
1

06: Scheduling and Dispatching,
Response Time Analysis and OS Wish List

9/8/2025

2

 Where are we?
 Examining the Processing Chain

 Scheduling and Dispatching: Where are they done?

 Response Time Analysis
 OS Wish List

Overview

3

SW Processes: CPU Scheduling, Synchronization & Communication

Concepts of Process Synchronization and Communication

Concepts for Single Process

HW Implem.
of Process

SW Implem. of
Process on CPU

What: Add more processes: independent, concurrent

What: Implement single process

HW Implem.
of each Process

Multiple Dedicated
CPUs

Design hardware

Add more HW

Design software

Add CPUs Share CPU
At least one
shared CPU

What: Provide synchronization and communication between processes

HW→HW SW→HW HW→SW SW→SW

Dedicated
Interconnect

Direct
Memory
Access

Programmed I/O:
SW writes to
peripherals

Programmed
I/O:

SW reads/polls
peripherals

Interrupt
System: Event
triggers SW

Handler

Variables
shared with

correct
algorithms

OS Synch &
Comm

primitives:
Sem, etc.

Synchronization and
communication activities

drive many
CPU scheduling decisions

4

Extended Topic Map: Class 06

Process
Implementation

Dependences
between Processes

Hardware
Processes

Software
Processes

Sched:
Share CPU

Time

Communication

Mutual
Exclusion

Both Hardware and
Software Processes

Mem-
Mapped
Periph.
Access

Embedded Systems
Design Space(s)

DMA
Ctlr

Sync. to What?
Do or Don’t?

How?

Intrpt
System

Notification/
Flow Ctl./

Handshaking

Data Loss &
Duplication

Buffering
Split

Receiver
Process?

Split urgent/
deferrable work

Direct or
Indirect
Comm.?

SW?

Why
use…?

HW?

+ Coop.
Sched. Tasks

Infinite
loop in
main

+ Task
Priorities

+ Task
Preemption

RTCS Run-to-
Completion
Scheduler

RTXv5
RTOS

FSMs for
Responsiveness

How?

“DIY” Code Implementations
Shared

Variables

How?

OS Mechanisms
Event Flag Semaphore

Shared
Variables

Mutex Lock

Concepts How?

In
Order?

Cost of Precise
Timing

Buffering
Concepts

Why?

Message
Queue

How?

Double
Buffer

Circular
Buffer

Req/Ack
Flags

DMA-
managed

buffer

Mailbox

How?

Cost of
Precise Timing

CPU
per

Process

Application
Characteristics

Requirements
& Constraints

Processes and Concurrency
for Embedded Systems

Processes and
Concurrency

Peri-
pherals

Dedic. HW
Interconn.

DMA
Ctlr

Ordering/
Triggering

Concepts

Synchronization

Polling
(Prog’d

I/O)

+Interrupts
: Fore/Back

ground
Serializing

Server

5

 Arm CPU may run a SW process in…
 Thread Mode
 Handler Mode

 Main differences: These don’t matter yet
 Which stack pointers (SP) are available

 Main SP, Process SP
 Which access privilege levels are available

 Unprivileged level prevents using certain
instructions and accessing certain peripherals,
control registers and memory regions

 Privileged level has no restrictions

 Transitions
 Thread mode -> handler mode: When

starting to respond to an interrupt or
exception request

 Handler mode -> thread mode: after finishing
handling last nested interrupt or exception
request

Software Processes and Arm CPU Modes

6

Processing Chain: Schedule and Dispatch Stages

7

 Stages
 Detect Event: Sample and quantize signal, analyze and decide if event happened
 Schedule process: Decide what processing to do next (e.g. do process work)
 Dispatch process: Start it running (or resume it)
 Do: Perform processing work to handle event

Processing Chain Refinement

8

 Dispatch = cause SW process to start/resume executing
 Different methods available

 Implicit: next instruction in code is part
of the process

 Subroutine call to with process’ root
(overall) function

 Interrupt Controller forces CPU to execute
ISR containing process root function

 Interrupt Controller forces CPU to execute handler,
which then uses OS to switch contexts and
resume running the process.

Dispatching a Software Process
Comes after scheduling, but let’s get it out of the way early

9

 Behavior depends on two decisions
 1. Is this process allowed to run?

 Yes: Dispatch and run it
 No: 2. What kind of event detection test?

 Non-blocking: Advance to detect stage for
next process (via scheduler or program
structure) and continue

 Blocking: Repeat software starting with
detect (analyze and decide) by looping back
to it

Scheduling & Dispatching: Decide what to do next, and start it

Detect Event

Do WorkDispatchScheduleDecideAnalyze

10

 Resulting system timelines
 Non-blocking detection: round-robin

 Blocking detection: greedy

System Timelines for Non-Blocking vs. Blocking Detection

11

 Main Thread Loop: Scheduling loop
in main thread
 Main polling event detection code

 Process: in Do Work
 May have built-in

Detect/Schedule/Do
 Schedule may be single non-blocking

test or looping blocking test

 Interrupt System: Hardware
 Peripheral detects, interrupt

controller schedules & dispatches,
interrupt handler (ISR) does all the
work

Processing Chain Variations 1: Where to Detect & Schedule?

main() {
while (1) {

// Detect Event for A
ev_A_det = ….
if (ev_A_det) {

ev_A_det = 0;
A_Work();

}
// Detect Event for B
ev_B_det = ….
if (ev_B_det) {

ev_B_det = 0;
B_Work();

}}

A_Det_Sched_Work() {
ev_det = …
if (ev_det) A_Work();

}
B_Det_Sched_Work() {

do { // blocking
ev_det = …

} while (!ev_det);
B_Work();

}
main() {

while (1) {
A_Det_Sched_Work();
B_Det_Sched_Work();

}}

ISR_A() {
A_AllWork();

}

main() {
while (1) {

…
}}

12

 Interrupt System & (Main or Process):
Multiple locations
 Combines interrupt approach with another

 Allows splitting of work between ISR and thread
for better responsiveness

 Needs synchronization between processes
 Results in foreground/background system

 Operation
 Peripheral detects, interrupt controller schedules,

handler does some work and requests more
processing (ev_A_det)

 Main loop detects request, schedules process,
process does requested processing work
 Could instead use A_Det_Sched_FinishWork()

Processing Chain Variations 2: Where to Detect & Schedule?

volatile int ev_A_det = 0;

ISR_A() {
A_StartWork();
ev_A_det = 1;

}
A_FinishWork() {

…
}
B_Det_Sched_Work() {

do {
ev_det = …

} while (!ev_det);
B_Work();

}

main() {
while (1) {

if (ev_A_det > 0) {
ev_A_det = 0;
A_FinishWork();

}
B_Det_Sched_Work();

}
}

13

Response Time Analysis

14

 Response time = time between event and
completion of response processing

 RTA for which process?
 This process?
 Other processes in the system? How does this process

affect/disrupt timing for the other processes in the system?

 Managing variations in processing chain structure
 Standardize to simplify timing analysis:

 Assume detection (analyze, decide) and simple mini-scheduler
(if) for process is performed in its Do Work stage
 Still have outer scheduler deciding which process to run next

 Process Do Work stage is short if event not detected, longer if
event is detected

 Can link multiple processing chains together if the
processes synchronize with each other

Starting Point for Response Time Analysis

15

 Two parts
 How much processing time is needed for

software process A’s instructions?
 What else can run between input event at

tA_event and response processing completion at
tA_done? How long does it take?
 Includes other processes and the

scheduler/operating system process(es)

 Breaking down what else
 How soon does the scheduler start running A?

 Is a process already running that will delay when
the scheduler gets to run?

 Does the scheduler have other processes to run
before starting A?

 Can anything delay A after it has started?
 Can anything preempt A after it starts running?
 Could A have to wait for another process for

synchronization?

Overview of Basic Approach to RTA

16

 Workload
 Processes: P1, P2, P3, P4
 Triggering Events (or conditions): E1, E2, E3, E4

 V1. Fixed order round-robin

 V2. Interrupt detects event E1, Interrupt
handler sets flag requesting a run of P1

 V3. Prioritize processes. P1 > P2 > P3 > P4

 V4. Move P1 work into ISR

RTA Examples with Four Schedulers

17

Release Schedule R3Release Schedule R2Release Schedule R1

P1

P2

P3

P4

Response Times for Schedulers

18

Observations

19

 Limitations of run-to-completion process model.
 Thread duration vs. responsiveness
 Thread preemption only by interrupts, complicating design
 Shortening threads with finite state machines

 Sync/comm/sched/dispatch operations are often interdependent
 If scheduler/OS can see all these operations, it can make better decisions and offer more features
 Example: If process event test will block, then pause process execution and automatically switch in

another process. Reclaims idle time.

Observations

20

 Scheduling model variations: Where are detect and schedule performed?
 A. Main sched thread (Det, Sched) only: in main loop with polling detection
 B. Interrupt only: peripheral detects, interrupt controller schedules, handler does
 C. Main & Interrupt system:

 Peripheral detects, interrupt controller schedules, handler does some work and requests more processing
 Main loop detects by polling request, scheduling process, process does requested work

 D. Do Work/Handler
 Do Work/Handlerportion of process may also contain Get/Detect/Schedule/Do built in, where Schedule step

may be single non-blocking test or looping blocking test

Observations

21

OS Wish List

22

 Methods to provide (“allocate”) responsiveness to processes (or parts within) as needed
 Don’t waste responsiveness on processes which don’t need as much
 Reduce vulnerability of responsiveness for urgent processing by isolating it from less urgent processing

 Improvements
 Improve task execution order (not round-robin A B C D A B C D)
 Add process priorities, use to drive scheduling.

 Static priority?
 Dynamic? Based on slack time?
 Both?

 Improve run-to-completion processes (non-preemptive) with yield and resume features: Finite state
machines (FSMs), other methods. Cooperative multitasking

 Provide preemption of processes by higher priority processes

Wish List - Better control of responsiveness

23

 Standardize data format for scheduler
 Essential data: process is ready (has permission to

run since event was detected). Count to 1 or higher?

 Provide protected interface for scheduler data.
E.g. request another run.

 Support scheduling decisions more locations:
scheduler code, user code

Generalize/standardize code structure for modular code

24

 Support time-based process scheduling (e.g. with
periodic timer tick)
 Run this process every N ticks, etc.

 Features for synchronization between processes:
 Signaling event has occurred, counting pending un-

serviced events. E.g. for triggering processing:
ISR->thread, etc.

 Protecting critical sections with mutually exclusive
execution.

 Features for communication between processes
 Send a message: data and provide sync support for

receiver (and sender too!)
 Send a message, allowing multiple pending messages

(FIFO/queue)

Features to simplify programming

25

 Take advantage of OS knowledge of system state
 Switch processes when blocking

 Leverage preemption

Features to reclaim idle time

