
1 V2

Improving Output Timing Stability

V2

2 V2

 Output timing requirements
 Hardware and software methods to improve timing stability

Topics Covered

3 V2

Overall Challenge: Update Analog Output Signal at Correct Times

 Some outputs need to be updated at specific times
 Audio signal reconstruction: change output every TSample

 For control system, periodic output updates make design
& analysis easier

 Some control systems require output update to be synchronized
with other events in system
 To push someone on a swing, when do you extend your arms?
 Examples: Anything switched-mode

 Switched-mode power converters and drivers
 Brushless DC motor drivers.

 “Specific time” = timing window
 System performance falls if output changes before or after window
 Harder to design system which meets timing requirements as window

narrows

4 V2

Precise, Stable Timing for Software May Be Difficult

 Currently no feasible programming language support to define timing.
Need hardware, OS support.

 Translation of program source code specification to object code
implementation disconnects developer from timing more
 Source code is translated to executable machine code:

compilation, assembly, linking
 Can measure & observe machine code, not source code

 When a specific instruction executes
relative to latest synchronization
depends on
 Control flow path taken to get there:

conditionals, loops, etc.
 Often other factors

 Sharing CPU with other processes and handlers
(scheduling) can delay or preempt code which generates output signals

Start of process:
First Instruction

Vertical positions show how late a particular
instruction might execute over multiple
process runs, relative to its earliest time.

On horizontal axis
(time error of 0),
each instruction
always starts at

same time relative to
sync operation

5 V2

Waveform Generator Application

 Use hardware (and software) to help stabilize output timing of
waveform generator
 Want to update DAC output every 50 us for a 20 kHz update rate
 DAC signal amplified to drive speaker

 Timing analysis approach - Vulnerabilities?
 What kinds of events and over what time periods can affect the

output update time?
 Solutions
 Use hardware to help (or even replace) software doing

synchronization, scheduling, or work.
 Synchronization: determining when to update output
 Scheduling: selecting code to run
 Work: updating output

 Buffer data to loosen (simplify) software timing requirements

6 V2

Example Code from ESF

void Play_Tone(unsigned int period, unsigned int
num_cycles, unsigned wave_type) {
 unsigned step, out_data;

 while (num_cycles>0) {
 num_cycles--;
 for (step = 0; step < NUM_STEPS; step++) {
 switch (wave_type) {
 case SQUARE:
 if (step < NUM_STEPS/2)
 out_data = 0;
 else
 out_data = MAX_DAC_CODE;
 break;
 case RAMP:
 out_data = (step*MAX_DAC_CODE)/NUM_STEPS;
 break;

 case SINE:
 out_data = SineTable[step];
 break;
 default:
 break;
 }
 DAC0->DAT[0].DATH = DAC_DATH_DATA1(out_data >> 8);
 DAC0->DAT[0].DATL = DAC_DATL_DATA0(out_data);
 Delay_us(period/NUM_STEPS);
 }
 }
}

7 V2

DAC Overview

 Load DACDAT with 12-bit data N
MUX selects a node from resistor divider network to create

Vo = (N+1)*Vin/212

 Vo is buffered by output amplifier to create Vout
 Vo = Vout but Vo is high impedance - can’t drive much of a load, so need to buffer it

8 V2

DAC Registers

 This peripheral’s registers are only eight
bits long (legacy peripheral).

 DATA[11:0] stored in two registers
 DATA0: Low byte [7:0] in DACx_DATnL
 DATA1: High nibble [11:8] in DACx_DATnH

9 V2

M
ux

DAC Operating Modes

 Normal
 Value written to DACDAT is converted to voltage immediately

 Buffered mode eases timing requirements
 Value written to DACDAT is stored in data buffer for later

conversion
 Next data item is sent to DAC when triggered

 Software Trigger - write to DACSWTRG field in DACx_C0
 Hardware Trigger - from PIT timer peripheral

 Normal Mode: Circular buffer
 One-time Scan Mode: Pointer advances, stops at end of buffer
 Status flags in DACx_SR

Overflow

data reg 1

Timer (PIT)

data reg 0

10 V2

Overview: What and Why
A. Task software
writes to DAC

E. Timer advances buffer data to
DAC. Low/Empty ISR writes next

batch of data to buffer

Add N-deep DAC input
buffer with low/empty ISR

D. Timer advances buffer data to DAC,
Timer ISR writes next data to buffer

Add 1-deep
DAC input buffer

C. Timer ISR writes
data to DAC

B. Task software poll/blocks on
timer, then writes to DAC

Add DMA with ISR,
software buffer

F. Timer triggers DMA data transfer,
DMA ISR writes data to buffer

G. Timer triggers DMA
with double-buffering,

DMA ISR switches
buffers

and writes data

Split into double-buffer to ease
first sample’s deadline and cuts

ISR duration in half.

H. Timer triggers DMA,
DMA ISR writes urgent

data to buffer and
triggers task to write

rest of data

Move non-urgent
work to task

Output timing bad: Very unstable, vulnerable to
other software (processes and handlers), timing
errors accumulate. Greedy, doesn’t share CPU.

Output timing better: Tolerates more
interference, vulnerable to processes and
handlers, errors don’t accumulate. Greedy,

doesn’t share CPU

Output timing: Even better.
Vulnerable to other ISRs and interrupt

locking fsample times per second

Interrupt overhead for each
sample wastes CPU time

1.Tight Deadline: ISR must write first new
sample to buffer within TSample

2. Long DMA ISR is delays other processing too much

A2. OS-triggered periodic task
software writes to DAC

Add HW timer (tracks time much better)

Add OS with ticks from HW timer Access HW timer directly

Put code in HW
timer’s ISR

11 V2

Software and Hardware Components
A D

E

H

G

F

DAC

SW

HW VOut

B

DAC
VOutTimer

Done?

C

DAC
VOutTimer

ISR: Next
Sample

NVIC

DAC
VOutTimer

ISR: Next
Sample

NVIC

E2

DAC
VOutTimer

ISR: Next
Sample

NVIC

DAC
VOutTimer

ISR: Refill
Buffer

NVIC

DAC
VOut

Timer

ISR:
Refill
Buffer

NVIC
DMA Transfer One Sample

DAC
VOut

Timer

ISR: Switch
Buffers,

Refill Other

NVIC
DMA Transfer One Sample

DAC
VOut

Timer

ISR: Start to
Refill Buffer

NVIC
DMA Transfer One Sample

Run
later

A2

DAC

SW

HW VOut

OS

Timer

12 V2

A. Simple Starter Code
while (1) {

compute data
// Synchronize: Wait until time for next sample
for (t = T; t>0; t--); // busy wait loop creates delay
// Position of following code implicitly schedules it
write data to DAC

}

 Timing is unstable. Make T what value?
 What if computing data takes variable time?
 Vulnerable to interference by other handlers,

processes on CPU

 Using busy-waiting to create time delay is greedy
because it doesn’t share CPU

 Synchronization and scheduling done completely in
software

DAC

SW

HW VOut

13 V2

Sequence Diagram

DAC

SW

HW VOut

14 V2

Unbuffered DAC with Busy-Wait Code

CPU Activity

Ideal Write Window

d4d3d2d1?DAC Code

DAC VOut

Busy-waiting for fixed time

Compute next output value

Write output value

d1 d2 d4 d5d3

15 V2

Timer/Counter Concepts

16 V2

A2: Scheduler Releases WaveGen Periodically

CPU Activity

Ideal Write Window

d4d3d2d1?DAC Code

DAC VOut

Task switching overhead

Interrupt entry/exit overhead

Compute next output value

Write output value

d1 d2 d3 d4 d5

void Task_WaveGen (void) {
compute data
write data to DAC

}

DAC
VOut

Release Task
Periodically

OS

Timer

17 V2

B. Software Polls Hardware Timer
TNext = TSample
while (1) {

compute data
// Synchronize: Wait until time for next sample
while (TimerValue < TNext); // busy wait polling loop
// Position of following code implicitly schedules it
write data to DAC
TNext += TSample

}

 Add hardware timer/counter peripheral
 Binary counter (e.g. 16, 32 bits) tracks elapsed time by

counting clock pulses. SW can read (e.g.TimerValue)
 Increments periodically, regardless of SW activity

 Synchronization loop tolerates some
timing interference
 How much? Class discussion activity…

 Synch performed in SW with HW help
 Scheduling performed in SW

DAC
VOutTimer

Done?

Timer Value

CPU Activity

Write Timing Window

d4d3d2d1?DAC Code

DAC VOut

Task switching overhead

Compute next output value

Synchronize by busy-waiting
for timer done flag

d1 d2 d3 d4 d5

18 V2

Sequence Diagram

DAC
VOutTimer

Done?

19 V2

Unbuffered DAC with Timer Polling

Timer Overflow

CPU Activity

Write Timing Window

d4d3d2d1?DAC Code

DAC VOut

Task switching overhead

Interrupt entry/exit overhead

Compute next output value

Synchronize by busy-waiting for timer done flag

Write output value

d1 d2 d3 d4 d5

20 V2

C. Hardware Timer Periodically Triggers Interrupt for DAC Write
Interrupt Handler {

compute data
write data to DAC

}

DAC
VOut

Timer

ISR:
Next

Sample

NVIC

Timer IRQ

CPU Activity

Write Timing Window

d4d3d2d1?DAC Code

DAC VOut

d1 d2 d3 d4 d5

Task switching overhead

Interrupt entry/exit overhead

Compute next output value

Wait for Done. Sync. w/ timer

Write output value

21 V2

Sequence Diagram

DAC
VOut

Timer

ISR:
Next

Sample

NVIC

22 V2

Sequence Diagram

DAC
VOut

Timer

ISR:
Next

Sample

NVIC

23 V2

D. Add 1-element Input Data Buffer for DAC
(code) {
}

DAC
VOut

Timer

ISR:
Next

Sample

NVIC

Timer IRQ

CPU Activity

Write Timing Window

d4d3d2d1?Buffer Code

d3d2d1??DAC Code

DAC VOut

d1 d2 d3 d4

d1 d2 d3 d4 d5

24 V2

M
ux

DAC Operating Modes

 Normal
 Value written to DACDAT is converted to voltage immediately

 Buffered mode eases timing requirements
 Value written to DACDAT is stored in data buffer for later

conversion
 Next data item is sent to DAC when triggered

 Software Trigger - write to DACSWTRG field in DACx_C0
 Hardware Trigger - from PIT timer peripheral

 Normal Mode: Circular buffer
 One-time Scan Mode: Pointer advances, stops at end of buffer
 Status flags in DACx_SR

Overflow

data reg 1

Timer (PIT)

data reg 0

25 V2

Sequence Diagram

DAC
VOut

Timer

ISR:
Next

Sample

NVIC

 ISR can start slightly late and
still update buffer in time
 Slack time: Tsample – Tcompute -

tbd

Update DAC

26 V2

Sequence Diagram

DAC
VOut

Timer

ISR:
Next

Sample

NVIC

27 V2

E. Add Multi-Entry Buffer for DAC

 Buffer is queue: first-in, first-out (FIFO)
 Buffering delays data, so will not work for all applications

(code) {
}

DAC
VOut

Timer

ISR:
Next

Sample

NVIC

Timer Overflow

Buffer IRQ

CPU Activity

Write Timing Window

d4d3d2d1?DAC Code

DAC VOut

d1 d2 d3 d4 d5

28 V2

Sequence Diagram

DAC
VOut

Timer

ISR:
Next

Sample

NVIC

29 V2

Timer Overflow

Buffer IRQ

CPU Activity

Write Timing Window

d4d3d2d1?DAC Code

DAC VOut

E2. DAC Buffer Generates Low/Empty Interrupt

 Burst/batch processing, so fewer interrupts
needed
 Divides number of interrupts by free buffer size

(code) {
}

d1 d2 d3 d4 d5 d6 d7 d8

DAC
VOut

Timer

ISR:
Refill
Buffer

NVIC

30 V2

Sequence Diagram

DAC
VOut

Timer

ISR: Refill
Buffer

NVIC

31 V2

F. Timer Triggers DMA Transfer, DMA Request Refill with IRQ
(code) {
}

Timer Overflow

DMA IRQ

CPU Activity

Write Timing Window

d4d3d2d1?DAC Code

DAC VOut

DAC
VOut

Timer

ISR:
Refill
Buffer

NVIC
DMA

Transfer One Sample

ISR must save first new data
value d5 before next sample time

d 1 d2 d3 d4 d5 d6 d7 d8

32 V2

Sequence Diagram

DAC
VOut

Timer

ISR:
Refill
Buffer

NVIC
DMA

Transfer One Sample

33 V2

Sequence Diagram

DAC
VOut

Timer

ISR:
Refill
Buffer

NVIC
DMA

Transfer One Sample

34 V2

 Despite fewer interrupts (due to multiple buffer
entries), still need to save next sample to buffer
before DMA reads it

 Examine and understand timing requirements for
buffer

 Producer adds data (light blue-green) to fill in buffer
 In example, first four items have already been added

 Consumer reads data item from red buffer entry
 Data item in buffer is not needed (old, stale) after

being read by consumer

 Producer (Thread_Refill_Sound_Buffer) must stay
ahead of consumer (DMA controller)

Tight Timing Requirements for Buffer

Location of item
read by DMA

First buffer item

Last buffer item

50 µs deadline

Time

50 µs deadline

F
ill

F
ill

F
illProducer: CPU

Consumer: DMA

35 V2

 Use two buffers, each half-size (N = 4 entries)
 Initialization
 Start filling buffer 0
 Can start playing buffer 0 after it has ≥1 sample

 After buffer 0 is filled, start filling buffer 1
 Operation: After playing last sample from buffer 0,
 Switch to playing buffer 1
 Start refilling buffer 0

 Generalization
 After playing last sample from buffer x, switch to

playing buffer y, start filling buffer x

 Deadlines
 Now have two deadlines, one per buffer 
 Much looser deadlines: extended to from TSample to

(N+1)*TSample 

Loosening Timing Requirements with Double-Buffering

Location
of item
read by

DMA

Buffer 0, first item

Buffer 0, last item

5*50 µs deadline

Buffer 1, first item

Buffer 1, last item

5*50 µs deadline

5*50 µs deadline

Time

F
ill

 B
uf

f.
0

F
ill

 B
uf

f.
1

F
ill

 B
uf

f.
0

F
ill

 B
uf

f.
1

F
ill

 B
uf

f.
0CPU Activity

36 V2

G. Double Buffering
(code) {
}

DAC
VOut

Timer

ISR:
Switch Buffers,
Refill Other

NVIC
DMA

Transfer One Sample

37 V2

Sequence Diagram

DAC
VOut

Timer

ISR:
Switch Buffers,

Refill Other

NVIC
DMA

Transfer One Sample

38 V2

Sequence Diagram

DAC
VOut

Timer

ISR:
Switch Buffers,

Refill Other

NVIC
DMA

Transfer One Sample

39 V2

H. Split Work into Urgent and Deferred

When refill buffer ISR runs, it can delay ISRs (with same or lower priority) and all threads
 Want to reduce time spent in ISR to improve responsiveness for other software processing

 Observation: Don’t need to refill entire buffer in ISR
 Refilling first sample in buffer is highest urgency
 Lower urgency for second, even lower for third…

 Procrastinate!
 Change ISR to refill N most urgent samples (e.g. 1 & 2), and request thread to finish the work
 Defer remaining BUFSIZE – N samples (e.g. 3 & 4) for thread to refill

 Depends on some form of thread scheduler to run the refill thread

ISR {
}

thread_Deferred_Work {
}

DAC
VOut

Timer

ISR:
Start to

Refill Buffer

NVIC
DMA

Transfer One Sample

Run
later

40 V2

Sequence Diagram

DAC
VOut

Timer

ISR:
Start to

Refill Buffer

NVIC
DMA

Transfer One Sample

Run
later

41 V2

Sequence Diagram

DAC
VOut

Timer

ISR:
Start to

Refill Buffer

NVIC
DMA

Transfer One Sample

Run
later

42 V2

Overview: What and Why A. Task software
writes to DAC

E. Timer advances buffer data to
DAC. Low/Empty ISR writes next

batch of data to buffer

Add N-deep DAC input
buffer with low/empty ISR

D. Timer advances buffer data to DAC,
Timer ISR writes next data to buffer

Add 1-deep
DAC input buffer

Add HW timer ISR

C. Timer ISR writes
data to DAC

B. Task software poll/blocks on
timer, then writes to DAC

Add HW timer, DMA with
ISR, software buffer

F. Timer triggers DMA data transfer,
DMA ISR writes data to buffer

G. Timer triggers DMA
with double-buffering,

DMA ISR switches
buffers

and writes data

Split into double-buffer to
ease first sample’s deadline

and cuts ISR duration in half.

H. Timer triggers DMA,
DMA ISR writes urgent

data to buffer and
triggers task to write

rest of data

Move non-urgent
work to task

Output timing bad: Very unstable, vulnerable to other
software (processes and handlers), timing errors

accumulate. Greedy, doesn’t share CPU.

Output timing better:
Tolerates more interference,

vulnerable to processes and handlers,
errors don’t accumulate.

Greedy, doesn’t share CPU

Output timing: Even better.
Vulnerable to other ISRs and interrupt

locking fsample times per second

Interrupt overhead for each
sample wastes CPU time

1.Tight Deadline: ISR must write first new
sample to buffer within TSample

2. Long DMA ISR is delays other processing too much

Add HW timer
(tracks time much better)

43 V2

Vulnerabilities to Timing Interference
A. Task software
writes to DAC

E. Timer advances buffer data to
DAC. Low/Empty ISR writes next

batch of data to buffer

D. Timer advances buffer data to DAC,
Timer ISR writes next data to buffer

C. Timer ISR writes
data to DAC

B. Task software poll/blocks on
timer, then writes to DAC

F. Timer triggers DMA data transfer,
DMA ISR writes data to buffer

G. Timer triggers DMA data transfer, DMA
ISR switches buffers and writes data

H. Timer triggers DMA data transfer,
DMA ISR writes urgent data to buffer

and triggers task. Task writes rest of data

44 V2

Implementation Comparison
H. Defer
Some Work

G. Double
Buffering

F. DMA
Transfer

E. Multi-
Entry DAC
Buffer

D. Add
single DAC
buffer

C. Timer ISRB. SW Polls
Timer

A. SW ->
DAC

Issue

GoodGreedyGreedyCPU Sharing

HW timerSW polls HW
timer

SW fixed
busy-wait
delay loop

Time Tracking

YesYesNoResynch on
next sample?

NoYesYesVulnerable to
other tasks

Only higher-
priority

YesYesVulnerable to
ISRs, Handlers

TsampleTCPUTCPUTCPUWidth of timing
window

TsampleRelative
Deadline: from
notification
until updating
first sample in
buffer

