
1 11 V3

RESPONSE TIME ANALYSIS CONCEPTS
FOR SOFTWARE

V3
9/30/2025

2 11 V3

Where are we in the class?

Learn Platform 1: RTCS Scheduler
(Non-Preemptive Prioritized

Multirate Tasks with Interrupts)

Build Example Applications
with Platform 1

Embedded System Requirements
and Characteristics

Concurrent Systems Concepts and
Issues: Process Implementations

and Relationships in HW & SW

Evaluate Application
Performance

Learn Platform 2: RTXv5 RTOS
(+ task preemption and many
integrated support features)

Improve Performance:
Use HW, SW, OS Better

Build Example Applications
with Platform 2

Evaluate Application
Performance

Improve Performance:
Use HW, SW, OS Better

3 11 V3

 Key Concepts
 Process PA needs to run some of its code in

response to event EvA
 Other software in system can delay that running

 Blocking by another currently-running process
 Delays from other processes based on process

scheduling
 Non-prioritized: all other processes
 Prioritized: higher-priority processes

 Preemption by other processes
 Interupt/Exception handlers (ISRs)
 Preemptive process scheduling: Preemption by

higher-priority processes
 Estimate worst-case response time for task i (Ri)

 First estimate
 Start assuming all events happen

simultaneously
 Ri is sum of time needed to process all events

 Determine if any more events happened in that
time Ri
 If so, update Ri to include additional event

processing
 Repeat until done

 Process is more vulnerable to timing interference if
scheduler supports task preemption

 Contents
 Schedulers help software share the CPU’s time

better
 Task run behavior: Run-to-completion vs. yielding

and preemption
 Scheduler

LN11 – Concepts for Response Time Analysis

4 11 V3

RESPONSE TIME ANALYSIS

5 11 V3

Parallel Hardware … but Serialized Software

Control Signals

MCU

ADC PWM

DAC

Dig. In Timer Dig. Out I2C

CMP

DMA USB

CPU Core

Device, System,
Environment…

SensorsActuatorsInterface
Circuits

Interface
Circuits

Main Code (Foreground)

Interrupt Service Routines &
Exception Handlers
(Background)

Int. Ctlr.

Higher Priority

Lower PrioritySoftware

Memory

6 11 V3

 Build modular program
 Separate tasks/threads and ISRs, each

running (mostly) independently
 Easier to develop, maintain, debug

 What code does CPU run?
 Normally CPU executes next

instruction in program,
 But interrupt controller can force CPU

to execute handler code for interrupt
or exception request

 Task scheduler can decide which
task/thread to run next

Schedulers: Helping Software Share the CPU Better

MCU
CPU Core

ISRs &
Exception
Handlers

Int. Ctlr.

Tasks A B C D E F

Higher Priority

Lower Priority

If no ISR or Exc.
Handler active,

Scheduler selects
task/thread to run

7 11 V3

 With run-to-completion task scheduling…
 Scheduler must wait for current task to complete

before running another task
 Tasks cannot pause (or be preempted by other

tasks) partway through, and later resume at that
point within the task.

 If scheduler is running task A, it cannot
 Pause A partway through (after instruction AP),
 Switch in task B and run it,
 Resume task A partway through (at instruction AP+1)

 Preemptive task scheduler will support such task
switching …
 Letting task B preempt task A
 Letting task A yield the CPU and later pick up

where it left off

Run-To-Completion Tasks and Task Preemption

BALastInstrAP+1APAFirstInstr

ALastInstrAP+1BAPAFirstInstr

8 11 V3

 Task A must run to service (handle) its event EvA
 EvA makes scheduler release task A

 Task A’s response time (RA): How long from event EvA until task A finishes servicing it?
 Scheduler is While (1) loop

 Tasks run to completion.
 Fixed schedule: same task order every time
 Round-robin: each task gets same number of chances to run

 Scheduler behavior:
 EvA happened? Release A, run A until done.
 EvB happened? Release B, run B until done.
 EvC happened? Release C, run C until done.
 Continue for all events/tasks, then repeat with EvA

 Note
 We assumed each task takes a constant amount of time to execute
 Task i probably has range of possible execution times, between

Ci,Min and Ci,Max

 Simplify timing model by making some worst-case performance assumptions
 Design for worst case, so assume task i always takes Ci = Ci,Max

 Model will likely overestimate response time, but will never underestimate it – so it will be safe.

Responsiveness of While (1) Loop Scheduler
Event EvA

AFEDCBAF

RA

FEDCBA

Best-Case Task Times

FEDCBA

Worst-Case Task Times

9 11 V3

 Task A’s worst-case response time: What is the
longest possible time from event EvA until task A
finishes servicing it?
 Depends on what code runs: Interrupt Controller

decides on ISRs, task scheduler decides on tasks

 Simplify: Initially ignore time taken by scheduler,
interrupt system and interrupt handlers.
 Best case: EvA happens just before scheduler checks

it. RA = CA

 Worst case: Every other event (EvB – EvF) happens
before scheduler checks EvA, and EvA happens just
after that check: RA = CB + CC + CD + CE + CF + CA

Responsiveness of While (1) Loop Scheduler
Event EvA

FEDCBAF
Best Case for Scheduler

Worst Case for Scheduler
AFEDCBA

MCU
CPU Core

ISRs &
Exception
Handlers

Int. Ctlr.

Tasks

A
B

C
D

E

F

Higher
Priority

Lower
Priority

Worst Case
Task Execution
Time for Both

10 11 V3

 Change scheduler to prioritize A > B > C etc.
 New behavior:

 If EvA happened, run A, then check for EvA again.
 Else if EvB happened, run B, then check for EvA again.
 Else if EvC happened, run C, then check for EvA again.
 Et cetera

 Implications
 Not round-robin. Now have dynamic (not static) schedule of task orders,

since higher priority tasks get chance to run before lower priority tasks.
 Higher priority task may run multiple times before lower priority task gets to run once.
 There may be more events (and task releases) further delaying the start of a task.

 Best case for Task A: Same as before. RA = CA

 Worst case for Task A (highest priority)?
 Delayed by longest task (D). RA = CA + Max(CA, CB, CC, CD, CE, CF)

 Worst case for lower-priority tasks (B, C, D, E, F)?
 Also may be delayed by higher-priority tasks. Details on next slide.

Improvement: Prioritized Tasks

FEDCBAF
Best Case for A

Worst Case for A
AD

Events EvA, EvB, EvC, EvD, EvE
and EvF happen simultaneously

11 11 V3

Task C vulnerable

Task C vulnerable

Task C vulnerable

Task C vulnerable

 First estimate (RC
0) of response time RC

 Task C’s finish may be …
 delayed by blocking once by longest task if it is already

running: Max(CA, CB, CC, CD, CE, CF)
 delayed at least once by each higher priority task (CA, CB)

 Equations
 RC

0 = Max(CA, CB, CC, CD, CE, CF) + CA + CB + CC
 Here: RC

0 = CD + CA + CB + CC

 Second estimate (RC
1)

 More events for higher-priority tasks may happen before C starts
(during vulnerable time), so more releases delay C starting
 RC

1 = Max(CA, CB, CC, CD, CE, CF) + 2*CA + 2*CB + CC
 Here: RC

1 = CD+ 2*CA + 2*CB + CC

 What if C still hasn’t started and A or B is released again?
 Repeat until no new releases, or RC

N is too large (past deadline)
 RC

2 = Max(CA, CB, CC, CD, CE, CF) + 2*CA + 3*CB + CC
 Here: RC

2 = CD+ 2*CA + 3*CB + CC

 Observations
 Task C is vulnerable to timing interference from blocking and

higher-priority tasks from release (EvC) until C starts running
 Number of additional task releases depends on minimum time

between events (EvA to EvA, EvB to EvB) in the worst case (burst)

What about Response Time for Lower Priority Tasks?

RC
1

CBA

Events EvA, EvB,
EvC, EvD, EvE,

EvF EvA EvB

D

EvB EvA

. . .

AA BB CD . . .

RC
2

AA BB CD B

RC
3

. . .

AA BB CD B

RC
0

. . .

12

Periodic Task Model of Computational Requirements

 Periodic Task Model describes
characteristics for each task i
 Job = a specific instance of that task running
 Task releases job so scheduler can run it

 A periodic task i releases a job every Ti
time units

 Job may have an absolute deadline Di after
its release

 Job takes a constant time Ci to execute
 Simplifying assumptions include

 No time needed for scheduler, task switching,
ISR response/return

task i, job 3

0 1 2 3 4 5 6 7 8 9 10 11 12
Time

task i, job 1 task i, job 2

CiCi

Ti

Di Di

Ti

13

2

3

2 2

3

1 1 1
1

Example Workload: What We Ask For

Deadline
Di

Period
Ti

Exec.
Time Ci

Task

4411

6622

121233

• Set of tasks with real-time requirements
• What gets executed when?

– Depends on scheduler and task priorities

0 1 2 3 4 5 6 7 8 9 10 11 12
Time

14

Scheduled Workload: What We Get

PriorityDeadline
Di

Period
Ti

Exec.
Time Ci

Task

High4411

Medium6622

Low121233

• Example: Scheduler and task fixed priorities
– Assign priorities as shown
– Use a non-preemptive scheduler

• What can delay a task?
– I: Interference caused by higher priority tasks
– B: Blocking caused by lower priority tasks

• Response time = Computation + Blocking + Interference

1

2

0 1 2 3 4 5 6 7 8 9 10 11 12
Time

1 1 1

2 2

3

𝑅௜ = 𝐶௜ + 𝐵௜ + 𝐼௜

15 11 V3

Non-Preemptive Scheduling

Job 6Job 5Job 4Job 3Job 2Job 11

Job 4Job 3Job 2Job 12

Job 3Job 3Job 3Job 3Job 2Job 2Job 2Job 1Job 1Job 13

20191817161514131211109876543210

4
3
2

1

0
321

PriorityPeriod TiExec. Time CiTask

High411

Medium512

Low733 M
ax

im
u

m

B
lo

ck
in

g
 +

In

te
rf

er
en

ce

16 11 V3

NUMERICAL RESPONSE TIME ANALYSIS

17 11 V3

Numerical Response Time Analysis, Step 1
 How long could it take for task i to complete? What is its response time Ri?
 Initial estimate based on critical instant: every task is released simultaneously

Ri
0 = computation time for task i + computation time for all other tasks*

 Non-prioritized scheduling: Every task will run once
while (1) {

for (j=0; j<NUM_TASKS; j++) {
if (Tasks[j].RP > 0) {
Tasks[j].RP--;
Tasks[j].Task();

} } }

 Prioritized, non-preemptive scheduling: computation time for task i +
longest of all tasks + All higher-priority tasks
while (1) {
for (j=0; j<NUM_TASKS; j++) {
if (Tasks[j].RP > 0) {
Tasks[j].RP--;
Tasks[j].Task();
break;

} } }

 * Pesky detail: Could previous job of task i still be running when all tasks are released?
 Depends on other assumptions. If not, changes equations slightly

C0 C1 C2 C3 Ci

𝑅௜
଴

C3

C2
Ci C0

C1

𝑅௜
଴

𝑅௜
଴ = 𝐶௜ +෍𝐶௝

௝ஷ௜

𝑅௜
଴ = 𝐶௜ + max∀௝ 𝐶௝ + ෍ 𝐶௝

௝∈௛௣(௜)

18 11 V3

 Task i may be delayed by new job releases during vulnerable time
 Consider new releases to update completion time estimate Ri

n+1

 Repeat until no new releases, or too late (e.g. deadline missed)

Additional Timing Interference? Steps 2, 3, 4 …

Task C vulnerable

Events EvA, EvB, EvC, EvD, EvE…

EvA EvB

EvB

EvA

. . .

RC
1

AA BB CD . . .

RC
2

AA BB CD B . . .

RC
0

RC
3

AA BB CD B . . .

A B CD
Task C vulnerable

Events EvA, EvB, EvC, EvD, EvE…

EvA EvB

EvB

EvA

. . .

RC
1

AA BB CD . . .

RC
2

AA BB CD B . . .

RC
0

RC
3

AA BB CD B . . .

A B CD

CA

RC
4

AA BB CD B . . .CA

Non-preemptive: Vulnerable from 0 to Ri
n – Ci since task i can’t

be preempted after it starts
Preemptive: Vulnerable from 0 to Ri

n since higher-priority
task can preempt task i

