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Where are we in the class?

Embedded System Requirements
and Characteristics

\

Concurrent Systems Concepts and
Issues: Process Implementations
and Relationships in HW & SW

Learn Platform 1: RTCS Scheduler
(Non-Preemptive Prioritized
Multirate Tasks with Interrupts)

\

Build Example Applications
with Platform 1

\

Evaluate Application
Performance

\

Improve Performance:
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Use HW, SW, OS Better
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Learn Platform 2: RTXv5 RTOS
(+ task preemption and many
integrated support features)

\\

Build Example Applications
with Platform 2

Evaluate Application
Performance

\

Improve Performance:
Use HW, SW, OS Better
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LN11 — Performance Analysis

= Summarize key characteristics of first = Characterize basic performance limits of Platform
implementations 1 (48 MHz CMO+)
= Processes, triggers (external sync), detectors, = |nterrupt System
schedulers, workers, internal sync in workers = Latency: 15 clock cycles
= Response time analysis to bound system = RTCS
interference = Time-triggered scheduling resolution
= ISR blocking by ISRs = Scheduler latencies: time to examine table, find

next ready task

= |SR preemption by ISRs
= Evaluate first implementations vs. performance

= Task blocking by tasks

= Task preemption by ISRs limits
= Tick ISR = |dentify performance gaps and risks, mark in table
= App ISRs? = Evaluate response times for first implementations

VS. requirements
= |dentify performance gaps and risks, mark in table
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PERFORMANCE ANALYSIS 1:
RESPONSE TIME ANALYSIS
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Parallel Hardware ... but Serialized Software

' Interrupt Service Routines & |
' Exception Handlers |
' (Background) Q ﬁ) Higher Priority |

MCU
Memory CPU Core [ Int. Ctlr.
interface Actuators — Sensors oo |
Circuits
AN
~ ADC [USB\ A\ PWM
D H S Ii; 1I/ l’ \\ N\ @ ]
evice, System, : i
Environment... N~ Cl‘i}lP ﬂ///ﬂ / / WK DAC
| V- I/ |
—>  Dig. In Timer Dig. Out 12C
Control Signals
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Schedulers: Helping Software Share the CPU Better

= Build modular program Tasks @ ¢ i D
= Separate tasks/threads and ISRs, each _?
running (mostly) independently 1

= Easier to develop, maintain, debug

Lower Priority

If no ISR or Exc.
ISRs & Handler active,

= What code does CPU run? Exception Scheduler selects

= Normally CPU executes next Handlers task/thread to run
instruction in program, D ﬁ) . o

= But interrupt controller can force CPU Q Higher Priority
to execute handler code for interrupt
or exception request MCU

CPU Core [+ Int. Ctlr.

= Task scheduler can decide which
task/thread to run next
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Run-To-Completion Tasks and Task Preemption

= With run-to-completion task scheduling...
= Scheduler must wait for current task to complete
before running another task
= Tasks cannot pause (or be preempted by other
tasks) partway through, and later resume at that

point within the task. d\)\-\(\g,
= |f scheduler is running task A, it cannot \(59“6

= Pause A partway through (after instruction A;), B n(\tas L X
o . e\~ quv™”

= Switch in task B and run it, Go«\@ che

= Resume task A partway through (at instruction A;,,) =o= —- S

= Preemptive task scheduler will support such task .‘O\e\,\.‘\t‘(\ (eemp
itchi s\ aP
switching ... \((\905 nee

= Letting task B preempt task A
= Letting task A yield the CPU and later pick up
where it left off
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Responsiveness of While (1) Loop Scheduler

Event EvA Ra
—

= Task A must run to service (handle) its event EVA
= EvA makes scheduler release task A
= Task A’s response time (R,): How long from event EvA until task A finishes servicing it?
= Scheduler is While (1) loop
= Tasks run to completion.
= Fixed schedule: same task order every time
= Round-robin: each task gets same number of chances to run
= Scheduler behavior:
= EvA happened? Release A, run A until done.
= EvB happened? Release B, run B until done. Best Case Task Times
= EvC happened? Release C, run C until done.
= Continue for all events/tasks, then repeat with EVA
= Note Worst Case Task Times
= We assumed each task takes a constant amount of time to execute
= Task i probably has range of possible execution times, between
Cimin @and C; oy
= Simplify timing model by making some worst-case performance assumptions
= Design for worst case, so assume task i always takes C;=C, .,

= Model will likely overestimate response time, but will never underestimate it — so it will be safe.
11V2
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Responsiveness of While (1) Loop Scheduler Lower
rior
<O
= Task A’s worst-case response time: What is the longest possible time ﬁ) |
from event EVA until task A finishes servicing it? ﬁ) '|
= Depends on what code runs: ISRs scheduled by

Interrupt Controller, tasks scheduled by task scheduler

Event EvA Higher
Priority
Best Caselfor Scheduler,Worst Case for Tasks/ISRs

MCU

CPU Core int. Ctlr.

[—-

Worst Case for Scheduler and Tasks/ISRs ,

= Simplify: Initially ignore time taken by scheduler, interrupt system and interrupt handlers.
= Best case: EVA happens just before scheduler checks it. R, = C,

= Worst case: Every other event (EvB — EvF) happens before scheduler checks EvA, and EVA happens just after that
check: Ry=Cy+ C.+Cpy+ C+ C. +C,
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Events EvA, EvB, EvC, EvD, EvE
and EvF happen simultaneously

Improvement: Prioritized Tasks

= Change scheduler to prioritize A > B > C etc. Best Case for A
= New behavior:
= |f EVA happened, run A, then check for EVA again. —
= Else if EvB happened, run B, then check for EVA again. Worst Case for A
= Else if EvC happened, run C, then check for EVA again.
= Et cetera —

= Implications
= Not round-robin. Now have dynamic (not static) schedule of task orders,
since higher priority tasks get chance to run before lower priority tasks.

= Higher priority task may run multiple times before lower priority task gets to run once.
= There may be more events (and task releases) further delaying the start of a task.

= Best case for Task A: Same as before. R, =C,

= Worst case for Task A (highest priority)?
= Delayed by longest task (D). R, = C, + Max(C,, C;, Cc, Cp, Cg, C;)

= Worst case for lower-priority tasks (B, C, D, E, F)?

= Also may be delayed by higher-priority tasks. Details on next slide.
10 11V2
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What about Response Time for Lower Priority Tasks?

Events EvVA, EvB,
EvC VD EVE Eva EvB EvB
*
1
Rc

11 11Vv2

EVA

= First estimate (R.!) of response time R
= Task C’s finish may be ...
= delayed by blocking once by longest task if already running:
Max(C,, Cg Ce, Cp» Cer C)
= delayed at least once by each _(CA, Cs)
= Equations
= Rl= Max(CA, Cs, C, Cp, Cey Cp) + Ca# Cal+
= Here:R.!=C H+ Ce
= Second estimate (R¢?)
= More events for higher-priority tasks (A, B) may happen
before C starts (during vulnerable time), leading to more
releases before C can start
= RE2=Max(C,, Cg, Cc, Cp, Ce, Cp) + 2%C, # 2%Co+ G
. Here R2=C +“ .
= Whatif C stlII hasn’t started when A or B is released again?
Must repeat to see if A or B are released again during this

additional vulnerable time
= Depends on minimum time between releases (EVA to EVA, EvB
to EvB) in the worst case (burst)
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Periodic Task Model of Computational Requirements
T. T. |

1 ol I

<& »
< » >

C. C.

p i

O 1 2 3 4 5 6 7 8 910 11 12

v

» <&
» <

& h 4
—

Time
= Periodic Task Model describes " Job may have an absolute deadline D, after
characteristics for each task T, its release
= Job = a specific instance of that task running = Job takes a constant time C, to execute

= Task releases job so scheduler can run it = Simplifying assumptions include

* A periodic task i releases a job every T, = no time needed for scheduler, task switching, ISR
time units response/return
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Example Workload: WWhat We Ask For

1 ¢

O 1 2 3 4 5 6 7 8 910 11 12

Time
» Set of tasks with real-time requirements Task |Exec. |Period | Deadline
TimeC, | T, D,
* What gets executed when!? | p 2
T
— Depends on scheduler and task priorities I
1, 2 6 6
1, 3 12 12




Scheduled Workload: What We Get
A

|
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] —
O 1 2 3 4 5 6 7 8 910 11 12

Time
* Example: Scheduler and task fixed priorities
— Assign priorities as shown

— Use a non-preemptive scheduler

* What can delay a task?
— |: Interference caused by higher priority tasks
——p — B: Blocking caused by lower priority tasks

Task | Exec. Period | Deadline | Priority
Time C, | T, D,

T I 4 4 High

T, 2 6 6 Medium

T3 3 12 12 Low

* Response time = Computation + Blocking + Interference

14

Ri=Ci+Bi+Ii
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Non-Preemptive Scheduling

Task Exec.Time C; |Period T, Priority o :

T I 4 High § -tl;) % 2

T, I 5 Medium g % é I -

T3 3 7 Low g % g 0 |

T 13

)
-

Job 3 Job 3

12 13 |14 |15 j16 |17 |18 |19 |20
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NUMERICAL RESPONSE TIME ANALYSIS
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= How long could it take for task i to complete? What is its response time R;?

Numerical Response Time Analysis, Step 1

= Initial estimate based on worst case:
R? = computation time for task i + computation time for other tasks.
= Non-prioritized scheduling: Every other task can run once

while (1) {
for (j=0; j<NUM_TASKS; j++) { R}
if (Tasks[j].RP > 0) { >
Tasks[j].Task(Q); s
il
= Prioritized scheduling: ! (+ longest task if non-preemptive) can run once
R;
—

R? =|C;|+{max; (¢;) + z C;
iRm0

17 11Vv2



Additional Timing Interference, Steps 2, 3, 4 ...
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= Task i is vulnerable to delays from new job releases during vulnerable time

= Consider new releases to update
completion time estimate R/

= Repeat until no new releases, or
any deadline (if present) is missed

18

= Non-preemptive: 0 to R"— C;since
task i can’t be preempted after it starts

= Preemptive: O to R/ since

higher-priority task can preempt task i

11Vv2
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How Many T; Releases Possible During Vulnerable Time?

= |nitial estimate was one release, so task’s = Remaining estimates must consider all job
time is one job: 1*C, releases possible during vulnerable time:
Ceiling(vulnerable time / T))*C,

Non- Prioritized
prioritized

VE!

Gj

z[R?T; Ci‘ c 2 [R?T; Cil

o=
T JERD(D)

sils |2

JE! JEhDP(D)

preemptive

Non-

R?=Ci+maxj(cj)\+ Z C;
J€hp()

0
.Z
=
o
£
0
0
1 S
o
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Response Time: Indep. Tasks with Task Preemption + Prioritization

* Preemption ...

= Eliminates blocking of task i by lower-priority
independent tasks.

R =|(;
l .
= Allows higher-priority tasks to preempt task i jenp() ' 7

=
N
e

20
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SUMMARY OF APPLICATION DESIGN
APPROACHES
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Example Application and Subsystem Processes

Quadrature Decoder w/Limit Switch
Waveform Generator

Blinky Control Panel

Touchscreen

Serial UART Communications

LCD Controller

Scope

SMPS Controller

More Comms
SPI
2. Higher protocol layers: I°’C, Secure Digital via SPI

O X N O UL A WwDN R

22 11V2
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Applications: Functionality First, then Performance

Mismatches

Quad. Dec. Blinky . .
. Waveform Serial LCD SD via SPI
w/Z Limit Control [Touch screen Scope SMPS Controller I°C Comms. H
. Generator Commes. [Controller Comms.
Switch Panel
Simple Digital In In, Out Out PWM Out
5|_Complex Digital PWM In, Out Bus Out In, Out In, Out
@©
5 ADC In, CMP ADClIn, ADC In with Sync.
£ ArEley Out In,DACOut | APCINn CmpIn Sampling
(9]
> |§| #Processesfor 1,2 1,2 4 0,1 2 0 1,2 1 1 2
S |< async. exec.
g Periodic Tx Rdy, Rx Ana. Edge Det., Data Producers & [ TxRdy, Rx
= Sync and Do: Digital Edge Done events. Periodic In. ADC In with Sync. Consumers. [2C |Done events.
3] . R . Output . .
= Coarse Triggering | Detection Updates Producer & Smplg., Buffer Sampling Device read Prod. &
(s 3 Consumer mgt. response. Cons.
Eo o I12C message internal|
.'g «fInternal, Fine Grain ADC conv. ADC conv. [When to notifyj events & timing
o 2 Block/Sched/Trig time time receiver? reqts. for conditions,
G cf>f data
Sync and Don’t: Tx, Rx byte LCD Ctlr Sharing, Tx. Rx Msgs Tx, Rx byte
Sharing & Races queues Data buffer mgt. ’ g queues
Inter-Process Shared
g C Position Data buffer
omm. Variable
é Timing Stability 1 2 1
& Responsiveness 1 1 1
f 1 - series of timed
o Reducing SW 9 1- Perf. 9 5 I/0 events per
CoLo Overhead Optimiz. message. FSMvs.
= RTOS
a) . . .
Tolerating Timing
9]
= 2 2 2 2




Examp

e Application Data
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L Independent X X X X Internal Sync. #1 in Work | Internal Sync. #2 in Work
Application Triggers Trigger Detection Scheduler Work done in...
Process? Code Code
Quadrature Decoder Y Events: ™A, 2Z Peripheral (PORT) Interrupt System ISR(s) for A, Z -
Waveform Generator Y Time - Periodic: Tgampte RTCS Tick Handler RTCS Task_Update_DAC -
Y Time - Periodic: Tpq RTCS Tick Handler RTCS Task_On_Off -
Y Time - Periodic: Tpy RTCS Tick Handler RTCS Task_Level_Alarm -
Blinky Control Panel ! o , , Wait for A/D conversion to
Y Time - Periodic: Tpy RTCS Tick Handler RTCS Task_Dimmer
complete
Y Time - Periodic: Tr,qn RTCS Tick Handler RTCS Task_Flash -
) - Wait for 1st A/D Wait for 2nd A/D
Touchscreen Y Time - Periodic: Tpy RTCS Tick Handler RTCS ) )
conversion to complete conversion to complete
Serial UART Comms. Y Events: UART Tx events Per!pheral (UART) Interrupt System ISR for Tx -
Y Events: UART Rx events Peripheral (UART) Interrupt System ISR for Rx -
LCD Controller N When called by process n/a n/a Not needed.
Wait for A/D conversion
Y Event: Vi, ™ Vyjigger Software polling of ADC ? Detect Trigger
complete
Oscilloscope Trigger detected and Time - Wait for A/D conversion
- ? ? Sample Data
Periodic: Tsampie complete
Sample Data completes Plot Data -
Event: PWM Timer Phase ) (direct hardware )
Y Ref Peripheral (ADC) i ADC Peripheral
SMPS Controller eference . connection)
Event: A/D Conversion )
Y Peripheral (ADC) Interrupt System ISR for ADC Not needed.
Completed
Events: I°C message
I’C Comms. Y g
components
SD via SPI Comms. Y Events: Data Exchange events Many: SD Ctlr delays

11V2




NC STATE UNIVERSITY

PERFORMANCE ANALYSIS 2:
PLATFORM LIMITS



NC STATE UNIVERSITY

Platform 1 Performance Limits

= Characterize basic performance limits of Platform 1 (48 MHz Cortex-MO+)

= |nterrupt System
= Latency: 15 clock cycles

= RTCS
= Time-triggered scheduling resolution: 1 tick

= Scheduler latencies: time to examine table, find next ready task, call task function
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Evaluation of First Implementations

Identify performance gaps, limits, and risks, mark in table

27

Application

Quadrature Decoder

Waveform Generator

Blinky Control Panel|

Touchscreen

Serial UART Commes.|

LCD Controller|

Oscilloscope

SMPS Controllerf

I>C Comms.

uSD via SPI Comms.
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