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 Embedded Computer Systems frequently target control applications
 Get input (read signal, detect event), Compute new output value, Update output
 Microcontroller = Microprocessor + memory + hardware peripherals to support 

control
 Embedded Systems have processes, different implementation options

 Software can do almost anything (eventually). Timing is slow, very sloppy.
 Hardware is very fast and energy-efficient, uses dedicated circuits. Stable timing. 

Limited functionality available.
 Typically have multiple concurrent processes due to application requirements
 These processes often have diverse I/O operations 

 Digital signals, analog signals (must be converted to digital)
 Bursts of events (e.g. PWM, serialized data, etc.), 
 Sample input periodically vs. receive event notification, 
 Range of I/O operation frequencies

Embedded Systems High-Level View (1)
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 The I/O for a process often has challenging timing requirements
 Periodic events, events synched to other/previous events on this/other signals

 Decouple the I/O from compute software (bad timing characteristics) by 
splitting it into two or more processes to make input or output operations 
asynchronous to the compute operations.
 We may move some processing to hardware peripheral circuits. 

 These processes need to synchronize and communicate (data buffering). 
 We use interrupts, HW peripherals and DMA to make a low-cost and 

feasible solution with a low-frequency CPU.

Embedded Systems High-Level View (2)
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