EE O #5 9fof2008
Lecture 05 Notes — /

Synchronization and Scheduling and Dispatch,
Scheduler Wish List

|. Overview
A. Review
1. Where does this fit into the big picture?
2. Sync and Do -How to “and”?
a. Deferring work from ISR to thread with
shared variables (notification, data)
b. Generalizing sync behavior. Consider
abnormal/edge cases (missing events,
etc.)

3. Sync and Don’t - Mutual Exclusion
a. 2" form of synchronization
b. Don’t overlap execution of critical
sections for same object/resource

B. Today
1. Closer look at Sync/Comm/Sched
a. Stages
b. Options and implementations
c. Basic response time analysis

2. Scheduler Wish List

II. Closer look at Sync/Comm/Sched
A. Processing chain refinement:
1. Where does this fit into the big picture?
2. Slot machine selector for processing chain (/)
a. Diagram: Sample & Digitize, Analyze & e ‘
Decide, Schedule, Dispatch, Process i
event (e.g. Handler)

3. Various options available for each slot. Can
implement in software and/or hardware
peripherals and/or interrupt system
(advanced: and/or DMA and/or peripheral
interconnect)

a. Which to use?
i. Software:
o + Easier for simple systems, easy
to debug
o -Poor speed, timing stability and
fairness without scheduler limit
system scalability

ii. Hardware:
o + Extremely fast, stable timing, and
power-efficient,
o - Specialized functionality (not 7/ fon
universal like software), takes time ! :

to learn hardware peripheral
capabilities

b. One objective of class — give you an idea
of what hardware can do, so you know
you may have more options than just
software

Unknown unknowns: You don’t know
that hardware can do far more than
basic functionality of synchronous
programmed I/O (e.g. read input port
now, analyze the reading)

i. Known unknowns: You know that the

port peripheral can do a lot beyond
basics, but don’t know what exactly.
Known knowns: You know some
peripherals can automatically detect
an input signal’s edge and

o Request (using the interrupt
system) for its interrupt service
routine to run (PORT)

o Request (using the direct memory
access controller system) a data
transfer among peripherals and
memory (PORT, DMA)

o Signalto another peripheral that an
input event has occurred (CMP ->
ADC)

o Make arunning timer peripheral
capture the current counter value
(Timer)

B. Processing chain has two groups of steps
1. Synchronization: Should processing take
place (eventually)?

a. Gives or takes away permission to
scheduler to run this processing (e.g.
handler code)

b. Steps:

Sample & Digitize input: Must be
hardware for input signals

o Sample: capture input value at
specific time
o Digitize sample into digital form
(single or multiple bits)
= Single bit
e Digital input -> Port, GPIO,
e Analoginputto
comparator
= Multiple bits
e Analogto Digital converter

. Analyze & Decide: Software and/or

Hardware

o Analyze signal (past and present
values, may depend on system
state)

= Software Rising Edge
detection: if current S&D value

different from previous S&D,
then diff = 1 else diff =0
= Hardware Rising Edge

detection: PORT module
compares current S&D value_ “-—@U“?‘/&

with previous S&D. If serfe’ set
port interrupt status flagto 1 in
PORT’s pin control register
(PCR), else 0
o Decide if event happened which
affects handler code being able to
run

= Software Rising Edge
detection: if diff ==1 and
current S&D value is 1, then tell
the scheduler that the process
is allowed to run

= Hardware + Software Rising
Edge detection: Still needs
software. PORT interruptis
disabled, so code reads
PORT’s pin control register,
tests the interrupt status flag
(ISF). If 1 (event detected), then
tell the scheduler that the
process is allowed to run

= Hardware Rising Edge
detection: PORT interrupt is
enabled, so sends interrupt
request (IRQ) to interrupt
controller (NVIC)

2. Scheduling and Dispatching: Decide what to
do next, and start it
a. Dimensions...

i. May be implicit (sequential program
flow) or explicit scheduling operation
(integrated into program or call to OS)

ii. One or multiple handlers to consider?

b. Decisiontree
i. Isthis process allowed to run?

o Yes:Dispatchandrunit
o No:

= Blocking: Repeat software to
analyze and decide (loop back
toit)
= Non-blocking: Advance to next
process (via scheduler or
program structure) and repeat
decision tree analysis
C. What code does sync/sched/dispatch and
where is it? In thread and interrupt/exception
handlers
1. Start-up: a CPU thread runs Reset interrupt
handler to set up system, switch to thread
mode and start running main() function in C
program.

AN

e

-
o

it

2. After start-up: two possible locations for
sync/sched/dispatch, may be in both
a. Sync/sched/dispatch code integrated
(may be implicit: defined by parts of
program’s control flow)

i. Code for scheduling operations is
integrated into program source code,
executes from main thread (and
maybe interrupt/exception handlers).

b. Aseparate module with
scheduler/kernel (often part of OS or
RTOS)

i. Code for scheduling operations code
isin separate files
ii. OS code for operation runs when

o Invoked by application program
with subroutine call or software
interrupt. May be main thread,
interrupt/exception handler, other
threads (if provided

o Application program
Interrupt/exception handler
invokes OS operation

iii. Program source code can invoke OS
operations through subroutine calls or
software interrupts (SVC)

iv. OS code executed by main thread,
ISRs/exception handlers

D. Basic Response Time Analysis
1. Blocking
2. Non-blocking...
E. Observations:
1. Sync/comm/sched/dispatch operations are
often interdependent
2. If scheduler/OS can see all these operations,
it can make better decisions and offer more
features
a. Pause process execution when operation
will block, switching in another process
b. Let software processes trigger each other
with event flags, semaphores, etc.
Provide mutexes, etc.

[ll.Scheduler Wish List

A. Allow better responsiveness where needed
1. Dynamic task execution order
2. Process Prioritization
3. Process Preemption
B. Standardize code structure for modular code
C. Features to simplify programming and reclaim
idle time

