Lecture 06 Notes -
(Synchronization and) Scheduling and Dispatch,
Scheduler Wish List

l. Overview
A. Review !
1. Where does this fit into the big picture? Sync/Comm/Sched
2. Refining event detection & processing chain
a. Sample, Quantize, Analyze, Decide
b. Basic HW and SW options

B. Today
1. Continue refining event detection & processing chain
a. Schedule, Dispatch, Handle
b. Basic response time analysis
c. Observations
d. OS Code characteristics

2. Scheduler Wish List

I1. Closer look at Sync/Comm/Sched
A. Where does this fit into the big picture?
B. Processing chain options:
1. Various options available for each step/slot. Can implement in software and/or hardware
C. Processing Chain Refinement
1. Problem and Adjustment

e PORT module compares current SQ value with previous one. Set port
interrupt status flag (ISF) to 1 in PORT’s pin control register (PCR), else
leave ISF unchanged

o Decide if event happened which affects handler code being able to run, save
that decision for scheduling.

= Software Rising Edge detection:

o ifdiff ==1 and cur_val == 1, then then tell the scheduler that the

process is allowed to run
* Hardware + Software Rising Edge detection: Still needs software.

e PORT interrupt is disabled, so code reads PORT’s pin control register,
tests the interrupt status flag (ISF). If 1 {event detected), then tell the
scheduler that the process is allowed to run

= Hardware Rising Edge detection:

« PORT interrupt is enabled, so sends interrupi request (IRQ) to interrupt

controller {NVIC)

3. Scheduling and Dispatching: Decide what to do next, and start it
a. Behavior

i. Low-level behavior: Decision tree, control flow Qb
o Isthis process allowed to run?

= Yes: Dispatch and run it
= No:

Blocking: Repeat software to analyze and decide (loop back to it)
* Non-blocking: Advance to next process (via scheduler or program —

structure) and repeat decision tree analysis Qb B’g{ =
ii. Resulting system behavior timelines @
o Non-blocking detection X]A S l

o Blocking detection

4

nc‘«\fﬂ =l

D. Basic Response Time Analysis @ : _;L 3
1. For which process? \FU e J—Lﬂgﬁ%}_—é@ —j

\.-v--,-».-"-\ — —

a. This particular process. Local view. ek
b. Allthe other processes. How does this process a |ng ATt 1 S ol =
system?
2. Basicldea
a. What can run between when a process A’s input event happens ta_ewent and response 1\

processing completes ta_done?

i. Which process? BTW, process may be an interrupt handler. Jr e

o Timing for this process usually depends on other processes.
o One scheduling goal for urgent processes is to reduce this dependence/timing
vulnerability

ii. How long does it take process A to do its work in response to the event?t

o Termis Ca-amount of computation needed. IS) 1"\\‘\-
o Want max value (or upper bound) to determine worst case response time *"j
o Blocking vs. Non-blocking scheduling tests and computation time

requirements

= Blocking? If event never happens, process will take infinite time.
= Non-blocking? Finite [short') maximum time to pass test.

= May also have a n bl ing time (if not passed withi 0 tests, t
again later
B o ﬁ(N+t |0) & LVQ[,CS(

. Note: we may ignore some terms to 3|mpl|f:;Fh , giving a less accurat?ming

e b l&we iy W tﬁy\@ (e €
c. How soon does the scheduler start running process A? DC\ e Z-\ D> g&

i. Isanything already running that will delay when the scheduler gets to run?
ii. What else can run before A starts running? Causes timing interference Z{ \}J\A}. "

o e G
e e
e o 3

‘ :

pof
A T b

Can anything else preempt process A after it starts running? Causes more timing

interference
i. Interrupt/Exception handlers (service routines) for threads \ E:\(ﬁ?
e e
r L
/’
A[o Bl

ii. Higher-priority Interrupt/Exception handlers (service routines) for handlers,
N TR AT
Le\t’* wf 4 g B vamal

iii. Higher-priority process, if scheduler allows a process to pr ta rocess 1
Foshk (3t X
\J\} \ o
Wy

Might process A have to wait because of synchronization or communication with

another other process?
i. Using shared resource, waiting for message from 1 rocess, etc.

ii. May lead to priority inversion... more later ﬂ,
5l Regowe

How much time does each interfering process take?

i. Remember, may contain blocking or non-blocking operations

g. How many times does scheduler/OS need to run over this time, and how long does
each run take? (Starting point: What does it need to do?)

h. Add them allup

i. Sum of [number of times this activity runs * duration of this activity] for all activities
(i=0,1,2..)

ii. Ni=number of times activity runs

iii. Cj=duration for activity

(leg Towe = 2 NG
lQle;{v

i. lIsthe response time acceptable?

3. Apply to non-blocking infinite loop, with simplifications

Blocking vs. Non-Blocking Tests
&> r &b

5 sporshsHandle o odelpeh i

prev_A = read signal A from port
sched [while (1) {
\“ﬂJ // Quad Decoder - Blocking ﬂj%>t9“
Se (;0

cur_A = read signal A from port
A

R detected = (prev_A==0) && (cur A_-l), A
NeXOZ| prev_A = cur_A; ()&L
@b 5 S while (!detected);

cur_B = read signal B from port

if (cur_B==8)
A h\eﬂ .
poSs++;

else
pos--;
r”‘ // Other work X
b
>/ I:: // More other work Y
4ched L}

NC STATE UNIVERSITY

@bx Y&b Xy DX X

o gt O 08 g T

;f5A5A5A5 Haudl 5050 52 505

prev_A = read signal A from port
Sehed (While (1) {
s // Quad Decoder - Non-blocking
1 }}ﬂ‘rdcur A = read signal A from port

detected = (prev_A==0) && (cur_A==1);
Bf prev_A = cur_A;

;,Cm[if (detected) {
(}D ur_B = read signal B from port
if (cur_B==0)

;lUNJAQ] : pos++;

else
pos -

A t\(9&&5

// Other\work X
Al

)/ Z:: ;/ More other work Y
Sched [i

E. Observations:
1. Sync/comm/sched/dispatch operations are often interdependent, so
2. If scheduler/OS can see all these operations, it can make better decisions and offer more
features

a. Example: If process event test will block, then pause process execution and
automatically switch in another process. Reclaims Idle Time.

I1l.Scheduler/OS Wish List

A. Allow better responsiveness where needed
1. Dynamic task execution order

2. Allow Process Prioritization to drive scheduling. Static priority? Dynamic?

3. Allow Process Preemption by higher priority processes

B. Generalize/standardize code structure for modular code
1. Move many/most scheduling decisions from user code to scheduler code

C. Features to simplify programming and reclaim idle time
1. Provide mechanisms for synchronization: Let software processes trigger each other with
event flags, semaphores, etc. Provide mutexes, etc.

D. What kind and where is the code to do detect/sync/sched/dispatch (part of “OS code”), and
how do we get it to run?
1. What kind of software process does the OS work?
a. Can beinthreads and/or interrupt/exception handlers, depending on other factors

2. Which files have the OS code? Two possible locations, may have some in both.
a. Application program functions have OS code integrated within work/handlers of
processes (may be implicit)

i. Code for OS operations is integrated into program source code, executes from
main thread (and maybe interrupt/exception handlers).
b. A separate module with OS code
i. Code for OSis in different files/modules from application program

3. How do we make OS code execute?
a. Application Program:

i. OScode runs when function gets to those integrated operations.
b. Separate OS module:
i. OSrunswhen application program or OS function invokes OS through ...

o macro,
o subroutine call or
o software interrupt (e.g. SVC)

ii. We will see OS often uses interrupt and exception handlers for key features (e.g.
timer tick)

