
1

Lecture 06 Notes –
(Synchronization and) Scheduling and Dispatch,
Scheduler Wish List
I. Overview

A. Review
1. Where does this fit into the big picture? Sync/Comm/Sched
2. Refining event detection & processing chain

a. Sample, Quantize, Analyze, Decide
b. Basic HW and SW options

B. Today
1. Continue refining event detection & processing chain

a. Schedule, Dispatch, Handle
b. Basic response time analysis
c. Observations
d. OS Code characteristics

2. Scheduler Wish List

II. Closer look at Sync/Comm/Sched
A. Where does this fit into the big picture?
B. Processing chain options:

1. Various options available for each step/slot. Can implement in software and/or hardware
C. Processing Chain Refinement

1. Problem and Adjustment
2. Understanding Synchronization with SQ and AD. Should processing take place

(eventually)?
a. Detect is split into

i. Sample & Quantize (Digitize) input (SQ): Must be hardware for input signals
ii. Analyze & Decide (AD) if event happened: Software and/or Hardware

o Analyze signal (past and present values, may depend on system state)
▪ Software Rising Edge detection:

• if cur_val different from prev_val (previous cur_val) then diff = 1 else diff
= 0 (simple logic version: diff = cur_val XOR prev_val)

• prev_val = cur_val
▪ Hardware Rising Edge detection:

2

• PORT module compares current SQ value with previous one. Set port
interrupt status flag (ISF) to 1 in PORT’s pin control register (PCR), else
leave ISF unchanged

o Decide if event happened which affects handler code being able to run, save
that decision for scheduling.

▪ Software Rising Edge detection:
• if diff ==1 and cur_val == 1, then then tell the scheduler that the

process is allowed to run
▪ Hardware + Software Rising Edge detection: Still needs software.

• PORT interrupt is disabled, so code reads PORT’s pin control register,
tests the interrupt status flag (ISF). If 1 (event detected), then tell the
scheduler that the process is allowed to run

▪ Hardware Rising Edge detection:
• PORT interrupt is enabled, so sends interrupt request (IRQ) to interrupt

controller (NVIC)

3

3. Scheduling and Dispatching: Decide what to do next, and start it
a. Behavior

i. Low-level behavior: Decision tree, control flow

o Is this process allowed to run?

▪ Yes: Dispatch and run it
▪ No:

• Blocking: Repeat software to analyze and decide (loop back to it)
• Non-blocking: Advance to next process (via scheduler or program

structure) and repeat decision tree analysis
ii. Resulting system behavior timelines

o Non-blocking detection

o Blocking detection

4

D. Basic Response Time Analysis
1. For which process?

a. This particular process. Local view.
b. All the other processes. How does this process affect timing for the rest of the

system?
2. Basic Idea

a. What can run between when a process A’s input event happens tA_event and response
processing completes tA_done?

i. Which process? BTW, process may be an interrupt handler.
o Timing for this process usually depends on other processes.
o One scheduling goal for urgent processes is to reduce this dependence/timing

vulnerability

ii. How long does it take process A to do its work in response to the event?
o Term is CA – amount of computation needed.
o Want max value (or upper bound) to determine worst case response time
o Blocking vs. Non-blocking scheduling tests and computation time

requirements
▪ Blocking? If event never happens, process will take infinite time.
▪ Non-blocking? Finite (short!) maximum time to pass test.
▪ May also have a bound on blocking time (if not passed within 10 tests, try

again later)

b. Note: we may ignore some terms to simplify math, giving a less accurate timing
model

c. How soon does the scheduler start running process A?

i. Is anything already running that will delay when the scheduler gets to run?
ii. What else can run before A starts running? Causes timing interference

5

d. Can anything else preempt process A after it starts running? Causes more timing
interference
i. Interrupt/Exception handlers (service routines) for threads

ii. Higher-priority Interrupt/Exception handlers (service routines) for handlers

iii. Higher-priority process, if scheduler allows a process to preempt another process

e. Might process A have to wait because of synchronization or communication with
another other process?
i. Using shared resource, waiting for message from other process, etc.

ii. May lead to priority inversion… more later

f. How much time does each interfering process take?

i. Remember, may contain blocking or non-blocking operations

g. How many times does scheduler/OS need to run over this time, and how long does
each run take? (Starting point: What does it need to do?)

6

h. Add them all up
i. Sum of [number of times this activity runs * duration of this activity] for all activities

(i=0, 1, 2 …)
ii. Ni = number of times activity runs
iii. Ci = duration for activity

i. Is the response time acceptable?

3. Apply to non-blocking infinite loop, with simplifications

7

E. Observations:
1. Sync/comm/sched/dispatch operations are often interdependent, so
2. If scheduler/OS can see all these operations, it can make better decisions and offer more

features
a. Example: If process event test will block, then pause process execution and

automatically switch in another process. Reclaims Idle Time.

III. Scheduler/OS Wish List
A. Allow better responsiveness where needed

1. Dynamic task execution order

2. Allow Process Prioritization to drive scheduling. Static priority? Dynamic?

3. Allow Process Preemption by higher priority processes

B. Generalize/standardize code structure for modular code
1. Move many/most scheduling decisions from user code to scheduler code

C. Features to simplify programming and reclaim idle time
1. Provide mechanisms for synchronization: Let software processes trigger each other with

event flags, semaphores, etc. Provide mutexes, etc.

8

D. What kind and where is the code to do detect/sync/sched/dispatch (part of “OS code”), and
how do we get it to run?
1. What kind of software process does the OS work?

a. Can be in threads and/or interrupt/exception handlers, depending on other factors

2. Which files have the OS code? Two possible locations, may have some in both.
a. Application program functions have OS code integrated within work/handlers of

processes (may be implicit)

i. Code for OS operations is integrated into program source code, executes from
main thread (and maybe interrupt/exception handlers).

b. A separate module with OS code
i. Code for OS is in different files/modules from application program

3. How do we make OS code execute?
a. Application Program:

i. OS code runs when function gets to those integrated operations.

b. Separate OS module:

i. OS runs when application program or OS function invokes OS through …
o macro,
o subroutine call or
o software interrupt (e.g. SVC)

ii. We will see OS often uses interrupt and exception handlers for key features (e.g.
timer tick)

