Lecture 05 Notes —
Synchronization and Scheduling and Dispatch,
Scheduler Wish List

I. Overview
A. Review
1. Where does this fit into the big picture?
2. Sync and Do - How to “and”?
a. Deferring work from ISR to thread with shared variables (notification, data)
b. Generalizing sync behavior. Consider abnormal/edge cases (missing events, etc.)

3. Sync and Don’t - Mutual Exclusion
a. 2" form of synchronization
b. Don’t overlap execution of critical sections for same object/resource

B. Today
1. Closer look at Sync/Comm/Sched
a. Stages
b. Options and implementations
c. Basicresponse time analysis

2. Scheduler Wish List

Il. Closer look at Sync/Comm/Sched
A. Processing chain refinement:

1. Where does this fit into the big picture?

2. Slot machine selector for processing chain
a. Diagram: Sample & Digitize, Analyze & Decide, Schedule, Dispatch, Process event (e.g. Handler)

3. Various options available for each slot. Can implement in software and/or hardware peripherals and/or interrupt

system (advanced: and/or DMA and/or peripheral interconnect)

a. Which to use?

i. Software:

o + Easier for simple systems, easy to debug
o —Poor speed, timing stability and fairness without scheduler limit system scalability
ii. Hardware:
o + Extremely fast, stable timing, and power-efficient,
o -—Specialized functionality (not universal like software), takes time to learn hardware peripheral
capabilities
b. One objective of class - give you an idea of what hardware can do, so you know you may have more options than
just software
i. Unknown unknowns: You don’t know that hardware can do far more than basic functionality of synchronous
programmed I/O (e.g. read input port now, analyze the reading)
ii. Known unknowns: You know that the port peripheral can do a lot beyond basics, but don’t know what
exactly.
iii. Known knowns: You know some peripherals can automatically detect an input signal’s edge and
o Request (using the interrupt system) for its interrupt service routine to run (PORT)
o Request (using the direct memory access controller system) a data transfer among peripherals and
memory (PORT, DMA)
o Signal to another peripheral that an input event has occurred (CMP -> ADC)
o Make a running timer peripheral capture the current counter value (Timer)

B. Processing chain has two groups of steps

1 version d



1. Synchronization: Should processing take place (eventually)?
a. Gives or takes away permission to scheduler to run this processing (e.g. handler code)
b. Steps:

i. Sample & Digitize input: Must be hardware for input signals

o Sample: capture input value at specific time
o Digitize sample into digital form (single or multiple bits)
= Single bit
e Digitalinput -> Port, GPIO,
e Analoginputto comparator
= Multiple bits
e Analog to Digital converter
ii. Analyze & Decide: Software and/or Hardware
o Analyze signal (past and present values, may depend on system state)
= Software Rising Edge detection: if current S&D value different from previous S&D, then diff = 1 else diff
=0
= Hardware Rising Edge detection: PORT module compares current S&D value with previous S&D. If
same set port interrupt status flag to 1 in PORT’s pin control register (PCR), else 0
o Decide if event happened which affects handler code being able to run

= Software Rising Edge detection: if diff ==1 and current S&D value is 1, then tell the scheduler that the
process is allowed to run

= Hardware + Software Rising Edge detection: Still needs software. PORT interrupt is disabled, so code
reads PORT’s pin control register, tests the interrupt status flag (ISF). If 1 (event detected), then tell
the scheduler that the process is allowed to run

= Hardware Rising Edge detection: PORT interrupt is enabled, so sends interrupt request (IRQ) to
interrupt controller (NVIC)

2. Scheduling and Dispatching: Decide what to do next, and start it
a. Dimensions...

i. May be implicit (sequential program flow) or explicit scheduling operation (integrated into program or call to
0S)

ii. One or multiple handlers to consider?
b. Decision tree
i. Isthis process allowed to run?

o Yes:Dispatchand runit
o No:

= Blocking: Repeat software to analyze and decide (loop back to it)
= Non-blocking: Advance to next process (via scheduler or program structure) and repeat decision tree
analysis
C. What code does sync/sched/dispatch and where is it? In thread and interrupt/exception handlers
1. Start-up: a CPU thread runs Reset interrupt handler to set up system, switch to thread mode and start running
main() function in C program.
2. After start-up: two possible locations for sync/sched/dispatch, may be in both
a. Sync/sched/dispatch code integrated (may be implicit: defined by parts of program’s control flow)
i. Code for scheduling operations is integrated into program source code, executes from main thread (and
maybe interrupt/exception handlers).

b. A separate module with scheduler/kernel (often part of OS or RTOS)

i. Code for scheduling operations code is in separate files
ii. OS code for operation runs when

o Invoked by application program with subroutine call or software interrupt. May be main thread,
interrupt/exception handler, other threads (if provided
o Application program Interrupt/exception handler invokes OS operation
iii. Program source code can invoke OS operations through subroutine calls or software interrupts (SVC)
iv. OS code executed by main thread, ISRs/exception handlers

D. Basic Response Time Analysis
1. Blocking



2. Non-blocking...
E. Observations:
1. Sync/comm/sched/dispatch operations are often interdependent
2. If scheduler/OS can see all these operations, it can make better decisions and offer more features
a. Pause process execution when operation will block, switching in another process
b. Let software processes trigger each other with event flags, semaphores, etc. Provide mutexes, etc.

Ill.Scheduler Wish List
A. Allow better responsiveness where needed
1. Dynamic task execution order
2. Process Prioritization
3. Process Preemption
B. Standardize code structure for modular code
C. Features to simplify programming and reclaim idle time



