NC STATE UNIVERSITY

06: Scheduling and Dispatching,
Response Time Analysis and OS Wish List

9/8/2025

NC STATE UNIVERSITY

Overview

Where are we?

Examining the Processing Chain
= Scheduling and Dispatching: Where are they done?

Response Time Analysis
OS Wish List

NC STATE UNIVERSITY

SW Processes: CPU Scheduling, Synchronization & Communication
N

<~

. Design hardware—="
What: Implement single process g /,wg‘ffe

HW Implem.
of each Process

What: Add more processes: indeperident, concurrent — “\ W
Synchronization and
communication activities

Multiple Dedicated
CPUs
drive many

-~ \——_ CPU scheduling decisions
Concepts of Process Synchronization.and Communication J g
What: Provide syfichronization and communicatigf between processes
v

v

At least one
shared CPU

HW-SW

Direct Programmed I/O:
Memory SW writes to

Programmed Interrupt
I/O: System: Event

OS Synch &
Comm

primitives:

Sem, etc.

Variables
shared with
correct
algorithms

Dedicated
Interconnect

Access peripherals

SW reads/polls triggers SW
peripherals Handler

NC STATE UNIVERSITY

Extended Topic Map: Class 06

Embedded Systems
Design Space(s)

Application Requirements Cost of
Characteristics) | & Constraints Precise Timing

Processes and Concurrency
for Embedded Systems
Processes and
Concurrency

Process Dependences
Implementation between Processes

ftware
Processes

Sched:
Share CPU
Time

+Interrupts
: Fore/Back [
ground

Infinite | §
loop in [
main

RTCS Run-to-
Completion
Scheduler

Both Hardware and
Software Processes

Synchronization Communication

Sync. to What? == Mutaal Data Loss & Notification/ Split Direct or
Exclusion Flow Ctl/ Receiver Indirect
- Triggering P Handshaking Process? Comm.?

N
“DIY” Cpde Implemeggations
Serializing Req/Ack) Double Circular
Server Flags Buffer Buffer

—

DMA-
managed
buffer

v__ OS Mechanisms
Event Fla; Semaphore Mutex Lock Mailb Message
(emphre) (Fes Lo =

NC STATE UNIVERSITY

Software Processes and Arm CPU Modes

= Arm CPU may run a SW process in... = Transitions
= Thread Mode = Thread mode -> handler mode: When
= Handler Mode starting to respond to an interrupt or

= Main differences: These don’t matter yet exception request

= Which stack pointers (SP) are available
= Main SP, Process SP

= Which access privilege levels are available

= Handler mode -> thread mode: after finishing
handling last nested interrupt or exception
request

= Unprivileged level prevents using certain
instructions and accessing certain peripherals,
control registers and memory regions

= Privileged level has no restrictions

NC STATE UNIVERSITY

Processing Chain: Schedule and Dispatch Stages

NC STATE UNIVERSITY

Processing Chain Refinement

= Stages
= Detect Event: Sample and quantize signal, analyze and decide if event happened
= Schedule process: Decide what processing to do next (e.g. do process work)
= Dispatch process: Start it running (or resume it)
= Do: Perform processing work to handle event

NC STATE UNIVERSITY

Dispatching a Software Process

Comes after scheduling, but let’s get it out of the way early

= Dispatch = cause SW process to start/resume executing

= Different methods available

= Implicit: next instruction in code is part
of the process

= Subroutine call to with process’ root
(overall) function

= |nterrupt Controller forces CPU to execute
ISR containing process root function

= Interrupt Controller forces CPU to execute handler,
which then uses OS to switch contexts and
resume running the process.

NC STATE UNIVERSITY

Scheduling & Dispatching: Decide what to do next, and start it

= Behavior depends on two decisions Detect Event

= 1. Is this process allowed to run? Analyze | Decide Schedule Dispatch | Do Work

= Yes: Dispatch and run it
= No: 2. What kind of event detection test?

= Non-blocking: Advance to detect stage for
next process (via scheduler or program
structure) and continue

= Blocking: Repeat software starting with
detect (analyze and decide) by looping back
to it

NC STATE UNIVERSITY

System Timelines for Non-Blocking vs. Blocking Detection

= Resulting system timelines
= Non-blocking detection: round-robin

= Blocking detection: greedy

Processing Chain Variations 1: Where to Detect & Schedule?

main() { A _Det_Sched_Work() { ISR A() {
while (1) { ev_det = .. A _AllWork();
// Detect Event for A if (ev_det) A Work(); }
ev_A det = ... }
if (ev_A_det) { B_Det_Sched _Work() { main() {
ev_A det = 0; do { // blocking while (1) {
A _Work(); ev_det = .. -
} } while (l'ev_det); 1}
// Detect Event for B B_Work();
ev_B det = ... }
if (ev_B_det) { main() {
ev_B_det = 9; while (1) {
B_Work(); A _Det_Sched_Work();
1} B_Det_Sched Work();
}}
= Main Thread Loop: Scheduling loop = Process: in Do Work = Interrupt System: Hardware
in main thread = May have built-in = Peripheral detects, interrupt
= Main polling event detection code Detect/Schedule/Do controller schedules & dispatches,
= Schedule may be single non-blocking interrupt handler (ISR) does all the

test or looping blocking test work

NC STATE UNIVERSITY

Processing Chain Variations 2: Where to Detect & Schedule?

= Interrupt System & (Main or Process):
Multiple locations

= Combines interrupt approach with another

= Allows splitting of work between ISR and thread
for better responsiveness

= Needs synchronization between processes
= Results in foreground/background system
= QOperation

= Peripheral detects, interrupt controller schedules,
handler does some work and requests more
processing (ev_A_det)

= Main loop detects request, schedules process,
process does requested processing work

= Could instead use A_Det_Sched_FinishWork()

volatile int ev_A_det main() {
while (1) {
if (ev_A_det > 0) {
ev_A_det = 0;

A _FinishWork();

ISR A() {
A_StartWork();
ev_A det

A FinishWork() { B_Det_Sched Work();

B_Det_Sched Work() {

} while (l'ev_det);
B_Work();

NC STATE UNIVERSITY

Response Time Analysis

Starting Point for Response Time Analysis

= Response time = time between event and
completion of response processing

= RTA for which process?
= This process?

= Other processes in the system? How does this process
affect/disrupt timing for the other processes in the system?

= Managing variations in processing chain structure
= Standardize to simplify timing analysis:
= Assume detection (analyze, decide) and simple mini-scheduler

(if) for process is performed in its Do Work stage
= Still have outer scheduler deciding which process to run next
= Process Do Work stage is short if event not detected, longer if
event is detected
= Can link multiple processing chains together if the
processes synchronize with each other

NC STATE UNIVERSITY

NC STATE UNIVERSITY

Overview of Basic Approach to RTA

= Two parts = Breaking down what else
= How much processing time is needed for = How soon does the scheduler start running A?
software process A’s instructions? = |s a process already running that will delay when

the scheduler gets to run?

= What else can run between input event at
= Does the scheduler have other processes to run

ta ovent aNd response processing completion at
ty 4one? HOW long does it take? before starting A?
= Includes other processes and the = Can anything delay A after it has started?
scheduler/operating system process(es) = Can anything preempt A after it starts running?
= Could A have to wait for another process for
synchronization?

RTA Examples with Four Schedulers

Workload

= Processes: P1, P2, P3, P4

= Triggering Events (or conditions): E1, E2, E3, E4
V1. Fixed order round-robin

V2. Interrupt detects event E1, Interrupt
handler sets flag requesting a run of P1

V3. Prioritize processes. P1 >P2 >P3 > P4

V4. Move P1 work into ISR

NC STATE UNIVERSITY

Response Times for Schedulers

NC STATE UNIVERSITY

Release Schedule R

Release Schedule R2

Release Schedule R3

Pl

P2

P3

P4

NC STATE UNIVERSITY

Observations

NC STATE UNIVERSITY

Observations

= Limitations of run-to-completion process model.
= Thread duration vs. responsiveness
= Thread preemption only by interrupts, complicating design
= Shortening threads with finite state machines

= Sync/comm/sched/dispatch operations are often interdependent
= |f scheduler/OS can see all these operations, it can make better decisions and offer more features

= Example: If process event test will block, then pause process execution and automatically switch in
another process. Reclaims idle time.

NC STATE UNIVERSITY

Observations

= Scheduling model variations: Where are detect and schedule performed?
= A. Main sched thread (Det, Sched) only: in main loop with polling detection
= B. Interrupt only: peripheral detects, interrupt controller schedules, handler does

= C. Main & Interrupt system:
= Peripheral detects, interrupt controller schedules, handler does some work and requests more processing

= Main loop detects by polling request, scheduling process, process does requested work

= D. Do Work/Handler
= Do Work/Handlerportion of process may also contain Get/Detect/Schedule/Do built in, where Schedule step
may be single non-blocking test or looping blocking test

20

NC STATE UNIVERSITY

OS Wish List

NC STATE UNIVERSITY

Wish List - Better control of responsiveness

= Methods to provide (“allocate”) responsiveness to processes (or parts within) as needed

= Don’t waste responsiveness on processes which don’t need as much
= Reduce vulnerability of responsiveness for urgent processing by isolating it from less urgent processing

" Improvements
= Improve task execution order (not round-robin ABCDABCD)

= Add process priorities, use to drive scheduling.
= Static priority?
= Dynamic? Based on slack time?

= Both?
= Improve run-to-completion processes (non-preemptive) with yield and resume features: Finite state

machines (FSMs), other methods. Cooperative multitasking
= Provide preemption of processes by higher priority processes

22

NC STATE UNIVERSITY

Generalize/standardize code structure for modular code

Standardize data format for scheduler

= Essential data: process is ready (has permission to
run since event was detected). Count to 1 or higher?

Provide protected interface for scheduler data.
E.g. request another run.

Support scheduling decisions more locations:
scheduler code, user code

23

Features to simplify programming

Support time-based process scheduling (e.g. with
periodic timer tick)
= Run this process every N ticks, etc.

Features for synchronization between processes:

= Signaling event has occurred, counting pending un-
serviced events. E.g. for triggering processing:
ISR->thread, etc.

= Protecting critical sections with mutually exclusive
execution.

Features for communication between processes

= Send a message: data and provide sync support for
receiver (and sender too!)

= Send a message, allowing multiple pending messages
(FIFO/queue)

24

NC STATE UNIVERSITY

NC STATE UNIVERSITY

Features to reclaim idle time

= Take advantage of OS knowledge of system state
= Switch processes when blocking

= Leverage preemption

25

