
1 v2

ECE 460/560
Embedded Systems Architectures:

Introduction (v2)

A.G. Dean
agdean@ncsu.edu

https://sites.google.com/ncsu.edu/agdean/teaching

8/19/2025



2 v2

 Embedded Computer Systems frequently target control applications
 Get input (read signal, detect event), Compute new output value, Update output
 Microcontroller = Microprocessor + memory + hardware peripherals to support 

control
 Embedded Systems have processes, different implementation options

 Software can do almost anything (eventually). Timing is slow, very sloppy.
 Hardware is very fast and energy-efficient, uses dedicated circuits. Stable timing. 

Limited functionality available.
 Typically have multiple concurrent processes due to application requirements
 These processes often have diverse I/O operations 

 Digital signals, analog signals (must be converted to digital)
 Bursts of events (e.g. PWM, serialized data, etc.), 
 Sample input periodically vs. receive event notification, 
 Range of I/O operation frequencies

Embedded Systems High-Level View (1)



3 v2

 The I/O for a process often has challenging timing requirements
 Periodic events, events synched to other/previous events on this/other signals

 Decouple the I/O from compute software (bad timing characteristics) by 
splitting it into two or more processes to make input or output operations 
asynchronous to the compute operations.
 We may move some processing to hardware peripheral circuits. 

 These processes need to synchronize and communicate (data buffering). 
 We use interrupts, HW peripherals and DMA to make a low-cost and 

feasible solution with a low-frequency CPU.

Embedded Systems High-Level View (2)



4 v2

High-Level Topic Map

Process 
Implementation

Dependences 
between Processes

How: 
Hardware 
Processes

How: 
Software 
Processes

Scheduler: 
Share CPU 

Time

Communication

Mutual 
Exclusion

Mem-
Mapped 
Periph. 
Access

Embedded Systems 
Design Spaces

DMA 
Ctlr

Sync. to What? 
Why?

Intrpt
System

Notification/ 
Flow Ctl./ 

Handshaking

Data 
Buffering

Split Process? 
(e.g. Async I/O)

Direct or 
Indirect 
Comm.?

What & Why? 
HW, SW, Both?

Why? 
How?

Timing

CPU 
per 

Process

Application 
Characteristics

Requirements 
& Constraints

Concurrent 
Processes

Ordering/
Triggering

Synchronization: 
Do? Don’t?

Polling 
(Prog’d

I/O)

Why? 
Concepts

How? 
Methods

HW Shared Vars 
& DIY SW

Support from 
OS, Language

Why? 
How?

Why? 
How?

Why? 
How?

Why? 
How?

Example 
Applications

Periphs, 
Prog. Logic, 

DMA

How: Both Hardware 
and Software 

Processes

Development Processes: 
Embedded System 

Engineering

Functional 
Reqts.

Non-Funct. 
Reqts.

Design Development 
& Debugging

Testing Dependable 
Systems

HW Shared Vars 
& DIY SW

Support from 
OS, Language



5 v2

Extending the Topic Map

Process 
Implementation

Dependences 
between Processes

Hardware 
Processes

Software 
Processes

Sched: 
Share CPU 

Time

Communication

Mutual 
Exclusion

Both Hardware and 
Software Processes

Mem-
Mapped 
Periph. 
Access

Embedded Systems 
Design Space(s)

DMA 
Ctlr

Sync. to What?
Do or Don’t?

How?

Intrpt
System

Notification/ 
Flow Ctl./ 

Handshaking

Data Loss & 
Duplication

Buffering
Split 

Receiver 
Process?

Split urgent/ 
deferrable work

Direct or 
Indirect 
Comm.?

SW?

Why 
use…?

HW?

+ Coop. 
Sched. Tasks

Infinite 
loop in 
main

+ Task 
Priorities

+ Task 
Preemption

RTCS Run-to-
Completion 
Scheduler

RTXv5 
RTOS

FSMs for 
Responsiveness

How?

“DIY” Code Implementations
Shared 

Variables

How?

OS Mechanisms
Event Flag Semaphore

Shared 
Variables

Mutex Lock

Concepts How?

In 
Order?

Cost of Precise 
Timing

Buffering 
Concepts

Why?

Message 
Queue

How?

Double 
Buffer

Circular 
Buffer

Req/Ack 
Flags

DMA-
managed 

buffer

Mailbox

How?

Cost of 
Precise Timing

CPU 
per 

Process

Application 
Characteristics

Requirements 
& Constraints

Processes and Concurrency 
for Embedded Systems

Processes and 
Concurrency

Peri-
pherals

Dedic. HW 
Interconn.

DMA 
Ctlr

Ordering/
Triggering

Concepts

Synchronization

Polling 
(Prog’d

I/O)

+Interrupts
: Fore/Back 

ground
Serializing 

Server



6 v2

Yet Another Course Map
How ES are Different

Introduction to Example Applications: I/O, Processing, Timing, Sync and Comm

Timing Behavior 
& Analysis

Peripherals

Peripheral 
Interconnect

DMA 
System

Interrupt 
System

Blinky WaveGen Scope DevSys
(Shield & 
FRDM)

Level 1: Overviews

Level 3: Detailed Design with HW Peripherals, 
Cyclic Exec & Interrupts

Level 2: Foundations. Basic Concepts and Architectures

Cyclic 
Exec.

Cyclic Exec. 
& Intrpts

Coop. Sched. 
& Intrpts

Process 
Basics

Complex I/O. Dig, 
Ana, Basic Timing 

Reqts

HW Processes: 
Lim funct, precise 
timing, dedicated

Concurrency, Sync and 
Comm for SW and HW 

Procs

Sync. vs. Async. 
I/O

Basic 
Behavior 
(Control)

Dimensions

Sched. IPC 
Support

Digital & Analog 
Interfacing, Task 
Timing Reqts, 

Interf. and Sched.

Stabilizing Output 
Timing Synchronizing 

Processes (events 
and mutex), 

Stabilizing Input 
Timing, Data 

Buffering

TBD

Preemptive Sched. 
& Intrpts (RTOS)

Level Y: Re-Implement with Preemp. Sched (RTOS RTX5) Apply RTOS 
Services: TBD Apply RTOS 

Services: TBD
Apply RTOS 

Services: TBD Apply RTOS 
Services: TBD

Apply Coop Sched 
Services: TBD

Apply Coop Sched 
Services: TBD

Apply Coop Sched 
Services: TBD

Apply Coop Sched 
Services: TBD

SW Processes. Flex 
funct, sloppy timing, 

share/sched

Digital

Timing Reqts. 
in Detail

(See LN L2)
Analog

CPU Sharing: intrpts, 
sched. Roadmap: 
Preemption++ (4)

Async. I/O

Need & 
Concepts

AIO Imps

AIO with 
Interrupts

AIO Coop. 
Sched. & Intrpts

AIO with 
DMA and 
Interrupts

HW-HW SW-SWHW-SW

Prog’d
I/O

Shared 
Variables

Process Sync & Comm

Level X: Re-Implement with Coop Sched (RTCS)

Development 
Processes

DebuggingDesign 
before 
Coding

Problem-
Solving



7 v2

ExamplesProblem-SolvingConcepts and Methods
ShieldFRDM

O
sc

ill
os

co
pe

W
av

ef
or

m
 G

en
er

at
or

Bl
in

ky
 L

ig
ht

s

T
hr

ou
gh

pu
t

C
om

pu
te

 E
ffi

ci
en

cy

R
es

po
ns

iv
en

es
s

T
im

in
g 

St
ab

ili
ty

C
or

re
ct

 F
un

ct
io

na
lit

y

Pr
oc

es
s 

Sy
nc

hr
on

iz
at

io
n 

an
d 

C
om

m
un

ic
at

io
n

Pr
oc

es
s

Sc
he

du
lin

g

Pr
oc

es
s 

Im
pl

em
en

ta
tio

n

D
ev

el
op

m
en

t 
Pr

oc
es

se
sApplication 

Requirements

μS
D

 v
ia

 S
PI

SM
PS

 C
on

tr
ol

le
r

To
uc

hs
cr

ee
n

LC
D

 C
on

tr
ol

le
r

I2 C
 C

om
m

.

Se
ri

al
 C

om
m

.

T
im

in
g, 

ot
he

r 
N

on
-F

un
ct

io
na

l

In
pu

ts
, O

ut
pu

ts
, 

Fu
nc

tio
na

lit
y

HW->SWSW->HWSWHWSWHWSWHW

Apply to Examples



8 v2

Problem-SolvingConcepts and Methods

T
hr

ou
gh

pu
t

C
om

pu
te

 E
ffi

ci
en

cy

R
es

po
ns

iv
en

es
s

T
im

in
g 

St
ab

ili
ty

C
or

re
ct

 F
un

ct
io

na
lit

y

Pr
oc

es
s 

Sy
nc

hr
on

iz
at

io
n 

an
d 

C
om

m
un

ic
at

io
n

Pr
oc

es
s

Sc
he

du
lin

g

Pr
oc

es
s 

Im
pl

em
en

ta
tio

n

D
ev

el
op

m
en

t 
Pr

oc
es

se
sApplication 

Requirements

T
im

in
g, 

ot
he

r 
N

on
-F

un
ct

io
na

l

In
pu

ts
, O

ut
pu

ts
, 

Fu
nc

tio
na

lit
y

HW->SWSW->HWSWHWSWHWSWHW

Overhead, 
batch 
processing, 
SW ->HW

Overhead, 
batch 
processing, 
SW->HW

SW process 
Timing 
Analysis , 
System 
Response 
time 
analysis, 
Prioritizatio
n, blocking, 
preemption, 
Real-Time 

Timing 
analysis, 
Time 
synchronizat
ion, Timer 
peripheral, 
sched/OS 
timer, 
preemption 
& blocking

Concurrency 
bugs, Testing, 
Debugging, 
Dependable 
system 
architecture

Sync Input, 
Interrupts, 
Async Input, 
Data buffering

Sync. Output, 
Async. Output, 
Data buffering

Shared 
variables with 
algorithms, 
OS/Language 
support

Peripheral 
interconn., 
DMA

Events vs. 
polling, While 1 
loop, Interrupt 
system, 
Cooperative 
tasks, 
Preemptive 
Tasks. Priorities, 
preemption

Peripheral 
interconn., 
DMA

Source 
code, 
build 
toolchain, 
object 
code

Peripherals, 
DMA 
controller
Prog. logic, 

Defining 
requirements, 
Design before 
coding, Estimation, 
Design for X, 
Testing, Dev. 
Processes for 
dependable and 
safety-critical 
systems

I/O event timing, 
internal timing, 
power and energy 
consumption, 
code size

User interface, 
Control 
Systems, Media 
DSP, Data 
logging, Sensor 
data processing 
& fusion, etc. …

Many Interconnected Methods


