NC STATE UNIVERSITY

1/O-DRIVEN SYNCHRONIZATION IN
EXAMPLE APPLICATIONS

PREVIOUSLY CALLED
“PERFORMANCE ANALYSIS OF EXAMPLE APPLICATIONS ON PLATFORM 1
(RTC SCHEDULER WITH INTERRUPTS, BASIC PERIPHERAL USE)”

V4
10/2/2025

12V4

Where are we in the class?

Embedded System Requirements
and Characteristics

\

Concurrent Systems Concepts and
Issues: Process Implementations
and Relationships in HW & SW

Learn Platform 1: RTCS Scheduler
(Non-Preemptive Prioritized
Multirate Tasks with Interrupts)

\

Build Example Applications
with Platform 1

\

Evaluate Application
Performance

\

Improve Performance:

2 12V4

Use HW, SW, OS Better

NC STATE UNIVERSITY

Learn Platform 2: RTXv5 RTOS
(+ task preemption and many
integrated support features)

\\

Build Example Applications
with Platform 2

Evaluate Application
Performance

\

Improve Performance:
Use HW, SW, OS Better

LN12 — I/O-Driven Sync: Concepts, In Example Applications

= |/O-driven synchronization
= Why, what, where and how

= Examine performance limits of Platform 1
= Summarize 1/O-driven sync of first implementations of example applications

3 12V4

NC STATE UNIVERSITY

PROCESS SYNCHRONIZATION: WHY,
WHERE AND HOW?

NC STATE UNIVERSITY

Why Do We Synchronize Processes?

L‘Zf‘fbt\

(

e

R,

On horizontal axis (time error of 0), 1
each instruction always starts at =iy ¢ === 1 :
same time relative to sync operation Z [Vertical positions show how Iateﬁ/ he
Start of process: g particular instruction might
First Instruction execute over multiple process
runs, relative to its earliest time.

= Sometimes need to sync to external events or = Note
timing requirements = Synchronizing code C to event E means code C will not run

= Timing variability (-> error) accumulates as process before E, but after E (if at all).
executes = How long after? It depends....

= Synchronization removes accumulated timing error in
process since last sync

5 12Vv4

NC STATE UNIVERSITY

Where and How Can a Process Synchronize?

e |
= At start of process \EZM
= Start of interrupt handler L_Id)c%(v\
= Interrupt system syncs start of handler (ISR) to after trigger event 4 o
= 15 cycles after for Cortex-M0+ CPU % he
= Start of task function S B
§ sk 1

= Task scheduler syncs start of task function to after trigger event

= Anywhere within process

= Explicit synchronization code within task code '7/1},& W ‘C}‘t / wez’; B
= Test for condition.
= If true, then continue and execute following code
= Else repeat test for condition. (Or do something else...)

= Synchronization call to OS within task code — Tl \Tos€ Cartiucs

! —

= Available? Depends on task scheduling o
= Probably not supported if non-preemptive (e.g. run-to-completion) E@L@ s
= Probably supported if preemptive (e.g. RTXv5, FreeRTOS, etc.)

= Howtodoit?
= Task calls an OS sync. function, which doesn’t return (it blocks the process from continuing) until after sync. event occurs.
= Scheduler synchronizes resumption of task to after trigger event

6 12Vv4

NC STATE UNIVERSITY

Synchronization Tightness and OS Support {A |

A
1

£

'IY\ o

14

>
/
-

I'e_

S| _

¢)!___&...» el
J //’{W:

= Tighter synchronization = less time between eventand = Why does or doesn’t an OS support synchronization

synchronized code starting to run within a process?
= Not that easy for a task to pause itself for synchronization

i
1.4

= Range of tightness for synchronization methods

= |deal case: delay of O = Something must save/restore all CPU core registers (including PC,
= ISR has delay of 15 CPU cycles on KL25Z’s Cortex-MO+ if... Etachk pOL”ter)dto switch b‘:tw_ee:: tasks L stack

= Interrupts are enabled, no higher-priority interrupt/exception ach task needs memory. or its function call stac

handler is executing = To support task preemption, scheduler must be able to

= Polling loop taking Tpyrime FUNNING Very Tp periog NAS SYNC preempt a task partway through, resume it later.

delay between Tp7ime aNd Tooyperiog = Not much more work to offer synchronization (which

olllime ollPerio
= Task Scheduler takes time to... may require blocking) partway through task, but offers
major benefits

= Select task to run, dispatch it (maybe switch contexts, then run or

resume it)
7 12V4

NC STATE UNIVERSITY

How to Sync Within a Run-to-Completion Process?

s 22
= Background Top] iR
= Applies to all ISRs (even with task preemption), ' ‘\Tm’ C{\B
all tasks with RTC scheduler
= Interrupt system, RTC scheduler can only run o) SE———— =
the process from its first instruction S N — —
= Convert process to finite state machine)
= Each call to process executes code for one state, M Li. ‘ i, 4{1
allowing this process to block while sharing CPU i &) . next_s 16
with other processes \1 \ \LA ' A
= Example: I2C ISR in KL25Z Reference Manual ;
= Scheduler or language support? o Ay | szl [oS ?
= Continuations and coroutines allow RTC process] L o | & \ I
to yield control somewhere, resume there later — = e P
= Not available in C unless we add it. Advanced il ‘ f "K\\t
. CN

topic... ! C

8 12Vv4 ' =

NC STATE UNIVERSITY

Example: 12C Interrupt Routine for KL25Z —=

= Determine current state,
select its code

Arbitration
lost?
N

\ Data transfer
Address transfer see note 2
see note 1

Last byte
transmitted?,

Clear ARBL

N (write)

) ¥ \
Write next Generate stop

byte to Data reg Set TXACK signal (MST=0) Set TX mode recei:r?/
Write data Transmit ReaDda?aalraelmm
to Data reg next byte 9
and store
Switch to Switch to
Rx mode Set Rx mode Rx mode
Dummy read Generate stop Reaga(:aa!r:«x from Dummy read Dummy read
from Data reg signal (MST=0) and s(:rge from Data reg from Data reg

9 12V4 Figure 38-42. Typical 12C interrupt routine l

NC STATE UNIVERSITY

PLATFORM LIMITS

10 12V4

NC STATE UNIVERSITY

Platform 1 Performance Limits

= Characterize basic performance limits of Platform 1 (48 MHz Cortex-MO+)
= |nterrupt System
= Latency: 15 clock cycles

s M@

N DU el
= RTCS —hde M |
= Time-triggered scheduling resolution: 1 tick W/ Hg&b}@

- S aanstiv !__[
kT [) [(© 1 eet
-t ; RO— _‘__,_—r——-——*”—%"‘"f“‘"" R - AN
= Scheduler latencies: time to examine table, find next ready task, call task function \ 1Q
| U e L{/

11 12Vv4

NC STATE UNIVERSITY

SUMMARY AND EVALUATION OF INITIAL
APPLICATION DESIGN APPROACHES

NC STATE UNIVERSITY

Examples
Synchronize to Event or Time
= Quadrature Decoder w/Limit Switch = Blinky Control Panel
A ISR A
. (S22 Task: Switched LED
z—] ISRz
- (S22 [Task: Level Alarm LED
’__..‘r{ ”f “'E
= /,/'1\ - J\‘
TR T YL N, 101z »| | Task: Dimmable LED

= Waveform Generator

N, 2z »] Task: Switched LED Flasher

1 kHz

Task: WaveGen

13 12V4

Examples

= Touchscreen

@ 101z >| Task

: Read|Touchscreen

ra

= Serial UART Communications

UART Rx Event —>J ISR: UART RX

UART Tx Event —> ISR: UART TX
Y A0 Ry
H[UF-TCy

14 12Vv4

= LCD Controller

NC STATE UNIVERSITY

Task: (LCD User)

Function: LCD Interface

= Scope

User Interface

task asks Task:
scheduler to Scope

Plot Data

release task

NC STATE UNIVERSITY

Examples
= SMPS Controller = PWM
Control Loop PWM
F F
@ St >| Task: SMPS Controller @ requencybl Task: Generate PWM Output ||
) LTt
] ¥ P

A — \

15 12Vv4

