
1 11 V2

PERFORMANCE ANALYSIS OF EXAMPLE APPLICATIONS
ON PLATFORM 1 (RTC SCHEDULER WITH INTERRUPTS,
BASIC PERIPHERAL USE)

V2
9/25/2025

2 11 V2

Where are we in the class?

Learn Platform 1: RTCS Scheduler
(Non-Preemptive Prioritized

Multirate Tasks with Interrupts)

Build Example Applications
with Platform 1

Embedded System Requirements
and Characteristics

Concurrent Systems Concepts and
Issues: Process Implementations

and Relationships in HW & SW

Evaluate Application
Performance

Learn Platform 2: RTXv5 RTOS
(+ task preemption and many
integrated support features)

Improve Performance:
Use HW, SW, OS Better

Build Example Applications
with Platform 2

Evaluate Application
Performance

Improve Performance:
Use HW, SW, OS Better

3 11 V2

 Summarize key characteristics of first
implementations
 Processes, triggers (external sync), detectors,

schedulers, workers, internal sync in workers
 Response time analysis to bound system

interference
 ISR blocking by ISRs
 ISR preemption by ISRs
 Task blocking by tasks
 Task preemption by ISRs

 Tick ISR
 App ISRs?

 Characterize basic performance limits of Platform
1 (48 MHz CM0+)
 Interrupt System

 Latency: 15 clock cycles
 RTCS

 Time-triggered scheduling resolution
 Scheduler latencies: time to examine table, find

next ready task
 Evaluate first implementations vs. performance

limits
 Identify performance gaps and risks, mark in table

 Evaluate response times for first implementations
vs. requirements
 Identify performance gaps and risks, mark in table

LN11 – Performance Analysis

4 11 V2

PERFORMANCE ANALYSIS 1:
RESPONSE TIME ANALYSIS

5 11 V2

Parallel Hardware … but Serialized Software

Control Signals

MCU

ADC PWM

DAC

Dig. In Timer Dig. Out I2C

CMP

DMA USB

CPU Core

Device, System,
Environment…

SensorsActuatorsInterface
Circuits

Interface
Circuits

Main Code (Foreground)

Interrupt Service Routines &
Exception Handlers
(Background)

Int. Ctlr.

Higher Priority

Lower PrioritySoftware

Memory

6 11 V2

 Build modular program
 Separate tasks/threads and ISRs, each

running (mostly) independently
 Easier to develop, maintain, debug

 What code does CPU run?
 Normally CPU executes next

instruction in program,
 But interrupt controller can force CPU

to execute handler code for interrupt
or exception request

 Task scheduler can decide which
task/thread to run next

Schedulers: Helping Software Share the CPU Better

MCU
CPU Core

ISRs &
Exception
Handlers

Int. Ctlr.

Tasks A B C D E F

Higher Priority

Lower Priority

If no ISR or Exc.
Handler active,

Scheduler selects
task/thread to run

7 11 V2

 With run-to-completion task scheduling…
 Scheduler must wait for current task to complete

before running another task
 Tasks cannot pause (or be preempted by other

tasks) partway through, and later resume at that
point within the task.

 If scheduler is running task A, it cannot
 Pause A partway through (after instruction AP),
 Switch in task B and run it,
 Resume task A partway through (at instruction AP+1)

 Preemptive task scheduler will support such task
switching …
 Letting task B preempt task A
 Letting task A yield the CPU and later pick up

where it left off

Run-To-Completion Tasks and Task Preemption

BALastInstrAP+1APAFirstInstr

ALastInstrAP+1BAPAFirstInstr

8 11 V2

 Task A must run to service (handle) its event EvA
 EvA makes scheduler release task A

 Task A’s response time (RA): How long from event EvA until task A finishes servicing it?
 Scheduler is While (1) loop

 Tasks run to completion.
 Fixed schedule: same task order every time
 Round-robin: each task gets same number of chances to run

 Scheduler behavior:
 EvA happened? Release A, run A until done.
 EvB happened? Release B, run B until done.
 EvC happened? Release C, run C until done.
 Continue for all events/tasks, then repeat with EvA

 Note
 We assumed each task takes a constant amount of time to execute
 Task i probably has range of possible execution times, between

Ci,Min and Ci,Max

 Simplify timing model by making some worst-case performance assumptions
 Design for worst case, so assume task i always takes Ci = Ci,Max

 Model will likely overestimate response time, but will never underestimate it – so it will be safe.

Responsiveness of While (1) Loop Scheduler
Event EvA

AFEDCBAF

RA

FEDCBA

Best Case Task Times

FEDCBA

Worst Case Task Times

9 11 V2

 Task A’s worst-case response time: What is the longest possible time
from event EvA until task A finishes servicing it?
 Depends on what code runs: ISRs scheduled by

Interrupt Controller, tasks scheduled by task scheduler

 Simplify: Initially ignore time taken by scheduler, interrupt system and interrupt handlers.
 Best case: EvA happens just before scheduler checks it. RA = CA

 Worst case: Every other event (EvB – EvF) happens before scheduler checks EvA, and EvA happens just after that
check: RA = CB + CC + CD + CE + CF + CA

Responsiveness of While (1) Loop Scheduler

Event EvA

FEDCBAF
Best Case for Scheduler, Worst Case for Tasks/ISRs

Worst Case for Scheduler and Tasks/ISRs
AFEDCBA

MCU
CPU Core

ISRs &
Exception
Handlers

Int. Ctlr.

Tasks

A
B

C
D

E

F

Higher
Priority

Lower
Priority

10 11 V2

 Change scheduler to prioritize A > B > C etc.
 New behavior:

 If EvA happened, run A, then check for EvA again.
 Else if EvB happened, run B, then check for EvA again.
 Else if EvC happened, run C, then check for EvA again.
 Et cetera

 Implications
 Not round-robin. Now have dynamic (not static) schedule of task orders,

since higher priority tasks get chance to run before lower priority tasks.
 Higher priority task may run multiple times before lower priority task gets to run once.
 There may be more events (and task releases) further delaying the start of a task.

 Best case for Task A: Same as before. RA = CA

 Worst case for Task A (highest priority)?
 Delayed by longest task (D). RA = CA + Max(CA, CB, CC, CD, CE, CF)

 Worst case for lower-priority tasks (B, C, D, E, F)?
 Also may be delayed by higher-priority tasks. Details on next slide.

Improvement: Prioritized Tasks

FEDCBAF
Best Case for A

Worst Case for A
AD

Events EvA, EvB, EvC, EvD, EvE
and EvF happen simultaneously

11 11 V2

 First estimate (RC
1) of response time RC

 Task C’s finish may be …
 delayed by blocking once by longest task if already running:

Max(CA, CB, CC, CD, CE, CF)
 delayed at least once by each higher priority task (CA, CB)

 Equations
 RC

1 = Max(CA, CB, CC, CD, CE, CF) + CA + CB + CC
 Here: RC

1 = CD + CA + CB + CC

 Second estimate (RC
2)

 More events for higher-priority tasks (A, B) may happen
before C starts (during vulnerable time), leading to more
releases before C can start
 RC

2 = Max(CA, CB, CC, CD, CE, CF) + 2*CA + 2*CB + CC
 Here: RC

2 = CD+ 2*CA + 2*CB + CC

 What if C still hasn’t started when A or B is released again?
Must repeat to see if A or B are released again during this
additional vulnerable time
 Depends on minimum time between releases (EvA to EvA, EvB

to EvB) in the worst case (burst)

What about Response Time for Lower Priority Tasks?

RC
1

CBA

Events EvA, EvB,
EvC, EvD, EvE,

EvF EvA EvB

BA BA C

D

D

EvB EvA

BA BA CD B

BA BA CD B

. . .

. . .

RC
2

12

Periodic Task Model of Computational Requirements

 Periodic Task Model describes
characteristics for each task i
 Job = a specific instance of that task running
 Task releases job so scheduler can run it

 A periodic task i releases a job every Ti
time units

 Job may have an absolute deadline Di after
its release

 Job takes a constant time Ci to execute
 Simplifying assumptions include

 no time needed for scheduler, task switching, ISR
response/return

task i, job 3

0 1 2 3 4 5 6 7 8 9 10 11 12
Time

task i, job 1 task i, job 2

CiCi

Ti

Di Di

Ti

13

2

3

2 2

3

1 1 1
1

Example Workload: What We Ask For

Deadline
Di

Period
Ti

Exec.
Time Ci

Task

4411

6622

121233

• Set of tasks with real-time requirements
• What gets executed when?

– Depends on scheduler and task priorities

0 1 2 3 4 5 6 7 8 9 10 11 12
Time

14

Scheduled Workload: What We Get

PriorityDeadline
Di

Period
Ti

Exec.
Time Ci

Task

High4411

Medium6622

Low121233

• Example: Scheduler and task fixed priorities
– Assign priorities as shown
– Use a non-preemptive scheduler

• What can delay a task?
– I: Interference caused by higher priority tasks
– B: Blocking caused by lower priority tasks

• Response time = Computation + Blocking + Interference

1

2

0 1 2 3 4 5 6 7 8 9 10 11 12
Time

1 1 1

2 2

3

𝑅௜ = 𝐶௜ + 𝐵௜ + 𝐼௜

15 11 V2

Non-Preemptive Scheduling

Job 6Job 5Job 4Job 3Job 2Job 11

Job 4Job 3Job 2Job 12

Job 3Job 3Job 3Job 3Job 2Job 2Job 2Job 1Job 1Job 13

20191817161514131211109876543210

4
3
2

1

0
321

PriorityPeriod TiExec. Time CiTask

High411

Medium512

Low733 M
ax

im
u

m

B
lo

ck
in

g
 +

In

te
rf

er
en

ce

16 11 V2

NUMERICAL RESPONSE TIME ANALYSIS

17 11 V2

Numerical Response Time Analysis, Step 1
 How long could it take for task i to complete? What is its response time Ri?
 Initial estimate based on worst case:

Ri
0 = computation time for task i + computation time for other tasks.

 Non-prioritized scheduling: Every other task can run once
while (1) {

for (j=0; j<NUM_TASKS; j++) {

if (Tasks[j].RP > 0) {

Tasks[j].RP--;

Tasks[j].Task();

} } }

 Prioritized scheduling: All higher-priority tasks (+ longest task if non-preemptive) can run once

C0 C1 C2 C3 Ci

𝑅௜
଴

C3

C2
Ci C0

C1

𝑅௜
଴

𝑅௜
଴ = 𝐶௜ +෍𝐶௝

௝ஷ௜

𝑅௜
଴ = 𝐶௜ + max௝ 𝐶௝ + ෍ 𝐶௝

௝∈௛௣(௜)

18 11 V2

𝑅௜
ଵ

Additional Timing Interference, Steps 2, 3, 4 …

 Task i is vulnerable to delays from new job releases during vulnerable time
 Non-preemptive: 0 to Ri

n – Ci since
task i can’t be preempted after it starts

 Preemptive: 0 to Ri
n since

higher-priority task can preempt task i

 Consider new releases to update
completion time estimate Ri

n+1

 Repeat until no new releases, or
any deadline (if present) is missed

C0 C1 C2 C3 Ci

𝑅௜
଴

𝑅௜
ଶ

𝑅௜
ଷ

C0 C1 C2 C3 Ci

𝑅௜
଴

19 11 V2

PrioritizedNon-
prioritized

N
o

n
-

p
re

em
p

ti
ve

P
re

em
p

ti
ve

How Many Ti Releases Possible During Vulnerable Time?

 Initial estimate was one release, so task’s
time is one job: 1*Cj

 Remaining estimates must consider all job
releases possible during vulnerable time:
Ceiling(vulnerable time / Tj)*Cj

෍
𝑅௜
௡

𝑇௝
𝐶௝

௝ஷ௜

෍
𝑅௜
௡

𝑇௝
𝐶௝

௝∈௛௣(௜)

෍
𝑅௜
௡ − 𝐶௜
𝑇௝

𝐶௝
௝ஷ௜

෍
𝑅௜
௡ − 𝐶௜
𝑇௝

𝐶௝
௝∈௛௣(௜)

𝑅௜
଴ = 𝐶௜ +෍𝐶௝

௝ஷ௜

𝑅௜
଴ = 𝐶௜ + max௝ 𝐶௝ + ෍ 𝐶௝

௝∈௛௣(௜)

20

Response Time: Indep. Tasks with Task Preemption + Prioritization

 Preemption …
 Eliminates blocking of task i by lower-priority

independent tasks.

 Allows higher-priority tasks to preempt task i

C2 C0 C1C3Ci

𝑅௜
௡ାଵ = 𝐶௜ + ෍

𝑅௜
௡

𝑇௝
𝐶௝

௝∈௛௣(௜)

21 11 V2

SUMMARY OF APPLICATION DESIGN
APPROACHES

22 11 V2

1. Quadrature Decoder w/Limit Switch
2. Waveform Generator
3. Blinky Control Panel
4. Touchscreen
5. Serial UART Communications
6. LCD Controller
7. Scope
8. SMPS Controller
9. More Comms

1. SPI
2. Higher protocol layers: I2C, Secure Digital via SPI

Example Application and Subsystem Processes

23 11 V2

Applications: Functionality First, then Performance
μSD via SPI

Comms.I2C Comms.SMPS ControllerScopeLCD
Controller

Serial
Comms.Touch screen

Blinky
Control

Panel

Waveform
Generator

Quad. Dec.
w/Z Limit

Switch
PWM OutOutIn, OutInSimple Digital

In
te

rf
ac

in
g

Pr
ov

id
in

g
Fu

nc
tio

na
lit

y

In, OutIn, OutBus OutIn, OutPWMComplex Digital

ADC In with Sync.
Sampling

ADC In,
Cmp InADC InADC In, CMP

In, DAC OutOutAnalog

2111,2020, 141,21,2# Processes for
async. exec. A

sy
nc

Tx Rdy, Rx
Done events.

Prod. &
Cons.

Data Producers &
Consumers. I2C

Device read
response.

ADC In with Sync.
Sampling

Ana. Edge Det.,
Periodic In.

Smplg., Buffer
mgt.

Tx Rdy, Rx
Done events.

Producer &
Consumer

Periodic
Output

Updates

Digital Edge
Detection

Sync and Do:
Coarse Triggering

Sy
nc

 a
nd

 … I2C message internal
events & timing

reqts. for conditions,
data

When to notify
receiver?

ADC conv.
time

ADC conv.
time

Internal, Fine Grain
Block/Sched/Trig

Tx, Rx byte
queuesTx, Rx MsgsLCD Ctlr Sharing,

Data buffer mgt.
Tx, Rx byte

queues
Sync and Don’t:
Sharing & Races

Data buffer
Shared

Position
Variable

Inter-Process
Comm.IP

C

1211Timing Stability

M
ee

tin
g

Pe
rf

. R
eq

ts
.

1111Responsiveness
1 – series of timed

I/O events per
message. FSM vs.

RTOS

221- Perf.
Optimiz.2Reducing SW

Overhead

2222
Tolerating Timing

Mismatches

24 11 V2

Example Application Data
Application

Independent
Process?

Triggers Trigger Detection Scheduler Work done in …
Internal Sync. #1 in Work

Code
Internal Sync. #2 in Work

Code
Quadrature Decoder Y Events: ↑A, ↑Z Peripheral (PORT) Interrupt System ISR(s) for A, Z -

Waveform Generator Y Time - Periodic: Tsample RTCS Tick Handler RTCS Task_Update_DAC -

Y Time - Periodic: TPoll RTCS Tick Handler RTCS Task_On_Off -

Y Time - Periodic: TPoll RTCS Tick Handler RTCS Task_Level_Alarm -

Y Time - Periodic: TPoll RTCS Tick Handler RTCS Task_Dimmer
Wait for A/D conversion to

complete
Y Time - Periodic: TFlash RTCS Tick Handler RTCS Task_Flash -

Touchscreen Y Time - Periodic: TPoll RTCS Tick Handler RTCS
Wait for 1st A/D

conversion to complete
Wait for 2nd A/D

conversion to complete
Y Events: UART Tx events Peripheral (UART) Interrupt System ISR for Tx -
Y Events: UART Rx events Peripheral (UART) Interrupt System ISR for Rx -

LCD Controller N When called by process n/a n/a Not needed.

Y Event: VIn ↑ VTrigger Software polling of ADC ? Detect Trigger
Wait for A/D conversion

complete
Trigger detected and Time -

Periodic: TSample
? ? Sample Data

Wait for A/D conversion
complete

Sample Data completes Plot Data -

Y
Event: PWM Timer Phase

Reference
Peripheral (ADC)

(direct hardware
connection)

ADC Peripheral

Y
Event: A/D Conversion

Completed
Peripheral (ADC) Interrupt System ISR for ADC Not needed.

I2C Comms. Y Events: I2C message
components

μSD via SPI Comms. Y Events: Data Exchange events Many: SD Ctlr delays

Serial UART Comms.

Oscilloscope

SMPS Controller

Blinky Control Panel

25 11 V2

PERFORMANCE ANALYSIS 2:
PLATFORM LIMITS

26 11 V2

 Characterize basic performance limits of Platform 1 (48 MHz Cortex-M0+)
 Interrupt System

 Latency: 15 clock cycles

 RTCS
 Time-triggered scheduling resolution: 1 tick

 Scheduler latencies: time to examine table, find next ready task, call task function

Platform 1 Performance Limits

27 11 V2

 Identify performance gaps, limits, and risks, mark in table

Evaluation of First Implementations

Application

Quadrature Decoder
Waveform Generator

Touchscreen

LCD Controller

I2C Comms.

μSD via SPI Comms.

Serial UART Comms.

Oscilloscope

SMPS Controller

Blinky Control Panel

