
1 12 V4

I/O-DRIVEN SYNCHRONIZATION IN
EXAMPLE APPLICATIONS

V4
10/2/2025

PREVIOUSLY CALLED
“PERFORMANCE ANALYSIS OF EXAMPLE APPLICATIONS ON PLATFORM 1
(RTC SCHEDULER WITH INTERRUPTS, BASIC PERIPHERAL USE)”

2 12 V4

Where are we in the class?

Learn Platform 1: RTCS Scheduler
(Non-Preemptive Prioritized

Multirate Tasks with Interrupts)

Build Example Applications
with Platform 1

Embedded System Requirements
and Characteristics

Concurrent Systems Concepts and
Issues: Process Implementations

and Relationships in HW & SW

Evaluate Application
Performance

Learn Platform 2: RTXv5 RTOS
(+ task preemption and many
integrated support features)

Improve Performance:
Use HW, SW, OS Better

Build Example Applications
with Platform 2

Evaluate Application
Performance

Improve Performance:
Use HW, SW, OS Better

3 12 V4

 I/O-driven synchronization
 Why, what, where and how

 Examine performance limits of Platform 1
 Summarize I/O-driven sync of first implementations of example applications

LN12 – I/O-Driven Sync: Concepts, In Example Applications

4 12 V4

PROCESS SYNCHRONIZATION: WHY,
WHERE AND HOW?

5 12 V4

 Sometimes need to sync to external events or
timing requirements
 Timing variability (-> error) accumulates as process

executes
 Synchronization removes accumulated timing error in

process since last sync

 Note
 Synchronizing code C to event E means code C will not run

before E, but after E (if at all).
 How long after? It depends….

Why Do We Synchronize Processes?

Start of process:
First Instruction

Vertical positions show how late
a particular instruction might
execute over multiple process

runs, relative to its earliest time.

On horizontal axis (time error of 0),
each instruction always starts at

same time relative to sync operation

6 12 V4

 At start of process
 Start of interrupt handler

 Interrupt system syncs start of handler (ISR) to after trigger event
 15 cycles after for Cortex-M0+ CPU

 Start of task function
 Task scheduler syncs start of task function to after trigger event

 Anywhere within process
 Explicit synchronization code within task code

 Test for condition.
 If true, then continue and execute following code
 Else repeat test for condition. (Or do something else…)

 Synchronization call to OS within task code
 Available? Depends on task scheduling

 Probably not supported if non-preemptive (e.g. run-to-completion)
 Probably supported if preemptive (e.g. RTXv5, FreeRTOS, etc.)

 How to do it?
 Task calls an OS sync. function, which doesn’t return (it blocks the process from continuing) until after sync. event occurs.
 Scheduler synchronizes resumption of task to after trigger event

Where and How Can a Process Synchronize?

7 12 V4

Synchronization Tightness and OS Support

 Tighter synchronization = less time between event and
synchronized code starting to run

 Range of tightness for synchronization methods
 Ideal case: delay of 0
 ISR has delay of 15 CPU cycles on KL25Z’s Cortex-M0+ if…

 Interrupts are enabled, no higher-priority interrupt/exception
handler is executing

 Polling loop taking TPollTime running every TPollPeriod has sync
delay between TPollTime and TPollPeriod

 Task Scheduler takes time to…
 Select task to run, dispatch it (maybe switch contexts, then run or

resume it)

 Why does or doesn’t an OS support synchronization
within a process?
 Not that easy for a task to pause itself for synchronization

 Something must save/restore all CPU core registers (including PC,
stack pointer) to switch between tasks

 Each task needs memory for its function call stack
 To support task preemption, scheduler must be able to

preempt a task partway through, resume it later.
 Not much more work to offer synchronization (which

may require blocking) partway through task, but offers
major benefits

8 12 V4

 Background
 Applies to all ISRs (even with task preemption),

all tasks with RTC scheduler

 Interrupt system, RTC scheduler can only run
the process from its first instruction

 Convert process to finite state machine
 Each call to process executes code for one state,

allowing this process to block while sharing CPU
with other processes

 Example: I2C ISR in KL25Z Reference Manual

 Scheduler or language support?
 Continuations and coroutines allow RTC process

to yield control somewhere, resume there later

 Not available in C unless we add it. Advanced
topic…

How to Sync Within a Run-to-Completion Process?

9 12 V4

 Determine current state,
select its code

 Run that state’s code

Example: I2C Interrupt Routine for KL25Z

10 12 V4

PLATFORM LIMITS

11 12 V4

 Characterize basic performance limits of Platform 1 (48 MHz Cortex-M0+)
 Interrupt System

 Latency: 15 clock cycles

 RTCS
 Time-triggered scheduling resolution: 1 tick

 Scheduler latencies: time to examine table, find next ready task, call task function

Platform 1 Performance Limits

12 12 V4

SUMMARY AND EVALUATION OF INITIAL
APPLICATION DESIGN APPROACHES

13 12 V4

 Quadrature Decoder w/Limit Switch

 Waveform Generator

 Blinky Control Panel

Examples

ISR AA

ISR ZZ

Task: WaveGen1 kHz

Task: Switched LED10 Hz

Task: Level Alarm LED10 Hz

Task: Switched LED Flasher2 Hz

Task: Dimmable LED10 Hz

Synchronize to Event or Time

14 12 V4

 Touchscreen

 Serial UART Communications

 LCD Controller

 Scope

Examples

10 Hz Task: Read Touchscreen Task: (LCD User) Function: LCD Interface

User Interface
task asks

scheduler to
release task

Task:
Scope

Detect
Trigger Acquire Data Plot Data

ISR: UART RXUART Rx Event

ISR: UART TXUART Tx Event

15 12 V4

 SMPS Controller  PWM

Examples

PWM
Frequency

Task: Generate PWM Output

Control Loop
Frequency

Task: SMPS Controller

