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Where are we in the class?

Embedded System Requirements
and Characteristics

\

Concurrent Systems Concepts and
Issues: Process Implementations
and Relationships in HW & SW

Learn Platform 1: RTCS Scheduler
(Non-Preemptive Prioritized
Multirate Tasks with Interrupts)

\

Build Example Applications
with Platform 1

\

Evaluate Application
Performance

\

Improve Performance:
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Use HW, SW, OS Better
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Learn Platform 2: RTXv5 RTOS
(+ task preemption and many
integrated support features)

\\

Build Example Applications
with Platform 2

Evaluate Application
Performance

\

Improve Performance:
Use HW, SW, OS Better
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LN11 — Concepts for Response Time Analysis

= Key Concepts simultaneously
= Process PA needs to run some of its code in = R;is sum of time needed to process all events
response to event EVA = Determine if any more events happened in that
= Other software in system can delay that running time R,
= Blocking by another currently-running process = If so, update R; to include additional event
= Delays from other processes based on process processing
scheduling = Repeat until done
= Non-prioritized: all other processes = Process is more vulnerable to timing interference if
= Prioritized: higher-priority processes scheduler supports task preemption
= Preemption by other processes = Contents
= Interupt/Exception handlers (ISRs) = Schedulers help software share the CPU’s time
= Preemptive process scheduling: Preemption by better
higher-priority processes = Task run behavior: Run-to-completion vs. yielding
= Estimate worst-case response time for task i (R)) and preemption
= First estimate = Scheduler

= Start assuming all events happen
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RESPONSE TIME ANALYSIS
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Parallel Hardware ... but Serialized Software

' Interrupt Service Routines & |
' Exception Handlers |
' (Background) Q ﬁ) Higher Priority |

MCU
Memory CPU Core [ Int. Ctlr.
interface Actuators — Sensors oo |
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evice, System, : i
Environment... N~ Cl‘i}lP ﬂ///ﬂ / / WK DAC
| V- I/ |
—>  Dig. In Timer Dig. Out 12C
Control Signals
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Schedulers: Helping Software Share the CPU Better

= Build modular program Tasks @ ¢ i D
= Separate tasks/threads and ISRs, each _?
running (mostly) independently 1

= Easier to develop, maintain, debug

Lower Priority

If no ISR or Exc.
ISRs & Handler active,

= What code does CPU run? Exception Scheduler selects

= Normally CPU executes next Handlers task/thread to run
instruction in program, D ﬁ) . o

= But interrupt controller can force CPU Q Higher Priority
to execute handler code for interrupt
or exception request MCU

CPU Core [+ Int. Ctlr.

= Task scheduler can decide which
task/thread to run next
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Run-To-Completion Tasks and Task Preemption

= With run-to-completion task scheduling...
= Scheduler must wait for current task to complete
before running another task
= Tasks cannot pause (or be preempted by other
tasks) partway through, and later resume at that

point within the task. d\)\-\(\g,
= |f scheduler is running task A, it cannot \(59“6

= Pause A partway through (after instruction A;), B n(\tas L X
o . e\~ quv™”

= Switch in task B and run it, Go«\@ che

= Resume task A partway through (at instruction A;,,) =o= —- S

= Preemptive task scheduler will support such task .‘O\e\,\.‘\t‘(\ (eemp
itchi s\ aP
switching ... \((\905 nee

= Letting task B preempt task A
= Letting task A yield the CPU and later pick up
where it left off
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Responsiveness of While (1) Loop Scheduler

Event EvA Ra
—

= Task A must run to service (handle) its event EVA
= EvA makes scheduler release task A
= Task A’s response time (R,): How long from event EvA until task A finishes servicing it?
= Scheduler is While (1) loop
= Tasks run to completion.
= Fixed schedule: same task order every time
= Round-robin: each task gets same number of chances to run
= Scheduler behavior:
= EvA happened? Release A, run A until done.
= EvB happened? Release B, run B until done. Best-Case Task Times
= EvC happened? Release C, run C until done.
= Continue for all events/tasks, then repeat with EVA
= Note Worst-Case Task Times
= We assumed each task takes a constant amount of time to execute
= Task i probably has range of possible execution times, between
Cimin @and C; oy
= Simplify timing model by making some worst-case performance assumptions
= Design for worst case, so assume task i always takes C;=C, .,

= Model will likely overestimate response time, but will never underestimate it — so it will be safe.
11V3
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Responsiveness of While (1) Loop Scheduler

Lower

Priority e <P Event EvA

Best Case for Scheduler

‘
ﬁ) i Worst Case I

| Task Execution Worst Case for Scheduler |
: Time for Both

= Simplify: Initially ignore time taken by scheduler,

= Task A’s worst-case response time: What is the interrupt system and interrupt handlers.
longest possible time from event EVA until task A = Best case: EVA happens just before scheduler checks
finishes servicing it? it. Ry =C,
= Depends on what code runs: Interrupt Controller * Worst case: Every other event (EvB — EvF) happens

decides on ISRs, task scheduler decides on tasks before scheduler checks EvA, and EvA happens just
after that check: R,=C; + C.+ C; + C + C. + C,

lenora :
&hore '”tel‘l‘uPts 5 Higher
F'now | Priority

MCU
CPU Core Int. Ctlr.
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Events EvA, EvB, EvC, EvD, EvE
and EvF happen simultaneously

Improvement: Prioritized Tasks

= Change scheduler to prioritize A > B > C etc. Best Case for A
= New behavior:
= |f EVA happened, run A, then check for EVA again. —
= Else if EvB happened, run B, then check for EVA again. Worst Case for A
= Else if EvC happened, run C, then check for EVA again.
= Et cetera —

= Implications
= Not round-robin. Now have dynamic (not static) schedule of task orders,
since higher priority tasks get chance to run before lower priority tasks.

= Higher priority task may run multiple times before lower priority task gets to run once.
= There may be more events (and task releases) further delaying the start of a task.

= Best case for Task A: Same as before. R, =C,

= Worst case for Task A (highest priority)?
= Delayed by longest task (D). R, = C, + Max(C,, C;, Cc, Cp, Cg, C;)

= Worst case for lower-priority tasks (B, C, D, E, F)?

= Also may be delayed by higher-priority tasks. Details on next slide.
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What a

Events EvVA, EvB,
EvC, EvD, EVE,
EvF
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pout Response Time for Lower Priority Tasks?

Task C

ulne

EvA EvB

rable

EvB

C

RO

> vulnerable

A

B

11 11V3

EVA

First estimate (R.%) of response time R,

Task C’s finish may be ...

= delayed by blocking once by longest task if it is already
running: Max(C,, C;, C¢, Cp, Cg, C;)

= delayed at least once by each (Ca Cp)

Equatlons

! = Max(CA, Cq, Ce, Cp, Cr, Cp) + Cat Col+ B

- HereR Hi

Second estimate (R 1)

More events for higher-priority tasks may happen before C starts
(during vulnerable time), so more releases delay C starting

= Rc!=Max(Cy, Cq, Cc, Cp, Cr, C;) + 2%C, + 2%C5+ G2
= Here:R¢! —é+H+F.

What if C stiII hasn’t started and A or B is released again?

Repeat until no new releases, or RN is too large (past deadline)
= R =Max(C,, Cg, Cc, Cp, C CF)+ +

* Here: R = Gyt DCu#.88Cq-+ ]

Observations

Task Cis vulnerable to timing interference from blocking and
higher-priority tasks from release (EvC) until C starts running
Number of additional task releases depends on minimum time
between events (EVA to EvA, EvB to EvB) in the worst case (burst)
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Periodic Task Model of Computational Requirements
T. T. |

1 ol I
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Time
= Periodic Task Model describes " Job may have an absolute deadline D, after
characteristics for each task T, its release
= Job = a specific instance of that task running = Job takes a constant time C, to execute

= Task releases job so scheduler can run it = Simplifying assumptions include

* A periodic task i releases a job every T, = No time needed for scheduler, task switching,
time units ISR response/return
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Example Workload: WWhat We Ask For

1 ¢

O 1 2 3 4 5 6 7 8 910 11 12

Time
» Set of tasks with real-time requirements Task |Exec. |Period | Deadline
TimeC, | T, D,
* What gets executed when!? | p 2
T
— Depends on scheduler and task priorities I
1, 2 6 6
1, 3 12 12




Scheduled Workload: What We Get
A

|
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] —
O 1 2 3 4 5 6 7 8 910 11 12

Time
* Example: Scheduler and task fixed priorities
— Assign priorities as shown

— Use a non-preemptive scheduler

* What can delay a task?
— |: Interference caused by higher priority tasks
——p — B: Blocking caused by lower priority tasks

Task | Exec. Period | Deadline | Priority
Time C, | T, D,

T I 4 4 High

T, 2 6 6 Medium

T3 3 12 12 Low

* Response time = Computation + Blocking + Interference

14

Ri=Ci+Bi+Ii
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Non-Preemptive Scheduling

Task Exec.Time C; |Period T, Priority o :

T I 4 High § -tl;) % 2

T, I 5 Medium g % é I -

T3 3 7 Low g % g 0 |

T 13

)
-

Job 3 Job 3

12 13 |14 |15 j16 |17 |18 |19 |20
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NUMERICAL RESPONSE TIME ANALYSIS
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Numerical Response Time Analysis, Step 1

= How long could it take for task i to complete? What is its response time R;?
= Initial estimate based on critical instant: every task is released simultaneously

R? = computation time for task / + computation time for all other tasks* 0
= Non-prioritized scheduling: Every task will run once RO Ry = Ci + Cj
i

while (1) { i
for (j=0; j<NUM_TASKS; j++) {
if (Tasks[j].RP > 0) { ' iﬁ
Tasks[j].RP--;
Tasks[j].Task(Q;
P}l
= Prioritized, non-preemptive scheduling: computation time for task / +
longest of all tasks + All higher-priority tasks RO RLQ =|C;|+ MaXy ; (CJ) + z Cj
while (1) { —l
for (j=0; j<NUM_TASKS; j++) { jeEhP(Q)

if (Tasks[j].RP > 0) {
Tasks[j].RP--;
Tasks[j].Task(Q;
break;

} 1l
= * Pesky detail: Could previous job of task j still be running when all tasks are released?

= Depends on other assumptions. If not, changes equations slightly
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Additional Timing Interference? Steps 2, 3,4 ...

Non-preemptive: Vulnerable from 0 to R/ - C;since task i can’t Preemptive: Vulnerable from 0 to R/ since higher-priority
be preempted after it starts task can preempttaski
Events EVA, EvB, EvC, EvD, EVE... Events EVA, EvB, EvC, EvD, EVE...
| Task C vulnerable Task C vulnerable
A B |C A B |C
0 0
EvA EvB RC EvA EvB RC
| | | |
A A B B |C A A B B [C
1 1
EvB RC EvB RC
| |
A A B B B (C A A B B B (C
2 2
l l ‘ ‘ l ‘ ELA Re AR
A A B B B |C A A B B B c|l A |C
= Task i may be delayed by new job releases during vulnerable time A A B B B ic A lc
= Consider new releases to update completion time estimate R,"*!

= Repeat until no new releases, or too late (e.g. deadline missed)
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