NC STATE UNIVERSITY

PERFORMANCE ANALYSIS OF EXAMPLE APPLICATIONS
ON PLATFORM 1 (RTC SCHEDULER WITH INTERRUPTS,
BASIC PERIPHERAL USE)

V2
9/25/2025

11V2

Where are we in the class?

Embedded System Requirements
and Characteristics

\

Concurrent Systems Concepts and
Issues: Process Implementations
and Relationships in HW & SW

Learn Platform 1: RTCS Scheduler
(Non-Preemptive Prioritized
Multirate Tasks with Interrupts)

\

Build Example Applications
with Platform 1

\

Evaluate Application
Performance

\

Improve Performance:

2 11V2

Use HW, SW, OS Better

NC STATE UNIVERSITY

Learn Platform 2: RTXv5 RTOS
(+ task preemption and many
integrated support features)

\\

Build Example Applications
with Platform 2

Evaluate Application
Performance

\

Improve Performance:
Use HW, SW, OS Better

NC STATE UNIVERSITY

LN11 — Performance Analysis

= Summarize key characteristics of first = Characterize basic performance limits of Platform
implementations 1 (48 MHz CMO+)
= Processes, triggers (external sync), detectors, = |nterrupt System
schedulers, workers, internal sync in workers = Latency: 15 clock cycles
= Response time analysis to bound system = RTCS
interference = Time-triggered scheduling resolution
= ISR blocking by ISRs = Scheduler latencies: time to examine table, find

next ready task

= |SR preemption by ISRs
= Evaluate first implementations vs. performance

= Task blocking by tasks

= Task preemption by ISRs limits
= Tick ISR = |dentify performance gaps and risks, mark in table
= App ISRs? = Evaluate response times for first implementations

VS. requirements
= |dentify performance gaps and risks, mark in table

3 11V2

NC STATE UNIVERSITY

PERFORMANCE ANALYSIS 1:
RESPONSE TIME ANALYSIS

NC STATE UNIVERSITY

Parallel Hardware ... but Serialized Software

' Interrupt Service Routines & |
' Exception Handlers |
' (Background) Q ﬁ) Higher Priority |

MCU
Memory CPU Core [Int. Ctlr.
interface Actuators — Sensors oo |
Circuits
AN
~ ADC [USB\ A\ PWM
D H S Ii; 1I/ l’ \\ N\ @]
evice, System, : i
Environment... N~ Cl‘i}lP ﬂ///ﬂ / / WK DAC
| V- I/ |
—> Dig. In Timer Dig. Out 12C
Control Signals

NC STATE UNIVERSITY

Schedulers: Helping Software Share the CPU Better

= Build modular program Tasks @ ¢ i D
= Separate tasks/threads and ISRs, each _?
running (mostly) independently 1

= Easier to develop, maintain, debug

Lower Priority

If no ISR or Exc.
ISRs & Handler active,

= What code does CPU run? Exception Scheduler selects

= Normally CPU executes next Handlers task/thread to run
instruction in program, D ﬁ) . o

= But interrupt controller can force CPU Q Higher Priority
to execute handler code for interrupt
or exception request MCU

CPU Core [+ Int. Ctlr.

= Task scheduler can decide which
task/thread to run next

6 11Vv2

NC STATE UNIVERSITY

Run-To-Completion Tasks and Task Preemption

= With run-to-completion task scheduling...
= Scheduler must wait for current task to complete
before running another task
= Tasks cannot pause (or be preempted by other
tasks) partway through, and later resume at that

point within the task. d\)\-\(\g,
= |f scheduler is running task A, it cannot \(59“6

= Pause A partway through (after instruction A;), B n(\tas L X
o . e\~ quv™”

= Switch in task B and run it, Go«\@ che

= Resume task A partway through (at instruction A;,,) =o= —- S

= Preemptive task scheduler will support such task .‘O\e\,\.‘\t‘(\ (eemp
itchi s\ aP
switching ... \((\905 nee

= Letting task B preempt task A
= Letting task A yield the CPU and later pick up
where it left off

7 11V2

Responsiveness of While (1) Loop Scheduler

Event EvA Ra
—

= Task A must run to service (handle) its event EVA
= EvA makes scheduler release task A
= Task A’s response time (R,): How long from event EvA until task A finishes servicing it?
= Scheduler is While (1) loop
= Tasks run to completion.
= Fixed schedule: same task order every time
= Round-robin: each task gets same number of chances to run
= Scheduler behavior:
= EvA happened? Release A, run A until done.
= EvB happened? Release B, run B until done. Best Case Task Times
= EvC happened? Release C, run C until done.
= Continue for all events/tasks, then repeat with EVA
= Note Worst Case Task Times
= We assumed each task takes a constant amount of time to execute
= Task i probably has range of possible execution times, between
Cimin @and C; oy
= Simplify timing model by making some worst-case performance assumptions
= Design for worst case, so assume task i always takes C;=C, .,

= Model will likely overestimate response time, but will never underestimate it — so it will be safe.
11V2

(o]

NC STATE UNIVERSITY

Responsiveness of While (1) Loop Scheduler Lower
rior
<O
= Task A’s worst-case response time: What is the longest possible time ﬁ) |
from event EVA until task A finishes servicing it? ﬁ) '|
= Depends on what code runs: ISRs scheduled by

Interrupt Controller, tasks scheduled by task scheduler

Event EvA Higher
Priority
Best Caselfor Scheduler,Worst Case for Tasks/ISRs

MCU

CPU Core int. Ctlr.

[—-

Worst Case for Scheduler and Tasks/ISRs ,

= Simplify: Initially ignore time taken by scheduler, interrupt system and interrupt handlers.
= Best case: EVA happens just before scheduler checks it. R, = C,

= Worst case: Every other event (EvB — EvF) happens before scheduler checks EvA, and EVA happens just after that
check: Ry=Cy+ C.+Cpy+ C+ C. +C,

9 11Vv2

NC STATE UNIVERSITY

Events EvA, EvB, EvC, EvD, EvE
and EvF happen simultaneously

Improvement: Prioritized Tasks

= Change scheduler to prioritize A > B > C etc. Best Case for A
= New behavior:
= |f EVA happened, run A, then check for EVA again. —
= Else if EvB happened, run B, then check for EVA again. Worst Case for A
= Else if EvC happened, run C, then check for EVA again.
= Et cetera —

= Implications
= Not round-robin. Now have dynamic (not static) schedule of task orders,
since higher priority tasks get chance to run before lower priority tasks.

= Higher priority task may run multiple times before lower priority task gets to run once.
= There may be more events (and task releases) further delaying the start of a task.

= Best case for Task A: Same as before. R, =C,

= Worst case for Task A (highest priority)?
= Delayed by longest task (D). R, = C, + Max(C,, C;, Cc, Cp, Cg, C;)

= Worst case for lower-priority tasks (B, C, D, E, F)?

= Also may be delayed by higher-priority tasks. Details on next slide.
10 11V2

NC STATE UNIVERSITY

What about Response Time for Lower Priority Tasks?

Events EvVA, EvB,
EvC VD EVE Eva EvB EvB
*
1
Rc

11 11Vv2

EVA

= First estimate (R.!) of response time R
= Task C’s finish may be ...
= delayed by blocking once by longest task if already running:
Max(C,, Cg Ce, Cp» Cer C)
= delayed at least once by each _(CA, Cs)
= Equations
= Rl= Max(CA, Cs, C, Cp, Cey Cp) + Ca# Cal+
= Here:R.!=C H+ Ce
= Second estimate (R¢?)
= More events for higher-priority tasks (A, B) may happen
before C starts (during vulnerable time), leading to more
releases before C can start
= RE2=Max(C,, Cg, Cc, Cp, Ce, Cp) + 2%C, # 2%Co+ G
. Here R2=C +“ .
= Whatif C stlII hasn’t started when A or B is released again?
Must repeat to see if A or B are released again during this

additional vulnerable time
= Depends on minimum time between releases (EVA to EVA, EvB
to EvB) in the worst case (burst)

NC STATE UNIVERSITY

Periodic Task Model of Computational Requirements
T. T. |

1 ol I

<& »
< » >

C. C.

p i

O 1 2 3 4 5 6 7 8 910 11 12

v

» <&
» <

& h 4
—

Time
= Periodic Task Model describes " Job may have an absolute deadline D, after
characteristics for each task T, its release
= Job = a specific instance of that task running = Job takes a constant time C, to execute

= Task releases job so scheduler can run it = Simplifying assumptions include

* A periodic task i releases a job every T, = no time needed for scheduler, task switching, ISR
time units response/return

NC STATE UNIVERSITY

Example Workload: WWhat We Ask For

1 ¢

O 1 2 3 4 5 6 7 8 910 11 12

Time
» Set of tasks with real-time requirements Task |Exec. |Period | Deadline
TimeC, | T, D,
* What gets executed when!? | p 2
T
— Depends on scheduler and task priorities I
1, 2 6 6
1, 3 12 12

Scheduled Workload: What We Get
A

|

NC STATE UNIVERSITY

] —
O 1 2 3 4 5 6 7 8 910 11 12

Time
* Example: Scheduler and task fixed priorities
— Assign priorities as shown

— Use a non-preemptive scheduler

* What can delay a task?
— |: Interference caused by higher priority tasks
——p — B: Blocking caused by lower priority tasks

Task | Exec. Period | Deadline | Priority
Time C, | T, D,

T I 4 4 High

T, 2 6 6 Medium

T3 3 12 12 Low

* Response time = Computation + Blocking + Interference

14

Ri=Ci+Bi+Ii

NC STATE UNIVERSITY

Non-Preemptive Scheduling

Task Exec.Time C; |Period T, Priority o :

T I 4 High § -tl;) % 2

T, I 5 Medium g % é I -

T3 3 7 Low g % g 0 |

T 13

)
-

Job 3 Job 3

12 13 |14 |15 j16 |17 |18 |19 |20

15 11V2

NC STATE UNIVERSITY

NUMERICAL RESPONSE TIME ANALYSIS

NC STATE UNIVERSITY

= How long could it take for task i to complete? What is its response time R;?

Numerical Response Time Analysis, Step 1

= Initial estimate based on worst case:
R? = computation time for task i + computation time for other tasks.
= Non-prioritized scheduling: Every other task can run once

while (1) {
for (j=0; j<NUM_TASKS; j++) { R}
if (Tasks[j].RP > 0) { >
Tasks[j].Task(Q); s
il
= Prioritized scheduling: ! (+ longest task if non-preemptive) can run once
R;
—

R? =|C;|+{max; (¢;) + z C;
iRm0

17 11Vv2

Additional Timing Interference, Steps 2, 3, 4 ...

NC STATE UNIVERSITY

= Task i is vulnerable to delays from new job releases during vulnerable time

= Consider new releases to update
completion time estimate R/

= Repeat until no new releases, or
any deadline (if present) is missed

18

= Non-preemptive: 0 to R"— C;since
task i can’t be preempted after it starts

= Preemptive: O to R/ since

higher-priority task can preempt task i

11Vv2

‘IIIIIIIIIIII'

T ¢

NC STATE UNIVERSITY

How Many T; Releases Possible During Vulnerable Time?

= |nitial estimate was one release, so task’s = Remaining estimates must consider all job
time is one job: 1*C, releases possible during vulnerable time:
Ceiling(vulnerable time / T))*C,

Non- Prioritized
prioritized

VE!

Gj

z[R?T; Ci‘ c 2 [R?T; Cil

o=
T JERD(D)

sils |2

JE! JEhDP(D)

preemptive

Non-

R?=Ci+maxj(cj)\+ Z C;
J€hp()

0
.Z
=
o
£
0
0
1 S
o

19 11V2

NC STATE UNIVERSITY

Response Time: Indep. Tasks with Task Preemption + Prioritization

* Preemption ...

= Eliminates blocking of task i by lower-priority
independent tasks.

R =|(;
l .
= Allows higher-priority tasks to preempt task i jenp() ' 7

=
N
e

20

NC STATE UNIVERSITY

SUMMARY OF APPLICATION DESIGN
APPROACHES

NC STATE UNIVERSITY

Example Application and Subsystem Processes

Quadrature Decoder w/Limit Switch
Waveform Generator

Blinky Control Panel

Touchscreen

Serial UART Communications

LCD Controller

Scope

SMPS Controller

More Comms
SPI
2. Higher protocol layers: I°’C, Secure Digital via SPI

O X N O UL A WwDN R

22 11V2

NC STATE UNIVERSITY

Applications: Functionality First, then Performance

Mismatches

Quad. Dec. Blinky . .
. Waveform Serial LCD SD via SPI
w/Z Limit Control [Touch screen Scope SMPS Controller I°C Comms. H
. Generator Commes. [Controller Comms.
Switch Panel
Simple Digital In In, Out Out PWM Out
5|_Complex Digital PWM In, Out Bus Out In, Out In, Out
@©
5 ADC In, CMP ADClIn, ADC In with Sync.
£ ArEley Out In,DACOut | APCINn CmpIn Sampling
(9]
> |§| #Processesfor 1,2 1,2 4 0,1 2 0 1,2 1 1 2
S |< async. exec.
g Periodic Tx Rdy, Rx Ana. Edge Det., Data Producers & [TxRdy, Rx
= Sync and Do: Digital Edge Done events. Periodic In. ADC In with Sync. Consumers. [2C |Done events.
3] . R . Output . .
= Coarse Triggering | Detection Updates Producer & Smplg., Buffer Sampling Device read Prod. &
(s 3 Consumer mgt. response. Cons.
Eo o I12C message internal|
.'g «fInternal, Fine Grain ADC conv. ADC conv. [When to notifyj events & timing
o 2 Block/Sched/Trig time time receiver? reqts. for conditions,
G cf>f data
Sync and Don’t: Tx, Rx byte LCD Ctlr Sharing, Tx. Rx Msgs Tx, Rx byte
Sharing & Races queues Data buffer mgt. ’ g queues
Inter-Process Shared
g C Position Data buffer
omm. Variable
é Timing Stability 1 2 1
& Responsiveness 1 1 1
f 1 - series of timed
o Reducing SW 9 1- Perf. 9 5 I/0 events per
CoLo Overhead Optimiz. message. FSMvs.
= RTOS
a) . . .
Tolerating Timing
9]
= 2 2 2 2

Examp

e Application Data

NC STATE UNIVERSITY

L Independent X X X X Internal Sync. #1 in Work | Internal Sync. #2 in Work
Application Triggers Trigger Detection Scheduler Work done in...
Process? Code Code
Quadrature Decoder Y Events: ™A, 2Z Peripheral (PORT) Interrupt System ISR(s) for A, Z -
Waveform Generator Y Time - Periodic: Tgampte RTCS Tick Handler RTCS Task_Update_DAC -
Y Time - Periodic: Tpq RTCS Tick Handler RTCS Task_On_Off -
Y Time - Periodic: Tpy RTCS Tick Handler RTCS Task_Level_Alarm -
Blinky Control Panel ! o , , Wait for A/D conversion to
Y Time - Periodic: Tpy RTCS Tick Handler RTCS Task_Dimmer
complete
Y Time - Periodic: Tr,qn RTCS Tick Handler RTCS Task_Flash -
) - Wait for 1st A/D Wait for 2nd A/D
Touchscreen Y Time - Periodic: Tpy RTCS Tick Handler RTCS))
conversion to complete conversion to complete
Serial UART Comms. Y Events: UART Tx events Per!pheral (UART) Interrupt System ISR for Tx -
Y Events: UART Rx events Peripheral (UART) Interrupt System ISR for Rx -
LCD Controller N When called by process n/a n/a Not needed.
Wait for A/D conversion
Y Event: Vi, ™ Vyjigger Software polling of ADC ? Detect Trigger
complete
Oscilloscope Trigger detected and Time - Wait for A/D conversion
- ? ? Sample Data
Periodic: Tsampie complete
Sample Data completes Plot Data -
Event: PWM Timer Phase) (direct hardware)
Y Ref Peripheral (ADC) i ADC Peripheral
SMPS Controller eference . connection)
Event: A/D Conversion)
Y Peripheral (ADC) Interrupt System ISR for ADC Not needed.
Completed
Events: I°C message
I’C Comms. Y g
components
SD via SPI Comms. Y Events: Data Exchange events Many: SD Ctlr delays

11V2

NC STATE UNIVERSITY

PERFORMANCE ANALYSIS 2:
PLATFORM LIMITS

NC STATE UNIVERSITY

Platform 1 Performance Limits

= Characterize basic performance limits of Platform 1 (48 MHz Cortex-MO+)

= |nterrupt System
= Latency: 15 clock cycles

= RTCS
= Time-triggered scheduling resolution: 1 tick

= Scheduler latencies: time to examine table, find next ready task, call task function

26 11V2

Evaluation of First Implementations

Identify performance gaps, limits, and risks, mark in table

27

Application

Quadrature Decoder

Waveform Generator

Blinky Control Panel|

Touchscreen

Serial UART Commes.|

LCD Controller|

Oscilloscope

SMPS Controllerf

I>C Comms.

uSD via SPI Comms.

11V2

NC STATE UNIVERSITY

