
1

Lecture 05 Notes –
Synchronization and Scheduling and Dispatch,
Scheduler Wish List
I. Overview

A. Review
1. Where does this fit into the big picture?
2. Sync and Do – How to “and”?

a. Deferring work from ISR to thread with shared variables (notification, data)
b. Generalizing sync behavior. Consider abnormal/edge cases (missing events, etc.)

3. Sync and Don’t – Mutual Exclusion
a. 2nd form of synchronization
b. Don’t overlap execution of critical sections for same object/resource

B. Today
1. Closer look at Sync/Comm/Sched

a. Stages
b. Options and implementations
c. Basic response time analysis

2. Scheduler Wish List

II. Closer look at Sync/Comm/Sched
A. Where does this fit into the big picture?
B. Processing chain options:

1. Various options available for each step/slot. Can implement in software and/or hardware
peripherals and/or interrupt system (advanced: and/or DMA and/or peripheral
interconnect)

a. Which to use?

i. Software:

o + Easier for simple systems, easy to debug
o – Poor speed, timing stability and fairness without scheduler limit system

scalability

ii. Hardware:
o + Extremely fast, stable timing, and power-efficient,
o – Specialized functionality (not universal like software), takes time to learn

hardware peripheral capabilities

2

b. One objective of class – give you an idea of what hardware can do, so you know you
may have more options than just software
i. Unknown unknowns: You don’t know that hardware can do far more than basic

functionality of synchronous programmed I/O (e.g. read input port now, analyze
the reading)

ii. Known unknowns: You know that the port peripheral can do a lot beyond basics
(read input bits, write output bits), but don’t know what exactly.

iii. Known knowns: You know some peripherals can automatically detect an input
signal’s edge and
o Request (using the interrupt system) for its interrupt service routine to run

(PORT)
o Request (using the direct memory access controller system) a data transfer

among peripherals and memory (PORT, DMA)
o Signal to another peripheral that an input event has occurred (CMP -> ADC)
o Make a running timer peripheral capture the current counter value (Timer)

C. Processing Chain Refinement
1. Problem and Adjustment

a. Previous steps in chain (Lecture 04): Detect, Schedule, Dispatch, Do Process Work
(e.g. handle event)
i. Part 1: Synchronize – Should processing take place (eventually)?

o Detect gives or takes away permission to scheduler to run this processing (e.g.
handler code)

ii. Part 2: Do – Select processing to do, run it:

o Schedule decides which processing has permission (is ready) to run and
should be done next. Currently based on program order, later will enhance to
consider other factors (priority, time, etc.)

o Dispatch, Do Process Work (e.g. handler)

b. Adjustment: Refine Detect
i. Why? Some of Detect must be in hardware, while remainder may be hardware

and/or software.
ii. How? Split it up into two parts to match this division

o SQ: Sample input and Quantize/digitize that sample. Must be done by
hardware circuit.

o AD: Analyze value and Decide if event occurred. Scheduler will use decision.

c. New processing chain: Sample & Quantize, Analyze & Decide, Schedule, Dispatch,
Do Process Work

3

2. Understanding Synchronization with SQ and AD. Should processing take place
(eventually)?

a. Detect is split into

i. Sample & Quantize (Digitize) input (SQ): Must be hardware for input signals

o Sample: capture input value at specific time (voltage may be analog or binary
digital)

o Quantize/digitize sample into digital form cur_val (single or multiple bits)

 Single bit
 Digital input -> Port, GPIO,
 Analog input to comparator

 Multiple bits
 Analog to Digital converter

ii. Analyze & Decide (AD) if event happened: Software and/or Hardware

o Analyze signal (past and present values, may depend on system state)
 Software Rising Edge detection:

 if cur_val different from prev_val (previous cur_val) then diff = 1 else diff
= 0 (simple logic version: diff = cur_val XOR prev_val)

 prev_val = cur_val
 Hardware Rising Edge detection:

 PORT module compares current SQ value with previous one. Set port
interrupt status flag (ISF) to 1 in PORT’s pin control register (PCR), else
leave ISF unchanged

o Decide if event happened which affects handler code being able to run, save
that decision for scheduling.
 Software Rising Edge detection:

 if diff ==1 and cur_val == 1, then then tell the scheduler that the
process is allowed to run

 Hardware + Software Rising Edge detection: Still needs software.
 PORT interrupt is disabled, so code reads PORT’s pin control register,

tests the interrupt status flag (ISF). If 1 (event detected), then tell the
scheduler that the process is allowed to run

 Hardware Rising Edge detection:
 PORT interrupt is enabled, so sends interrupt request (IRQ) to interrupt

controller (NVIC)

4

3. Scheduling and Dispatching: Decide what to do next, and start it
a. Dimensions to consider…

i. Where is code for scheduler? May be implicit (integrated into natural sequential
flow of program) or explicit scheduling operation (integrated into program or call to
OS)

ii. One or multiple processes/handlers to consider?
b. Decision tree

i. Is this process allowed to run?

o Yes: Dispatch and run it
o No:

 Blocking: Repeat software to analyze and decide (loop back to it)
 Non-blocking: Advance to next process (via scheduler or program

structure) and repeat decision tree analysis


D. Where is code to do sync/sched/dispatch of process work, and how do we get it to run?
1. Can be in threads and/or interrupt/exception handlers
2. Two possible locations for sync/sched/dispatch. May have some in both.

a. Sync/sched/dispatch code integrated (may be implicit: defined by parts of program’s
control flow)

i. Code for scheduling operations is integrated into program source code, executes
from main thread (and maybe interrupt/exception handlers).

ii. This code runs when function gets to those integrated operations.

b. A separate module with scheduler/kernel (often part of OS or RTOS)
i. Code for scheduling (and related operations) is in different files/modules from

application program
ii. This code runs when application program or OS function invokes OS (macro,

subroutine call or software interrupt (SVC)).
iii. We will see OS often uses interrupt and exception handlers for key features (e.g.

timer tick)

5

E. Basic Response Time Analysis
1. For which process?

a. This particular process
b. All the other processes

2. Basic Idea
a. Add up how long everything else (other processes, Sync/Sched/Dispatch) might take

in the best and worst cases to get bounds on best-case and worst-case response
times

b. Blocking vs. Non-blocking scheduling tests
i. Blocking? If event never happens, will take infinite time to pass test.
ii. Non-blocking? Finite (short!) maximum time to pass test.

F. Observations:
1. Sync/comm/sched/dispatch operations are often interdependent, so
2. If scheduler/OS can see all these operations, it can make better decisions and offer more

features
a. Example: If process event test will block, then pause process execution and

automatically switch in another process. Reclaims Idle Time.

6

III. Scheduler Wish List
A. Allow better responsiveness where needed

1. Dynamic task execution order
2. Allow Process Prioritization to drive scheduling
3. Allow Process Preemption by higher priority processes

B. Generalize/standardize code structure for modular code
1. Move many/most scheduling decisions from user code to scheduler code

C. Features to simplify programming and reclaim idle time
1. Provide mechanisms for synchronization: Let software processes trigger each other with

event flags, semaphores, etc. Provide mutexes, etc.

