N\
= Can measure & observe machine code, not source code 3 |
K
= 1
= When a specific instruction executes On horizontal axis)
relative to latest synchronization (time error of 0), - x|
each instruction Y, | - ™) ,
depends on { - —1 , AT
always starts at Y = e
= Control flow path taken to get there: same time relative to b, s ;,,,,/
o - . oy ~JIN .
conditionals, loops, etc. sync operation (' Vertical positions show how laté @ particular
- Oft ther fact Sltar t of pr OCESS:instruction might execute over multiple
€n othertactors First Instruction process runs, relative to its earliest time.

= Sharing CPU with other processes and handlers
(scheduling) can delay or preempt code which generates output signals
4 V2

Waveform Generator Application

= Use hardware (and software) to help stabilize output timing of
waveform generator
= Want to update DAC output every 50 us for a 20 kHz update rate
= DAC signal amplified to drive speaker
= Timing analysis approach - Vulnerabilities?
= What kinds of events and over what time periods can affect the
output update time?
= Solutions
= Use hardware to help (or even replace) software doing
synchronization, scheduling, or work.
= Synchronization: determining when to update output
= Scheduling: selecting code to run
= Work: updating output
= Buffer data to loosen (simplify) software timing requirements

5 V2

NC STATE UNIVERSITY

ot
> SACH >

Example Code from ESF

void Play Tone(unsigned int period, unsigned int
num_cycles, unsigned wave_type) {
unsigned step, out_data;

while (num_cycles>@) {
num_cycles--;
for (step = 0; step < NUM_STEPS; step++) {
switch (wave_type) {
case SQUARE:
if (step < NUM_STEPS/2)
out_data = 0;
else
out_data = MAX _DAC_CODE;
break;
case RAMP:
out_data = (step*MAX_DAC_CODE)/NUM_STEPS;
break;

case SINE:
out_data = SineT
break;
default:
break;
}
DACO->DAT[0] .DATH
DACO->DAT[0] .DATL
Delay us(period/NUM

}

NC STATE UNIVERSITY

able[step];

DAC_DATH_DATA1(out_data >> 8);
DAC_DATL_DATA®(out_data);
STEPS);

NC STATE UNIVERSITY

v AMP buffer
f A
DACEN |
-H-\-""‘-\-_
r |
‘ 3 LPEN |
4

4096 level

i
- | /

e e

= Load DACDAT with 12-bit data N
= MUX selects a node from resistor divider network to create
V, = (N+1)*V, /212
= V_ is buffered by output amplifier to create V
=V =V

out

out
but V, is high impedance - can’t drive much of a load, so need to buffer it

7 V2

NC STATE UNIVERSITY

DAC Registers

DAC memory map
‘;ZZ:L?: Register name inps Access | Reset value Sention:
(hex) (in bits) page
4003_F000 |DAC Data Low Register (DACO_DATOL) 8 R/W 00h 30.4.1/531
4003_F001 |DAC Data High Register (DACO_DATOH) 8 RW 00h 30.4.2/532
4003_F002 |DAC Data Low Register (DACO_DAT1L) 8 R/W 00h 30.4.1/531
4003_F003 |DAC Data High Register (DACO_DAT1H) 8 RW 00h 30.4.2/532
4003_F020 |DAC Status Register (DACO_SR) 8 R 02h 30.4.3/532
4003_F021 |DAC Control Register (DAC0_CO0) 8 RW 00h 30.4.4/533
4003_F022 |DAC Control Register 1 (DAC0_C1) 8 R/W 00h 30.4.5/534
4003_F023 |DAC Control Register 2 (DAC0_C2) 8 R/W OFh 30.4.6/534

= This peripheral’s registers are only eight = DATA[11:0] stored in two registers
bits long (legacy peripheral). = DATAO: Low byte [7:0] in DACx_DATnL
= DATA1: High nibble [11:8] in DACx_DATnH

8 V2

NC STATE UNIVERSITY

DAC Operating Modes _‘ .

| [0:11l1vaova |

i \ \ mw\fz\w l
|

9’ e
0a \l ! |
o DACDAT[11:0] - J

£ $ P> [T — A
1 |
g = Normal
of_ﬁ Overflow = Value written to DACDAT is converted to voltage immediately
B = Buffered mode eases timing requirements

= Value written to DACDAT is stored in data buffer for later
conversion
= Next data item is sent to DAC when triggered
= Software Trigger - write to DACSWTRG field in DACx_CO
* Hardware Trigger - from PIT timer peripheral
= Normal Mode: Circular buffer
= One-time Scan Mode: Pointer advances, stops at end of buffer

= Status flags in DACx_SR

NC STATE UNIVERSITY

Overview: What and Why

A.Task software

Output timing bad: Very unstable, vulnerable to writes to DAC
other software (processes and handlers), timing ——
errors accumulate. Greedy, doesn't share CPU. Add HIV.timer (tracks time miTch-better Add DMA with ISR,

Add OS with ticks from HW-timer Access HW ttimer directly software buffer

o~ v
A2. OS-triggered periodic task B.Task software poll/blocks on FTimer triggers DMA data transfer,
software writes to DAC timer, then writes to DAC DMA ISR writes data to buffer

Output timing better: Tolerat ff\ '
utput timing better: Tolerates mo Put code in HW /

interference, vulnerable to processes and

handlers, errors don’t accumulate. Greedy, time‘r’s}SR 2. Long DMA rocessing too much
doesn’t share CPU . .
C.Timer ISR writes Split into do
data to DAC P Move non-urgent
Output timing: Even better. first sam

duration in half.

Vulnerable to other ISRs and interrupt Adcf I-deep
locking f.,... times per second DAC input buffer

ample 2 2
: : H.Timer triggers DMA
. G.Timer triggers DMA g8 ’
D.Tlmer advan.ces buffer data to DAC, il dlenfelelntiaring DMA ISR writes urgent
Timer ISR writes next data to buffer DMA ISR switches data to buffer and
. buff triggers task to write
Interrupt overhead for each Add N-deep DAC input amers rest of data

and writes data

sample wastes CPU time buffer with low/empty ISR

E.Timer advances buffer data to
DAC. Low/Empty ISR writes next
10 V2 batch of data to buffer

NC STATE UNIVERSITY

Software and Hardware Components

D ISR: Next
= B F I
efi
[HW Vou Vo F =
| M Transfer One Sample

AZFLEJQ_I] e : (i O
Refill Othen
HW, Vou Yo
e e T g O [T Y e
B E2
=3

A

o
e
;

|

C
3
|11

i

ISR: Refill H Run
Buffer O later
ISR: Start to
Done?} r|_|- Refill Buffer
i
V,
i Vv, o]
[Timer >[a—% i P . Yo
[] I:’—\—‘P [| H Transfer One Sample
C ISR: Next
Sample

| =2

11 V2

A. Simple Starter Code

NC STATE UNIVERSITY

- while (1) {
SVV(::::::y_ compute data
// Synchronize: Wait until time for next sample
> for (t = T; t>0; t--); // busy wait loop creates delay
HW Vour // Position of following code implicitly schedules it
- —— :
write data to DAC
N }
A: Task Sofware Writes to DAC
[CPU Aétivity : 0 % | : |
ccmputa—l i | i i |
walt . -IE—I
write | : : L . d . : d : : d !
CPUState/ o i~ L~~~y | : _ i ! t 1 '
<:>< Synch '><>< Synch X - X Synch >®< SyEr: ynch
DAC Output, i i : ™ . | 2 T |
' 4 datal X data2 L data3 X dataa | A
; | R — | R (— S B AY ad ¥ |
0 10 20 30 40 50 60 70 80 30 100 110 120 130
= Timing is unstable. Make T what value? = Using busy-waiting to create time delay js greedy

= What if computing data takes variable time?

*_Vulnerable to interference by other handlers,

processes on CPU

12 V2

because it doesn’t share CPU

= Synchronization and scheduling done completely in
software

NC STATE UNIVERSITY

Sequence Diagram

:swo_] Yo s re-

T e
. 3 N L
W |
N Vide l\)ll | L
[~ 7DiC }\w* b2
|
LIRS |

NC STATE UNIVERSITY

Unbuffered DAC with Busy-Wait Code

§ Busy-waiting for fixed time

Compute next output value

Write output value

| | | | |
CPU Activiy NN MM MIMHTITIT I I

Ideal Write Window]]
DAC Code ? d, d, d, d,
DACVg,,

14 V2

NC STATE UNIVERSITY

Timer/Counter Concepts

i~
o
\};)
0
(=
3
Q

\A
&~
-1

- Bed peried (lock >Elyced Twe

BN .

WARNZaR

A=

Rz
5
| ?’“&,7
P
s

|| bty B

-3 —
; ‘
%‘.

15 V2 e I

A2:Scheduler Releases WaveGen Periodically

Release Task
Periodically

void Task WaveGen (void) {
compute data
write data to DAC

} -
vOut |

NC STATE UNIVERSITY

CPU Activity

Ideal Write Window

DAC Code

DACV,,,

16 V2

. Interrupt entry/exit overhead

Task switching overhead

Compute next output value

Write output value

NC STATE UNIVERSITY
B. Software Polls Hardware Timer

‘)‘/\ Task switching overhead
\ TNext = TSample

Q\lﬁ\w am while (1) { ?, | y
A / compute data % Synchronize by busy-waiting

Compute next output value

P s . . for timer done flag
// Synchronize: Wait until time for next sample

ﬂc// Vv while (TimerValue < TNext); // busy wait polling loop
—> iy L, o // Position of following code implicitly schedules it
[write data to DAC

I ' TNext += TSample
: [’am{[’ef }

Q\\“I‘Zb Timer Value > i "E"
Leeq CPU Activity % %, % /
Write Timing Window l I I
DAC Code ! d, d, d; d,
DACVg,, /
= Add hardware timer/counter peripheral = Synchronization loop tolerates some
= Binary counter (e.g. 16, 32 bits) tracks elapsed time by timing interference
counting clock pulses. SW can read (e.g. TimerValue) = How much? Class discussion activity. ..

* Increments periodically, regardless of SW activity = Synch performed in SW with HW help
17 V2 = Scheduling performed in SW

NC STATE UNIVERSITY
DAC

Sequence Diagram

@

1
Done?i

[4.__§ vOut]
= >

18 V2

Unbuffered DAC with Timer Polling

Timer Overflow

CPU Activity

Write Timing Window
DAC Code

DACVg,,.

19 V2

NC STATE UNIVERSITY

- Interrupt entry/exit overhead

Task switching overhead

Compute next output value

7/ Synchronize by busy-waiting for timer done flag

Write output value

A L
#
#

NN

Interrupt Handler {

ISR:
Next O} fcompute data
S write data to DAC

ample

[N \U\"\' - v }
[/ \ ._r»———f—! N _Eﬂ%}

Timer IRQ I | I

C. Hardware Timer Periodically Triggers Interrupt for DAC Write

CPU Activity I:I» l] |

Write Timing Window

DAC Code ! d, d,

DACV,,,

20 V2

WA
\)3\\@ n\fqu

N\7

. Interrupt entry/exit overhead

Task switching overhead

Compute next output value
. Wait for Done. Sync. w/ timer

Write output value

NC STATE UNIVERSITY

Sequence Diagram

C. Timer ISR
Hardware Software Hardware
ISR:
Next Interrupt Main
Sample Controller Thread DAC

== = (L] &

! A
IRQ > Suspe.nd) .
Start handler
: >
|
: Compute
| sample
: d1
|
: Wi
|
|
|
|

. RIS

[
21 V2 : O

S\WJ NC STATE UNIVERSITY
Sequence Diagram

ey Lot

ample)

B

3

N
T
Sxec ’;é
9
70

ZL ieof

> |OVFTA

-,

78S
=

<
><
2

‘ o
e

e |-Pe
|

s

22 V2 F .I

D.Add |-element Input Data Buffer for DAC

NC STATE UNIVERSITY

(SR (code) { //7 U)J-‘7
Next O } \gA) \C
_ Sample \}}NJ)KS &W
{ - You /6“’"\2 oW
¥ «
RV,
Timer IRQ I I / I I I
CPU Activity N | b | 1 1 B H
Write Timing Window d, d, d, d,
Buffer Code 4 d, d, d; d,
DAC Code ! ! d, d, d;
DACVg,,.

23 V2

NC STATE UNIVERSITY

DAC Operating Modes _‘ .

| [0:11l1vaova |

i \ \ mw\fz\w l
|

9’ e
0a \l ! |
o DACDAT[11:0] - J

£ $ P> [T — A
1 |
g = Normal
of_ﬁ Overflow = Value written to DACDAT is converted to voltage immediately
B = Buffered mode eases timing requirements

= Value written to DACDAT is stored in data buffer for later
conversion
= Next data item is sent to DAC when triggered
= Software Trigger - write to DACSWTRG field in DACx_CO
* Hardware Trigger - from PIT timer peripheral
= Normal Mode: Circular buffer
= One-time Scan Mode: Pointer advances, stops at end of buffer

= Status flags in DACx_SR

24 V2

NC STATE UNIVERSITY

Seq U e n C e D I a.g ral I l D. Add Single-Entry Data Buffer before DAC
Hardware Software Hardware
ISR: Interrupt Main
Next Timer Controller | || Thread DAC
Sample . : . .

-
VO Suspend_

u IRQ o
Update DAC Q’ I Start handler

il

= ISR can start slightly late and
still update buffer in time

|
Return froﬁ1 handler
[, SEEEEEEEE EELELEety oS

Start handlér
|

= Slack time:Tsample — Tcompute - [l Resume |
tbd i |
IRQ - . Suspend_ : Update DAC with d1_

te d2_

|
|
I
|
|
|
|
|
|
|
|

Return from handler

25 2 l Resume

3

Sequence Diagram L
f S W g v}S@X Q\g\
(

S r | | o\
[—7 - R hﬂ Q&qu\ce’

f |

aa\macﬂ/‘(ov >\~ - _%7_,?4;4—(
" \232
22

= -~ >t

2.

s

26 V2

E.Add Multi-Entry Buffer for DAC

NC STATE UNIVERSITY

ISR: (code) {
Next O l }
Sample \/\U
- L3) v
[T 2
Timer Overflow I /
Buffer IRQ | u AL M an/
CPU Activity D D \L Y“L
Write Timing Window ~ L I || A
— | l |

DAC Code) d, d, d, 4,

DAC Vg,

= Buffer is queue: first-in, first-out (FIFO)
Buffering delays data, so will not work for all applications

Sequence Diagram

|

ISR:
Next
Sample

-

28 V2

E2. DAC Buffer Generates Low/Empty Interrupt

NC STATE UNIVERSITY

ISR: (code) {
Refil r© }
Buffer
= = Burst/batch processing, so fewer interrupts
C v needed
‘]]* o = Divides number of interrupts by free buffer size
Timer Overflow I l
Buffer IRQ I l /m
CPU Activity [[
Write Timing Window g
| ;
DAC Code d, d, d; d,
DACV,,,

29 V2

c o H) HlY
equence '
g iagram | Aatf \ N W >ec |

['52;:::"'@ W l ‘
e e)
| \ % :

1

!

|
W =
’i_,ﬁD\ } ;)
~ —>Y| \
=<
>| 3
=\

|
—
-~

30 V2

F. Timer Triggers DMA Transfer, DMA Request Refill with IRQ

N v
/ISR: (code) {

Refill B
_Buffer ’)

"|||||

. v ISR must save first new data
(@]

/ - u

N ') value d; before next sample time

Transfer One Sample

U

[/
| /
IRV AN

Timer Overflow I /
DMA IRQ | /
CPU Activity | d,d, d, d4i

Write Timing Window

w1
I

DAC Code ?
DAC Vg,

31 V2

NC STATE UNIVERSITY

Sequence Diagram

ISR:
Refill
Buffer

e = 8

Transfer One Sample

j

i

32 V2

Sequence Diagram

ISR:
Refill
Buffer

s rsa:(TN
Q
i @'ﬁ§

|

&
—

g

s | Dz-
—— i
A A
L o g i
513

L Tk

\

33 V2

NC STATE UNIVERSITY

Tight Timing Requirements for Buffer
o
,5&

Producer: CP u=-_

Al
A 50 ps deadllne eadllne

First buffer ite
Location of mi
read by DMA

Last buffer item

Consumer: DMA J;/ |

FiIl
Fill

e
= Despite fewer interrupts (due to multiple buffe = Consumer reads data item from red buffer entry
entries), still need to save next sample to buffer = Data item in buffer is not needed (old, stale) after

before DMA reads it being read by consumer
= Examine and understand timing requirements for ~ * Producer (Thread_Refill_Sound_Buffer) must stay
buffer ahead of consumer (DMA controller)

= Producer adds data (light blue-green) to fill in buffer

34 "yin example, first four items have already been added

NC STATE UNIVERSITY

Loosening Timing Reqmrements ith Double-Buffering

Buffer O, first ikes -
ZIWJ\ . 5%50 ps deadline |
Location .
of item Buffer O, last item
<€

read by Buffer |, first item 5%50 s des
DMA

Buffer |, last item

CPU Activity - e ;’: < e
: : : : :
z E F N - z
, : — > Time
= Use two buffers, each half-size (N = 4 entries) = Generalization
= Initialization = After playing last sample from buffer x, switch to
= Start filling buffer 0 playing buffer y, start filling buffer x
= Can start playing buffer O after it has 2| sample " Deadlines
= After buffer 0 is filled, start filling buffer I, * Now have two deadlines, one per buffer ®
= Operation:After playing last sample from buffer 0 * Much looser deadlines: extended to from Tg,. to

*
= Switch to playing buffer | (N+1) TSample ©

> &Start refilling buffer 0

NC STATE UNIVERSITY

G. Double Buffering

sk N b (code) {

Switch Buffers, R }
Refill Other - L_
_ A] 1< J

| p_%LNL.; Vou

Transfer One Sample

36 V2

NC STATE UNIVERSITY
Sequence Dlagram G. DMA with Double Buffer

> £

Hardware Software Hardware
ISR:
Switch Buff Direct Memory Interrupt Main Timer Buffer 0 Buffer 1
W't? utters, Timer | | Access Controller Controller | || Thread ISR in Memory | | in Memory DAC
Refill Other : : ‘ y - i i :
1 | il 1 N I
\ : : :
H V L | I
| I_’| < Ou . } | 5] Update DACRith d 0
I
Transpér One Sample "y Suspend_ ! _ [l Update DACRith d 1
- >
1
|

Start 1andlér

: >
Compute d 2

Write d 2

’ Compute d 3 B\

1
9 Return from handler {
,(..............................
we | 2~
l Resume _ ! !
—>> |
T |
1

Write d 3

|

— ‘S\\'\E &\(\Q’ N ! | Update DAC wit
I

’\\ Suspend_ ! [l Update DAC witl

\ > e | >
Start handler <!
— ir
Compute d 4

Write d 4

’ Compute d 5 %

. pal
I Resuqfe i d
37 V2 = ‘ o '

Write d 5

NC STATE UNIVERSITY
Sequence Diagram .
[Sﬁtﬁ:é‘:ﬁ:iio-v"v

. H \ \ (Evf@
[| i Transl_roneSamp|e %Eb:'h%“ | ’é |

\ —
étvfﬁtjj"' \K’ &\Q/ | R D ,—zi S
TS\ AW e s - |
- i
. /1?7' \ l
% V2 -

NC STATE UNIVERSITY

ISR {

3¢ }

ISR:
Start to thread_Deferred_Work {
Refill Buffer % }
1

|
{ N | > L; hq

H. Split Work into Urgent and Deferred

Transfer One Sample

= When refill buffer ISR runs, it can delay ISRs (with same or lower priority) and all threads
= Want to reduce time spent in ISR to improve responsiveness for other software processing
= Observation: Don’t need to refill entire buffer in ISR
= Refilling first sample in buffer is highest urgency
= Lower urgency for second, even lower for third...
= Procrastinate!
= Change ISR to refill N most urgent samples (e.g. 1 & 2), and request thread to finish the work
= Defer remaining BUFSIZE — N samples (e.g. 3 & 4) for thread to refill

= Depends on some form of thread scheduler to run the refill thread
39 V2

NC STATE UNIVERSITY

Sequence Diagram

H. DMA with Deferred Work (Arbitrary Scheduler)

Hardware Software
Direct Memory Interrupt Main and Timer | | Deferred Work Buffer
Timer | | Access Controller Controller | || Other Threads ISR Thread in Memory
ISR: . | : a i : K
I 1 1 1
Start to O : : : : Samples 0 to 3
Refill Buffer E' [! ! ! -l Update DAC with djo_
i | | I] el
I I 1 .
| Y daLe DAC with d
e Mo el = e) ' 1 : ol {
I 1 1 ..
Transfer One Sample > - - - » [Updale DAC with di2_
- Suspend ; : N UpdaLe DAC with d|3_
| | 1]]
Start handler | - ;
]] ol I
I 1 1
i : Compute d 4 : !
1 1 1
; ; Writed4 !
1 1 1
| | ’ Compute d 5 B| i
| I 1
; ; Writed 5 |
1 1 T
| Return from he;ndler \/ i
<€ |
1 1 1
I 4 | |
| | |
: 1 : '
1 I
! i i Compute d 6
1 1 1
| | | Write d 6
] I I
| | : Compute d 7
1 1 I
| : ; Write d 7
] 1 1
n | | i _ [l Update DAC with d
o | | | [update DAC with d5_
| f | _ UpdaLe DAC with d|6_
1] 1
0 V2 > ! ! ! = UpdaLe DAC with d|7_
1 I 1

NC STATE UNIVERSITY

Sequence Diagram

Iiter

Start to
Refill Buffer

- ‘ -
Transfer One Sample

41 V2

writes to DAC

Overview:What and Why [

A.Task software
Output timing bad: Very unstable, vulnerable to other

NC STATE UNIVERSITY

software (processes and handlers), timing errors oW Add HW timer, DMA with
accumulate. Greedy, doesn’t share CPU. , tmer ISR, software buffer
(tracks time much better)

B.Task software poll/blocks on

Output timing better: timer, then writes to DAC

Tolerates more interference,
vulnerable to processes and handlers,
errors don’t accumulate. [

Add HW timer ISR

Greedy, doesn’t share CPU | C-Timer ISR writes }

data to DAC

Output timing: Even better.
Vulnerable to other ISRs and interrupt
locking f, times per second

D.Timer advances buffer data to DAC, }

Add |-deep
DAC input buffer

ample

Timer ISR writes next data to buffer

Interrupt overhead for each
sample wastes CPU time

Add N-deep DAC input

E.Timer advances buffer data to
DAC. Low/Empty ISR writes next

2 2 batch of data to buffer

buffer with low/empty ISR

FTimer triggers DMA data transfer,
DMA ISR writes data to buffer

Split into
ease firs
and cu

uble-buffer to
ample’s deadline
ISR duration in half.

Move non-urgent
work to task

H.Timer triggers DMA,
DMA ISR writes urgent
data to buffer and
triggers task to write
rest of data

G.Timer triggers DMA
with double-buffering,
DMA ISR switches
buffers
and writes data

Vulnerabilities to Timing Interference

43

-
A.Task software
L writes to DAC

p
B.Task software poll/blocks on
timer, then writes to DAC

f C.Timer ISR writes
data to DAC

(D.Timer advances buffer data to DAC,
L Timer ISR writes next data to buffer

E.Timer advances buffer data to
DAC. Low/Empty ISR writes next
batch of data to buffer

(FTimer triggers DMA data transfer,
DMA ISR writes data to buffer

/G.Timer triggers DMA data transfer, DMA
ISR switches buffers and writes data

H.Timer triggers DMA data transfer,
DMA ISR writes urgent data to buffer

\and triggers task.Task writes rest of data

NC STATE UNIVERSITY

NC STATE UNIVERSITY

Implementation Comparison

B. SW Polls |[C. Timer ISR |D. Add E. Multi- F. DMA G. Double |H. Defer
Timer single DAC |Entry DAC |Transfer Buffering Some Work
buffer Buffer
CPU Sharing Greedy Greedy Good
Time Tracking SW fixed SW polls HW HW timer
busy-wait timer
delay loop
Resynch on No Yes Yes

next sample?

Vulnerableto Yes Yes No
other tasks

Vulnerableto Yes Yes Only higher-
ISRs, Handlers priority

Width of timing Tcp,, Tepu Tepu Tsample
window

Relative Toample
Deadline: from

notification

until updating

first sample in

buffer

