NC STATE UNIVERSITY

RESPONSE TIME ANALYSIS CONCEPTS
FOR SOFTWARE

V3
9/30/2025

Where are we in the class?

Embedded System Requirements
and Characteristics

\

Concurrent Systems Concepts and
Issues: Process Implementations
and Relationships in HW & SW

Learn Platform 1: RTCS Scheduler
(Non-Preemptive Prioritized
Multirate Tasks with Interrupts)

\

Build Example Applications
with Platform 1

\

Evaluate Application
Performance

\

Improve Performance:

2 11V3

Use HW, SW, OS Better

NC STATE UNIVERSITY

Learn Platform 2: RTXv5 RTOS
(+ task preemption and many
integrated support features)

\\

Build Example Applications
with Platform 2

Evaluate Application
Performance

\

Improve Performance:
Use HW, SW, OS Better

NC STATE UNIVERSITY

LN11 — Concepts for Response Time Analysis

= Key Concepts simultaneously
= Process PA needs to run some of its code in = R;is sum of time needed to process all events
response to event EVA = Determine if any more events happened in that
= Other software in system can delay that running time R,
= Blocking by another currently-running process = If so, update R; to include additional event
= Delays from other processes based on process processing
scheduling = Repeat until done
= Non-prioritized: all other processes = Process is more vulnerable to timing interference if
= Prioritized: higher-priority processes scheduler supports task preemption
= Preemption by other processes = Contents
= Interupt/Exception handlers (ISRs) = Schedulers help software share the CPU’s time
= Preemptive process scheduling: Preemption by better
higher-priority processes = Task run behavior: Run-to-completion vs. yielding
= Estimate worst-case response time for task i (R)) and preemption
= First estimate = Scheduler

= Start assuming all events happen

3 11V3

NC STATE UNIVERSITY

RESPONSE TIME ANALYSIS

NC STATE UNIVERSITY

Parallel Hardware ... but Serialized Software

' Interrupt Service Routines & |
' Exception Handlers |
' (Background) Q ﬁ) Higher Priority |

MCU
Memory CPU Core [Int. Ctlr.
interface Actuators — Sensors oo |
Circuits
AN
~ ADC [USB\\ NP
D H S Ii; 1I/ l’ \\ N\ @]
evice, System, : i
Environment... N~ Cl‘i}lP ﬂ///ﬂ / / WK DAC
| V- I/ |
—> Dig. In Timer Dig. Out 12C
Control Signals
9 I'vs

NC STATE UNIVERSITY

Schedulers: Helping Software Share the CPU Better

= Build modular program Tasks @ ¢ i D
= Separate tasks/threads and ISRs, each _?
running (mostly) independently 1

= Easier to develop, maintain, debug

Lower Priority

If no ISR or Exc.
ISRs & Handler active,

= What code does CPU run? Exception Scheduler selects

= Normally CPU executes next Handlers task/thread to run
instruction in program, D ﬁ) . o

= But interrupt controller can force CPU Q Higher Priority
to execute handler code for interrupt
or exception request MCU

CPU Core [+ Int. Ctlr.

= Task scheduler can decide which
task/thread to run next

6 11V3

NC STATE UNIVERSITY

Run-To-Completion Tasks and Task Preemption

= With run-to-completion task scheduling...
= Scheduler must wait for current task to complete
before running another task
= Tasks cannot pause (or be preempted by other
tasks) partway through, and later resume at that

point within the task. d\)\-\(\g,
= |f scheduler is running task A, it cannot \(59“6

= Pause A partway through (after instruction A;), B n(\tas L X
o . e\~ quv™”

= Switch in task B and run it, Go«\@ che

= Resume task A partway through (at instruction A;,,) =o= —- S

= Preemptive task scheduler will support such task .‘O\e\,\.‘\t‘(\ (eemp
itchi s\ aP
switching ... \((\905 nee

= Letting task B preempt task A
= Letting task A yield the CPU and later pick up
where it left off

7 11V3

Responsiveness of While (1) Loop Scheduler

Event EvA Ra
—

= Task A must run to service (handle) its event EVA
= EvA makes scheduler release task A
= Task A’s response time (R,): How long from event EvA until task A finishes servicing it?
= Scheduler is While (1) loop
= Tasks run to completion.
= Fixed schedule: same task order every time
= Round-robin: each task gets same number of chances to run
= Scheduler behavior:
= EvA happened? Release A, run A until done.
= EvB happened? Release B, run B until done. Best-Case Task Times
= EvC happened? Release C, run C until done.
= Continue for all events/tasks, then repeat with EVA
= Note Worst-Case Task Times
= We assumed each task takes a constant amount of time to execute
= Task i probably has range of possible execution times, between
Cimin @and C; oy
= Simplify timing model by making some worst-case performance assumptions
= Design for worst case, so assume task i always takes C;=C, .,

= Model will likely overestimate response time, but will never underestimate it — so it will be safe.
11V3

(o]

NC STATE UNIVERSITY

Responsiveness of While (1) Loop Scheduler

Lower

Priority e <P Event EvA

Best Case for Scheduler

‘
ﬁ) i Worst Case I

| Task Execution Worst Case for Scheduler |
: Time for Both

= Simplify: Initially ignore time taken by scheduler,

= Task A’s worst-case response time: What is the interrupt system and interrupt handlers.
longest possible time from event EVA until task A = Best case: EVA happens just before scheduler checks
finishes servicing it? it. Ry =C,
= Depends on what code runs: Interrupt Controller * Worst case: Every other event (EvB — EvF) happens

decides on ISRs, task scheduler decides on tasks before scheduler checks EvA, and EvA happens just
after that check: R,=C; + C.+ C; + C + C. + C,

lenora :
&hore '”tel‘l‘uPts 5 Higher
F'now | Priority

MCU
CPU Core Int. Ctlr.

9 11V3

NC STATE UNIVERSITY

Events EvA, EvB, EvC, EvD, EvE
and EvF happen simultaneously

Improvement: Prioritized Tasks

= Change scheduler to prioritize A > B > C etc. Best Case for A
= New behavior:
= |f EVA happened, run A, then check for EVA again. —
= Else if EvB happened, run B, then check for EVA again. Worst Case for A
= Else if EvC happened, run C, then check for EVA again.
= Et cetera —

= Implications
= Not round-robin. Now have dynamic (not static) schedule of task orders,
since higher priority tasks get chance to run before lower priority tasks.

= Higher priority task may run multiple times before lower priority task gets to run once.
= There may be more events (and task releases) further delaying the start of a task.

= Best case for Task A: Same as before. R, =C,

= Worst case for Task A (highest priority)?
= Delayed by longest task (D). R, = C, + Max(C,, C;, Cc, Cp, Cg, C;)

= Worst case for lower-priority tasks (B, C, D, E, F)?

= Also may be delayed by higher-priority tasks. Details on next slide.
10 11V3

What a

Events EvVA, EvB,
EvC, EvD, EVE,
EvF

NC STATE UNIVERSITY

pout Response Time for Lower Priority Tasks?

Task C

ulne

EvA EvB

rable

EvB

C

RO

> vulnerable

A

B

11 11V3

EVA

First estimate (R.%) of response time R,

Task C’s finish may be ...

= delayed by blocking once by longest task if it is already
running: Max(C,, C;, C¢, Cp, Cg, C;)

= delayed at least once by each (Ca Cp)

Equatlons

! = Max(CA, Cq, Ce, Cp, Cr, Cp) + Cat Col+ B

- HereR Hi

Second estimate (R 1)

More events for higher-priority tasks may happen before C starts
(during vulnerable time), so more releases delay C starting

= Rc!=Max(Cy, Cq, Cc, Cp, Cr, C;) + 2%C, + 2%C5+ G2
= Here:R¢! —é+H+F.

What if C stiII hasn’t started and A or B is released again?

Repeat until no new releases, or RN is too large (past deadline)
= R =Max(C,, Cg, Cc, Cp, C CF)+ +

* Here: R = Gyt DCu#.88Cq-+]

Observations

Task Cis vulnerable to timing interference from blocking and
higher-priority tasks from release (EvC) until C starts running
Number of additional task releases depends on minimum time
between events (EVA to EvA, EvB to EvB) in the worst case (burst)

NC STATE UNIVERSITY

Periodic Task Model of Computational Requirements
T. T. |

1 ol I

<& »
< » >

C. C.

p i

O 1 2 3 4 5 6 7 8 910 11 12

v

» <&
» <

& h 4
—

Time
= Periodic Task Model describes " Job may have an absolute deadline D, after
characteristics for each task T, its release
= Job = a specific instance of that task running = Job takes a constant time C, to execute

= Task releases job so scheduler can run it = Simplifying assumptions include

* A periodic task i releases a job every T, = No time needed for scheduler, task switching,
time units ISR response/return

NC STATE UNIVERSITY

Example Workload: WWhat We Ask For

1 ¢

O 1 2 3 4 5 6 7 8 910 11 12

Time
» Set of tasks with real-time requirements Task |Exec. |Period | Deadline
TimeC, | T, D,
* What gets executed when!? | p 2
T
— Depends on scheduler and task priorities I
1, 2 6 6
1, 3 12 12

Scheduled Workload: What We Get
A

|

NC STATE UNIVERSITY

] —
O 1 2 3 4 5 6 7 8 910 11 12

Time
* Example: Scheduler and task fixed priorities
— Assign priorities as shown

— Use a non-preemptive scheduler

* What can delay a task?
— |: Interference caused by higher priority tasks
——p — B: Blocking caused by lower priority tasks

Task | Exec. Period | Deadline | Priority
Time C, | T, D,

T I 4 4 High

T, 2 6 6 Medium

T3 3 12 12 Low

* Response time = Computation + Blocking + Interference

14

Ri=Ci+Bi+Ii

NC STATE UNIVERSITY

Non-Preemptive Scheduling

Task Exec.Time C; |Period T, Priority o :

T I 4 High § -tl;) % 2

T, I 5 Medium g % é I -

T3 3 7 Low g % g 0 |

T 13

)
-

Job 3 Job 3

12 13 |14 |15 j16 |17 |18 |19 |20

15 11V3

NC STATE UNIVERSITY

NUMERICAL RESPONSE TIME ANALYSIS

NC STATE UNIVERSITY

Numerical Response Time Analysis, Step 1

= How long could it take for task i to complete? What is its response time R;?
= Initial estimate based on critical instant: every task is released simultaneously

R? = computation time for task / + computation time for all other tasks* 0
= Non-prioritized scheduling: Every task will run once RO Ry = Ci + Cj
i

while (1) { i
for (j=0; j<NUM_TASKS; j++) {
if (Tasks[j].RP > 0) { ' iﬁ
Tasks[j].RP--;
Tasks[j].Task(Q;
P}l
= Prioritized, non-preemptive scheduling: computation time for task / +
longest of all tasks + All higher-priority tasks RO RLQ =|C;|+ MaXy ; (CJ) + z Cj
while (1) { —l
for (j=0; j<NUM_TASKS; j++) { jeEhP(Q)

if (Tasks[j].RP > 0) {
Tasks[j].RP--;
Tasks[j].Task(Q;
break;

} 1l
= * Pesky detail: Could previous job of task j still be running when all tasks are released?

= Depends on other assumptions. If not, changes equations slightly

17 11V3

NC STATE UNIVERSITY

Additional Timing Interference? Steps 2, 3,4 ...

Non-preemptive: Vulnerable from 0 to R/ - C;since task i can’t Preemptive: Vulnerable from 0 to R/ since higher-priority
be preempted after it starts task can preempttaski
Events EVA, EvB, EvC, EvD, EVE... Events EVA, EvB, EvC, EvD, EVE...
| Task C vulnerable Task C vulnerable
A B |C A B |C
0 0
EvA EvB RC EvA EvB RC
| | | |
A A B B |C A A B B [C
1 1
EvB RC EvB RC
| |
A A B B B (C A A B B B (C
2 2
l l ‘ ‘ l ‘ ELA Re AR
A A B B B |C A A B B B c|l A |C
= Task i may be delayed by new job releases during vulnerable time A A B B B ic A lc
= Consider new releases to update completion time estimate R,"*!

= Repeat until no new releases, or too late (e.g. deadline missed)

18 11V3

