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Analog Interfacing
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Why It’s Needed – The World is Analog!
▪ Embedded systems often need to measure values of physical parameters

▪ These parameters are usually continuous (analog) and not in a digital form
▪ Digital computers operate on digital discrete data values

▪ Some output signals need to be analog (e.g. audio signals)

• Pressure
– Blood pressure monitor

– Altimeter

– Car engine controller

– Scuba dive computer 

– Tsunami detector

• Acceleration
– Air bag controller

– Vehicle stability

– Video game remote

• Mechanical strain

• More…
– Touch screen controller

– EKG, EEG

• Temperature
– Thermometer (do you have a fever?)

– Thermostat for building, fridge, freezer

– Car engine controller

– Chemical reaction monitor

– Safety (e.g. microprocessor processor thermal management)

• Light (or infrared or ultraviolet) intensity
– Digital camera

– IR remote control receiver

– Tanning bed

– UV monitor

• Rotary position
– Wind gauge

– Knobs
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SAMPLING AND 

QUANTIZATION
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Waveform Sampling and Quantization

▪ A waveform (continuous time and value) is sampled every t

▪ Each such sample represents the instantaneous amplitude at the instant of sampling

▪ “At 37 ms, the input is 1.91341914513451451234311… V”

▪ Sampling converts a continuous time signal to a discrete time signal

▪ The sample can now be quantized (converted) into a digital value

▪ Quantization represents a continuous (analog) value with the closest discrete (digital) value

▪ “The sampled input voltage of 1.91341914513451451234311… V is best represented by the code 0x018, 

since it is in the range of 1.901 to 1.9980 V which corresponds to code 0x018.”

Time (steps of t)
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Quantization: Going From Analog to Digital

▪ A Comparator tells us “Is Vin > Vref?”

▪ Compares an analog input voltage with an analog 

threshold reference voltage and determines which is 

larger, returning a 1-bit number

▪ E.g. Indicate if depth > 100 ft

▪ Set Vref to voltage pressure sensor returns with 100 ft 

depth.

▪ An Analog to Digital converter [AD or ADC] tells 

us how large Vin is as a fraction of full-scale 

reference voltage Vref.

▪ Reads an analog input signal (usually a voltage) and 

produces a corresponding multi-bit number at the 

output.

▪ E.g. calculate the depth

0

Vin

Vref

Comparator

0

1

0

1

Vin

Vref

Clock

A/D Converter

Vin>Vref? 
1 else 0
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Digital to Analog Conversion

▪ May need to generate an analog voltage or current as 

an output signal

▪ E.g. audio signal, video signal brightness.

▪ DAC: “Generate the analog voltage which is this 

fraction of Vref”

▪ Digital to Analog Converter equation

▪ n = input code

▪ N = number of bits of resolution of converter

▪ Vref = reference voltage

▪ Vout = output voltage. Usually either

▪ Vout = Vref * n/(2N)  or 

▪ Vout = Vref * (n+1)/(2N) 

▪ The offset term (+1) depends on the configuration of the DAC – 

check the datasheet to be sure

0

1

0

1
Analog Vout

Vref

D/A Converter
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Forward Transfer Function Equation Example

General Equation

n = converted code

Vin = sampled input voltage

V+ref = upper voltage reference

V-ref = lower voltage reference

N = number of bits of resolution in ADC
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Simplification with V-ref = 0 V

 floor function: nearest integer I such that I <= X

floor(x+0.5) rounds x to the nearest integer
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Inverse Transfer Function Example

General Equation

n = converted code

Vin_min = minimum input voltage for code n

Vin_max = maximum input voltage for code n

V+ref = upper voltage reference

V-ref = lower voltage reference

N = number of bits of resolution in ADC

Simplification with V-ref = 0 V

What range of voltages Vin_min to Vin_max does code n represent?

𝑉𝑖𝑛_𝑚𝑖𝑛 =
𝑛 −

1
2

2𝑁
𝑉+𝑟𝑒𝑓 − 𝑉−𝑟𝑒𝑓 + 𝑉−𝑟𝑒𝑓

𝑉𝑖𝑛_𝑚𝑎𝑥 =
𝑛 +

1
2

2𝑁
𝑉+𝑟𝑒𝑓 − 𝑉−𝑟𝑒𝑓 + 𝑉−𝑟𝑒𝑓

𝑉𝑖𝑛_𝑚𝑖𝑛 =
𝑛 −

1
2

2𝑁
𝑉+𝑟𝑒𝑓

𝑉𝑖𝑛_𝑚𝑎𝑥 =
𝑛 +

1
2

2𝑁
𝑉+𝑟𝑒𝑓



9

ANALOG TO DIGITAL 

CONVERSION CONCEPTS
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The Big Picture – A Depth Gauge

1. Sensor detects water pressure and 
generates a proportional output 
voltage V_sensor

2. ADC generates a proportional 
digital integer (ADC_Code) based on 
V_sensor and V_ref

3. Code can convert that integer to a 
something more useful

1. first a float representing the 
voltage, 

2. then another float representing 
pressure,

3. finally another float representing 
depth

// Your software
ADC_Code = ADC0->R[0];
V_sensor = (ADC_code/1024)*V_ref; 
Pressure_kPa = 250 * (V_sensor/V_supply+0.04);
Depth_ft = 33 * (Pressure_kPa –  
   Atmos_Press_kPa)/101.3;

Analog to 
Digital 

Converter

V_ref

V_sensor ADC_Code

Voltages

V_ref

Ground (0 V)

ADC 
Output Codes

111..111

000..000
000..001

111..110
111..101
111..100

ADC_Code

Pressure
Sensor

Water
Pressure
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V
_
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n
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Depth
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A/D – Flash Conversion
▪ A multi-level voltage divider is used to set voltage 

levels over the complete range of conversion.

▪ A comparator is used at each level to determine 

whether the voltage is lower or higher than the level.

▪ The series of comparator outputs are encoded to a 

binary number in digital logic (a priority encoder)

▪ Components used
▪ 2N resistors

▪ 2N-1 comparators

▪ Note 
▪ This particular resistor divider generates voltages which 

are not offset by ½ bit, so maximum error is 1 bit

▪ We could change this offset voltage by using resistors of 

values R, 2R, 2R ...  2R, 3R (starting at bottom)
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ADC - Successive Approximation Conversion

▪ Approximate input voltage by using a DAC and binary search

▪ Register feeds DAC, holds current approximation of result

▪ Set all DAC input bits to 0

▪ Start with DAC’s most significant bit

▪ Repeat 

▪ Set next input bit for DAC to 1

▪ Wait for DAC and comparator to stabilize

▪ If the DAC output (test voltage) is smaller than the input then set 

the current bit to 1, else clear the current bit to 0
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A/D - Successive Approximation

Converter Schematic

D/A Converter
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Approximation

RegisterStart of Conversion
Status

Clock

Analog Input

Digital Output 12

+

-

Comparator output



14

ADC Performance Metrics

▪ Linearity measures how well the transition voltages lie on a straight line.

▪ Differential linearity measure the equality of the step size.

▪ Conversion time: between start of conversion and generation of result

▪ Conversion rate = inverse of conversion time
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Sampling Problems

▪ Nyquist criterion

▪ Fsample >= 2 * Fmax frequency component

▪ Frequency components above ½ Fsample are aliased, distort measured signal

▪ Nyquist and the real world

▪ This theorem assumes we have a perfect filter with “brick wall” roll-off

▪ Real world filters have more gentle roll-off

▪ Inexpensive filters are even worse (e.g. first order filter is 20 dB/decade, aka 6 dB/octave)

▪ So we have to choose a sampling frequency high enough that our filter attenuates aliasing components adequately
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Sample and Hold Devices

▪ Some A/D converters require the input analog signal to be held constant during conversion (e.g. 

successive approximation devices)

▪ In other cases, peak capture or sampling at a specific point in time requires a sampling device.

▪ A “sample and hold” circuit performs this operation

▪ Many A/D converters include a sample and hold circuit

Analog Input

Signal

Sampling

switch

Hold

Capacitor

Output

Signal
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Inputs 

▪ Differential

▪ Use two channels, and compute difference between them

▪ Very good noise immunity

▪ Some sensors offer differential outputs (e.g. Wheatstone Bridge)

▪ Multiplexing

▪ Typically share a single ADC among multiple inputs

▪ Need to select an input, allow time to settle before sampling

▪ Signal Conditioning

▪ Amplify and filter input signal

▪ Protect against out-of-range inputs with clamping diodes
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What if the Reference Voltage is not known?

▪ Example - running off an unregulated battery (to save power)

▪ Measure a known voltage and an unknown voltage

▪ Many MCUs include an internal fixed voltage source which ADC can measure for 

this purpose

▪ Can also solve for Vref

“My ADC tells me that channel 27 returns a 

code of 0x6543, so I can calculate that VREFSH = 

1.0V * 216/0x6543 = …

𝑉𝑟𝑒𝑓 = 𝑉𝑘𝑛𝑜𝑤𝑛
2𝑁

𝑛

𝑉𝑢𝑛𝑘𝑛𝑜𝑤𝑛 = 𝑉𝑘𝑛𝑜𝑤𝑛
𝑛𝑢𝑛𝑘𝑛𝑜𝑤𝑛
𝑛𝑘𝑛𝑜𝑤𝑛
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KL25 ANALOG INTERFACING 

PERIPHERALS
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Sources of Information

▪ KL25 Subfamily Reference Manual (Rev. 1, June 2012)

▪ Describes architecture of peripherals and their control registers

▪ Digital to Analog Converter

▪ Chapter 30 of KL25 Subfamily Reference Manual

▪ Analog Comparator

▪ Chapter 29 of KL25 Subfamily Reference Manual

▪ Analog to Digital Converter

▪ Chapter 28 of KL25 Subfamily Reference Manual

▪ KL25 Sub-family Data Sheet (Rev. 3, 9/19/2012)

▪ Describes circuit-specific performance parameters: operating voltages, min/max speeds, cycle times, 

delays, power and energy use
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KL25Z Analog Interface Pins

▪ 80-pin QFP

▪ Inputs

▪ 1 16-bit ADC with 14 input 

channels

▪ 1 comparator with 6 external 

inputs (and one 6-bit DAC)

▪ Output

▪ 1 12-bit DAC

Analog to 
Digital 

Converter

Comparator

12-bit DAC
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Freedom KL25Z Analog I/O

Inputs
14 external ADC 

channels

6 external comparator 

channels

Output
1 12-bit DAC
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Using a Pin for Analog Input or Output

▪ Configuration

▪ Direction

▪ MUX

▪ Data

▪ Output (different ways to access it)

▪ Input

PDOR select

PDIR select

PDDR select

Data Bus 

bit n

Port Data 

Direction 

Register

D Q

Port Data 

Output

RegisterD Q

Address

Decoder

Address 

Bus

Pin or 

Pad on 

package

Port Data 

Input 

Register

D Q

I/O Clock

Tgl

Rst

Set
PSOR select

PCOR select

PTOR select

Freescale: is the pin 

mux location in this 

diagram accurate?

Pin Control 

Register 

MUX field
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Pin Control Register to Select MUX Channel

▪ MUX field of PCR defines 

connections 

MUX (bits 10-8) Configuration

000 Digital circuits disabled, analog enabled

001 Alternative 1 – GPIO

010 Alternative 2

011 Alternative 3

100 Alternative 4

101 Alternative 5

110 Alternative 6

111 Alternative 7

PORTC->PCR[7] &= ~PORT_PCR_MUX_MASK;          
PORTC->PCR[7] |= PORT_PCR_MUX(0);          
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ANALOG COMPARATOR
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Example: Power Failure Detection

▪ Need warning of when power has failed

▪ Very limited amount of time before capacitor C2 discharges

▪ Save critical information

▪ Turn off output devices

▪ Put system into safe mode

▪ Can use a comparator to compare Vin against a fixed reference voltage VRef
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Comparator Overview

▪ Comparator compares INP and INM

▪ CMPO Output indicates if INP>INM (1) or INP<INM (0)

▪ Can generate an interrupt request (+, -, or +- edges)

▪ ANMUX selection of one of multiple reference inputs, using PSEL and MSEL fields
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CMP Control Register 1 CMPx_CR1

▪ EN: Module enable (1)

▪ OPE: Output Pin Enable

▪ 1: connects comparator output signal CMPO to output pin

▪ PMODE: Power Mode Select

▪ 0: Low speed

▪ 1: High speed
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MUX Control Register CMPx_MUXCR

▪ PSTM: Enable Pass Through Mode

▪ PSEL: Plus Input Mux Control

▪ Selects which input (IN0-7) goes to the 

comparator’s + input

▪ MSEL: Minus Input Mux Control

▪ Selects which input (IN0-7) goes to the 

comparator’s - input
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Comparator Output Processing
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Comparator Interrupt

▪ CMPx_SCR: Status and control register

▪ COUT: output of comparator

▪ CFR: Comparator flag rising. Rising edge detected on comparator output COUT. Clear flag by writing 

with a 1.

▪ CFF: Comparator flag falling. Falling edge detected on comparator output COUT. Clear flag by writing 

with a 1.

▪ IER: 1 enables interrupt when CFR is set.

▪ IEF: 1 enables interrupt when CFF is set.

▪ Can generate interrupt on matching edge

▪ CMSIS-defined ISR name for Comparator Interrupt is CMP0_IRQHandler
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Programmable Threshold for Comparator

▪ Comparator has 6-bit DAC

▪ Can use DAC to set threshold 

voltage for comparator

▪ Supports 64 different threshold 

voltages 
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DAC Control Register CMPx_DACCR

▪ DACEN: Enable CMP DAC (1)

▪ VRSEL: DAC reference voltage select

▪ 0: Connected to VREFH

▪ 1: Connected to VDD

▪ VOSEL: Output voltage select

▪ VDACO = (VOSEL+1)*(Vin/64)

▪ VOSEL = 64*(VDACO /Vin) - 1
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DIGITAL TO ANALOG CONVERTER
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DAC Overview

▪ Load DACDAT with 12-bit data N

▪ MUX selects a node from resistor divider network to create 

   Vo = (N+1)*Vin/2
12

▪ Vo is buffered by output amplifier to create Vout 

▪ Vo =Vout but Vo is high impedance - can’t drive much of a load, so need to buffer it
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DAC Registers

▪ This peripheral’s registers are only eight 

bits long. Legacy peripheral?

▪ DATA[11:0] stored in two registers

▪ DATA0: Low byte [7:0] in DACx_DATnL

▪ DATA1: High nibble [11:0] in DACx_DATnH
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DAC Control Register 0: DACx_C0

▪ DACEN - DAC Enabled when 1

▪ DACRFS - DAC reference voltage select

▪ 0: DACREF_1. Connected to VREFH

▪ 1: DACREF_2. Connected to VDDA

▪ LPEN - low-power mode

▪ 0: High-speed mode. Fast (15 us settling 

time) but uses more power (up to 900 uA 

supply current)

▪ 1: Low-power mode. Slow (100 us settling time) but more power-

efficient (up to 250 uA supply current)

▪ Additional control registers used for buffered mode
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DAC Operating Modes

▪ Normal

▪ Value written to DACDAT is converted to voltage immediately

▪ Buffered mode eases timing requirements

▪ Value written to DACDAT is stored in data buffer for later conversion

▪ Next data item is sent to DAC when triggered

▪ Software Trigger - write to DACSWTRG field in DACx_C0

▪ Hardware Trigger - from PIT timer peripheral

▪ Normal Mode: Circular buffer

▪ One-time Scan Mode: Pointer advances, stops at end of buffer

▪ Status flags in DACx_SR

DACDAT from 

Data Bus

Data Buffer

Mux

Normal Buffered
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DAC Control Register 1: DACx_C1

▪ DACBFEN

▪ 0: Disable buffer mode

▪ 1: Enable buffer mode

▪ DACBFMD - Buffer mode select

▪ 0: Normal mode (circular buffer)

▪ 1: One-time scan mode
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Example: Waveform Generator

▪ Supply clock to DAC0 module

▪ Bit 31 of SIM SCGC6

▪ Set Pin Mux to Analog (0)

▪ Enable DAC

▪ Configure DAC

▪ Reference voltage

▪ Low power mode?

▪ Normal mode (not buffered)

▪ Write to DAC data register
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ANALOG TO DIGITAL CONVERTER
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ADC Overview

▪ Uses successive approximation for conversion

▪ Supports multiple resolutions: 16, 13, 12, 11, 10, 9, and 8 bits

▪ Supports single-ended and differential conversions

▪ Signed or unsigned results available

▪ Up to 24 analog inputs supported (single-ended), 4 pairs of 

differential inputs

▪ Automatic compare and interrupt for level and range comparisons

▪ Hardware data averaging

▪ Temperature sensor
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ADC System Overview
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ADC System Fundamentals

Analog

Inputs

Analog

Inputs

Conversion Clock

Result

Registers

A/D Converter
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Using the ADC

▪ ADC initialization

▪ Configure clock

▪ Select voltage reference

▪ Select trigger source

▪ Select input channel

▪ Select other parameters

▪ Trigger conversion

▪ Read results
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Clock Configuration

▪ Select clock source with ADICLK

▪ Bus Clock (default)

▪ ADACK: Local clock, allows ADC operation 

while rest of CPU is in stop mode

▪ ALTCLK: alternate clock (MCU-specific)

▪ Divide down selected clock by factor of ADIV, 

creating ADCK

▪ Resulting ADCK must be within valid range to 

ensure accuracy (See KL25 Subfamily datasheet)

▪ 1 to 18 MHz (<= 13-bit mode)

▪ 2 to 12 MHz (16-bit mode)
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Clock Configuration Registers

▪ ADCx_CFG1

▪ ADIV: divide clock by 2ADIV

▪ 00: 1

▪ 01: 2

▪ 10: 4

▪ 11: 8

▪ ADICLK: Input clock select

▪ 00: Bus clock

▪ 01: Bus clock/2

▪ 10: ALTCLK

▪ 11: ADACK

▪ ADCx_CFG2

▪ ADACKEN: Enable asynchronous clock
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Voltage Reference Selection

▪ Two voltage reference pairs available

▪ VREFH, VREFL

▪ VALTH, VALTL

▪ Select with SC2 register’s REFSEL bits

▪ 00: VREFH, VREFL

▪ 01: VALTH, VALTL

▪ 10, 11: Reserved

▪ KL25Z

▪ VALTH connected to VDDA
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Conversion Trigger Selection

▪ ADTRG in SC2

▪ 0: software trigger

▪ 1: hardware trigger

▪ Software trigger:

▪ Write to SC1A

▪ Ping-pong buffering

▪ SC1A vs. SC1n

▪ Hardware trigger:

▪ Rising edge of ADHWT signal

▪ ADHWT sources: TPM, LPTMR, PIT, RTC, EXTRG_IN, 

HSCMP0
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Hardware Trigger Sources

▪ System Integration Module

▪  SIM_SOPT7 register

▪ See section 12.2.6 of Reference 

Manual

▪ ADC0ALTTRGEN: Alternate 

trigger enable

▪ ADC0PRETRGSEL: ADC 

pre-trigger select
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Input Channel Selection

▪ Two modes, selected by 

SC1n[DIFF] bit

▪ 0: Single-ended

▪ 1: Differential

▪ Input channel selected by value 

of ADCH

▪ Extras

▪ Reference voltages

▪ Temperature

▪ Band Gap

ADCH 0 1

0 DADP0 DAD0

1 DADP1 DAD1

2 DADP2 DAD2

3 DADP3 DAD3

4 AD4 reserved

… … …

23 AD23 reserved

24 reserved reserved

25 reserved reserved

26

27

28 reserved reserved

29 VREFSH -VREFSH

30 VREFSL reserved

31

DIFF

Temp Sensor

Band Gap

module disabled
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ADC Inputs on Freedom Board
ADC Channel 

(Single-Ended)

MCU Signal 

(ADCx_CFG2 

MUXSEL, default 

a)

Freedom KL25Z 

Connector and 

Pin Number

0 PTE20 J10 1

3 PTE22 J10 5

4 PTE21 (a), PTB29 (b) J10 3 (a), J10 9 (b)

5 PTD1 (b) J2 12 (b)

6 PTD5 (b) J2 4 (b)

7 PTE23 (a), PTD6 (b) J10 7 (a), J2 17(b) 

8 PTB0 J10 2

9 PTB1 J10 4

11 PTC2 J10 10

12 PTB2 J10 6

13 PTB3 J10 8

14 PTC0 J1 3

15 PTC1 J10 12

23 PTE30 J10 11
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Special Input Channels

▪ 26: Temperature Sensor

▪ T = 25°C - ((VTemp - VTemp25)/m)

▪ m = 1.715 mV/°C

▪ VTEMP25 = 719 mV

▪ VTemp is derived from ADC conversion result

▪ 27: Band Gap

▪ Nominally 1.0 V, +/- 3%

▪ Used to allow calculation of reference voltage if it is not calibrated/regulated

▪ Enable BG buffer by setting BGBE bit in Power Management Control REGSC

▪ “My ADC tells me that channel 27 returns a code of 36000, and channel 0 returns a code of 25145. So V0 = 

36000/25145 * 1.0 V =  1.432 V

▪ 29, 30: Reference voltages

▪ 29: VREFSH 

▪ 30: VREFSL
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Conversion Options Selection

▪ Low power

▪ Set ADLPC (in ADCx_CFG1) to 1

▪ Slower max clock speed

▪ Long sample time select

▪ Set ADLSMP (in ADCx_CFG1) to 1

▪ Can select longer sample time with ADLSTS 

bits (in ADCx_CFG2) to add 20, 16, 10 or 6 

ADCK cycles)

▪ Conversion mode

▪ MODE (in ADCx_CFG1)

▪ Sets result precision (8 

through 16 bits)

▪ Continuous vs. single conversion

▪ Set ADCO (in ADCx_SC3) to 1 for continuous conversions

MODE 0 1

0 Single ended 8-bit Differential 9-bit 2's complement

1 Single ended 12-bit Differential 13-bit 2's complement

2 Single ended 10-bit Differential 11-bit 2's complement

3 Single ended 16-bit Differential 16-bit 2's complement

DIFF
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Conversion Completion

▪ Signaled by COCO bit in SC1n

▪ Can generate conversion complete interrupt if AIEN in SC1 is set

▪ CMSIS-defined ISR name for ADC Interrupt is ADC0_IRQHandler
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Result Registers

▪ Optional output processing before storage in 

result registers

▪ Offset subtraction from calibration

▪ Averaging: 1, 4, 8, 16 or 32 samples

▪ Formatting: Right justification, sign- or zero-

extension to 16 bits

▪ Output comparison

▪ Two result registers RA and Rn

▪ Conversion result goes into register 

corresponding to SC1 register used to start 

conversion (SC1A, SC1n)
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Output Averaging

▪ Accumulate and average multiple 

samples before writing the averaged 

result to the result register

▪ Result rate = sample rate / averaging 

factor

▪ SC3 register

▪ AVGE: average enable

▪ AVGS: average sample count

AVGE AVGS Number of 

samples averaged

0 xx 1

1 00 4

1 01 8

1 10 16

1 11 32
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Automatic Compare

▪ Can ignore ADC result based on 

comparison with CV1 and CV2

▪ Above or equal to threshold

▪ Below threshold

▪ Outside range

▪ Inside range

▪ Ignored result…

▪ Not saved to RA/Rn

▪ CoCo not set
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Conversion Time Requirements

▪ Conversion time depends on multiple 

factors
▪ Precision in bits

▪ Single-ended vs. differential

▪ Adders:  LST, HSC, SFC

▪ Averaging

Precision 

(bits)

Mode Base Conversion 

Time BCT

8 single-ended 17 ADCK cycles

9 differential 27

10 single-ended 20

11 differential 30

12 single-ended 20

13 differential 30

16 single-ended 25

16 differential 34
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Using ADC Values

▪ The ADC gives an integer representing the input voltage relative to the reference voltages

▪ Several conversions may be needed

▪ For many applications you will need to compute the approximate input voltage

▪ Vin = …

▪ For some sensor-based applications you will need to compute the physical parameter value based on that voltage 
(e.g. pressure) – this depends on the sensor’s transfer function

▪ You will likely need to do additional computations based on this physical parameter (e.g. compute depth based on 
pressure)

▪ Data type

▪ It’s likely that doing these conversions with integer math will lead to excessive loss of precision, so use floating 
point math

▪ AFTER you have the application working, you can think about accelerating the program using fixed-point math 
(scaled integers).

▪ Sometimes you will want to output ASCII characters (to the LCD, for example).  You will need to convert 
the floating point number to ASCII using sprintf, ftoa, or another method.
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