NC STATE UNIVERSITY

EXAMPLE APPLICATIONS ON PLATFORM 1
(RTC SCHEDULER WITH INTERRUPTS,
BASIC PERIPHERAL USE)

V4
9/25/2025

10V4

Where are we in the class?

Embedded System Requirements
and Characteristics

\

Concurrent Systems Concepts and
Issues: Process Implementations
and Relationships in HW & SW

Learn Platform 1: RTCS Scheduler
(Non-Preemptive Prioritized
Multirate Tasks with Interrupts)

\

Build Example Applications
with Platform 1

\

Evaluate Application
Performance

\

Improve Performance:
Use HW, SW, OS Better

2 10V4

NC STATE UNIVERSITY

Learn Platform 2: RTXv5 RTOS
(+ task preemption and many
integrated support features)

\\

Build Example Applications
with Platform 2

Evaluate Application
Performance

\

Improve Performance:
Use HW, SW, OS Better

NC STATE UNIVERSITY

TOP-LEVEL VIEW OF APPLICATION
PROCESSES

NC STATE UNIVERSITY

Example Application and Subsystem Processes

Quadrature Decoder w/Limit Switch
Waveform Generator

Blinky Control Panel

Touchscreen

Serial UART Communications

LCD Controller

Scope

SMPS Controller

More Comms
SPI
2. Higher protocol layers: I°’C, Secure Digital via SPI

O X N O UL A WwDN R

4 10V4

NC STATE UNIVERSITY

Applications: Functionality First, then Performance

Mismatches

Quad. Dec. Blinky . .
. Waveform Serial LCD SD via SPI
w/Z Limit Control [Touch screen Scope SMPS Controller I°C Comms. H
. Generator Commes. [Controller Comms.
Switch Panel
Simple Digital In In, Out Out PWM Out
5|_Complex Digital PWM In, Out Bus Out In, Out In, Out
@©
5 ADC In, CMP ADClIn, ADC In with Sync.
£ ArEley Out In,DACOut | APCINn CmpIn Sampling
(9]
> |§| #Processesfor 1,2 1,2 4 0,1 2 0 1,2 1 1 2
S |< async. exec.
g Periodic Tx Rdy, Rx Ana. Edge Det., Data Producers & [TxRdy, Rx
= Sync and Do: Digital Edge Done events. Periodic In. ADC In with Sync. Consumers. [2C |Done events.
3] . R . Output . .
= Coarse Triggering | Detection Updates Producer & Smplg., Buffer Sampling Device read Prod. &
(s 3 Consumer mgt. response. Cons.
Eo o I12C message internal|
.'g «fInternal, Fine Grain ADC conv. ADC conv. [When to notifyj events & timing
o 2 Block/Sched/Trig time time receiver? reqts. for conditions,
G cf>f data
Sync and Don’t: Tx, Rx byte LCD Ctlr Sharing, Tx. Rx Msgs Tx, Rx byte
Sharing & Races queues Data buffer mgt. ’ g queues
Inter-Process Shared
g C Position Data buffer
omm. Variable
é Timing Stability 1 2 1
& Responsiveness 1 1 1
f 1 - series of timed
o Reducing SW 9 1- Perf. 9 5 I/0 events per
CoLo Overhead Optimiz. message. FSMvs.
= RTOS
a) . . .
Tolerating Timing
9]
= 2 2 2 2

Quadrature Decoder with Zero Limit Switch
Waveform Generator

= Quadrature Decoder with Zero Limit Switch

A—s 1) 4

o= ue/Qee/

=3 })

Dy o 2] |

C >1¥Y> /_/.' .
{ ‘T/' 1 > ¢
i Rl)

= Waveform Generator

~ l‘:' = S - /(

SAUAE Al Saug @ WL NS e <
r A\) /‘ ol %

/ 2 { = \! - / / (71 (/ et 1

//(L:}\’rp (./.: r’;\i\/ t v; Cpt / v ¥V \ ‘ .Qi ‘

- | 1C IR SO \\1

6 10V4

NC STATE UNIVERSITY

Blinky Control Panel

= Switchable On/Off LED
a/z—w‘pi > ouw/sFC —ob>LED

Analog Level Alarm LED

. Uses analog comparator
(“'\((

: l"'\ e p 1(, j? Z’/
\} e A> C)\\/ K 7 =

n Dimmalqle LED
% /l\l} A - -/\\ \1 ! ’———'—"”“"'\ - ‘!N\\
2 ADCE? Divner2\DAC —>LEL

g
Switchable Flashing/Off LED
A 2)
i G E{} S, U,/) C —5pi—=> LED

7 10V4

NC STATE UNIVERSITY

Touch Screen Interface

= Resistive touchscreen structure

Sandwich of two partially

conductive clear plastic sheets

= Sheet has terminal along two
edges:Land R, Tand B

= Example sheet resistances: L to R:
3000, Tto B: 400 Q

7—— |

= Behavior

= Sheets are normally separated, so
infinite resistance between L (or R)
and T (or B)

= Pressing screen connects sheets at
point of contact, creating
conductive path between L (or R)
and T (or B)

8 10Vv4

NC STATE UNIVERSITY

= Make two voltage dividers el él 71 351

Use digital outputs to drive a ‘ ; T
terminal (L) with V., other
terminal of that sheet (R) with OV
Use ADC to measure voltage on
either terminal of other sheet (T,B) .
Disable digital outputs driving L, R

Repeat using digital outputs to

drive T, B, read L or R with ADC

= Driver Opergt.lon Ol Th e ey Conlialon Read
Read X position \h«)(\b/ sttcony 7 ¥ < "‘,,/5,;55[£ TN

(between L and R),
remove offsets, scale to ‘
output units (pixels) |
Repeat for Y position
(between T and B)

NC STATE UNIVERSITY

Serial Communications

= Use UART peripheral’s receiver and transmitter

= Convert between serial and parallel formats RxD _ LLART ,VA%(?
= Provide event notifications: transmit, receive, error, etc. .
= Two processes: receive data, transmit data ? g Aol > TxD
= Receive and transmit operations probably not synchronized, AN E
so Rx and Tx process must be able to make independent
progress
= Why the ?
= Not defining those process details yet, since multiple
approaches possible
= Approaches depend on how and when that process
synchronizes with the UART M P
= After receiving a byte? i \\ | (L
= After receiving a specific byte? ;~‘:"!§‘;f I

= After receiving N bytes
= Note: last two approaches probably need to buffer

intermediate data

9 10V4

NC STATE UNIVERSITY

LCD Controller

1- byte 2- byte N- byte
Command Command Command
D OO o0 C e O

RESET 1

= MCU emulates paraIIeI bus interface used by LCD Controller

=y DCX

/ i) ;
GD/ b = 7‘”’\ | 2 / N/
6%*“7 = //“/Fa ("’J “NCVQ(] \\ RDx_/“‘"
’ Z’DCL, — ,_,.,_*_/\ﬁ__l

= e N VAV VaVamnVaVs

St I

> Do A D
’_%\/f[»gs A e —’> 2 /; 9.1.22 RAMWR (2Ch): Memory Write
T 2CH RAMWR (Memary Write)
Inst/ Para D/icx | WRX | RDX | D17-8 p7 | b6 | D5 | D4 | b3 | b2 | o1 | Do | HEX
RAMWR 0 1 1 0 0 1 0 1 1 0 0 | (zch)
st

n MCU Sends Sequence of bytes (1 comma nd + 1% parameter 1 1 1 | pip7-1i8) | o1 | oge | D15 | 011 | o1g3) | oy | o111 | Dgop

1 T 1 | oxpi71-xi8] | ox(71 | Dxis] | Dxi5] | Dxi41 | ox3] | Dxi21 | Dx(1] | Dxfo]

N d ata p a ra m ete I'S) to LC D CO nt ro I I e r N parameter 1 1 1 Dn[17]-n[8] | Dn[7] | Dn[6] | Dn[5] | Dn[4] | Dn[3] | Dn[2] | Dn[1] | Dn[0]

10 10Vv4

NC STATE UNIVERSITY

Any Synchronization Needed with LCD Controller?

Tenw Tenw VDDI=1.65 to 3.3V, VDD=2.4 to 3.3V, AGND=DGND=0V, Ta= -30 to 70

cSsX Vi 0 | ITesgy | Signal Symbol Parameter Min | Max | Unit Description
:~ == e I : L Tose o/ox Tast Address setup time 0 ns
rex v ":KI : : : jz : : Tz Address hold time (Write/Read) 10 ns
Vi | [(- Ternw Chip select “H” pulse width 0 ns
Tast :‘_ll—"" Twe : 1 Tanr 1 ,: : Tes Chip select setup time (Write) 15 ns

WRX | N Twe ;Z:gkﬂi—j_l cox Tecs | Chip select setup time (Read ID) | 45 ns]
: : : Tost | :4 Toiir : | : X Tresrm Chip select setup time (Read FM) | 355 ns
DI17:0] [V.HX | | ;K Tesr Chip select wait time (Write/Read) | 10 ns
write : : - : : Tesw Chip select hold time 10 ns
: !‘ Tnca/Tnosme ”: :‘% : Twe Write cycle 66 ns
| Tast : :‘ Tre/Trerm : : : ,: WRX e Control pulse “H” duration 15 ns
RDX Vi v_\... } Tro/TroLem ;'Z:f TroH/TroHEM ;: I T Control pulse “L” duration 15 ns
TrRATTRATAM |«] 'L TobH ' Tre Read cycle (ID) 160 ns
Dr[; ;/;0] { \\2: :§| RDX (ID) TroH Control pulse “H” duration (ID) 90 ns When read ID data
: : TroL Control pulse “L” duration (ID) 45 ns
Trerm Read cycle (FM) 450 ns
= Could MCU have to wait for LCD controller? F;TAX Teorm | Control puise *H duration (FM) |90 s va"e” S
= Data sheet shows timing requirements " [T | conrlpuse curation) | 59 N I
D[17:0] Tost Data setup time 10 ns For CL=30pF

= MCU’s emulated bus interface is slower than max
speed for LCDC, so don’t need to synchronize

= Upcoming: SecureDigital flash memory controller

is much slower ...
11 10V4

NC STATE UNIVERSITY

Oscilloscope Behavior: High-Level View

AETA T A Y YT |
Data ’D"OJ Ja T
N7 2/48 ’_‘—? C e —7 e \\’

. Acquisition” Do T/

A

SD

Wait for Trigger

” Trigger condition detected

|

e)

chuire Data Samples from ADC)

Il samples plotted on display

= Three sequential states (phases) in scope process
= Detect trigger condition (wait for trigger)

(o w = Data acquisition: Start running (sync) after event detected (valid
| Plot Data Samples on Display trigger). Periodically sample with ADC, save results in buffer.

= Plot data from buffer.

All samples acquired

12 10Vv4

NC STATE UNIVERSITY

Oscilloscope Behavior: Internal Synchronization?
/SD P SD_1 |

>

Star1 A/D conversion

Not trlggered 7 Walt for conv. c:mplk

Can a state’s code run non-stop after it starts, or is internal
synchronization needed after a state starts?

SD._ 2 = Break down states for Detect Trigger, Acquire Data where synchronization
Read A/D result ’ iS nEEded
Trigger condition detected?
\ / = Detect trigger - No
Triggered = Convert input with ADC, analyze, decide until valid trigger detected.
/SA (—S/lh \ = Can’t run non-stop. Need to sync to each ADC conversion complete event
— ’7{ Start A/D co_nversion = ACC]UIFG data - NO
.’ ky = Uses ADC, and time of starting conversion matters
g e Mot samplaring, g altTor Gomi. coplets = Can’t run non-stop, needs to synchronize twice internally for each
Mhas (*;AZ w sample:
@ead g saveND e J = Sync start of conversion to correct time (periodic at sampling rate)
\ / = Syncreading A/D result to conversion completion
\AII samples taken = P|Ot data - YeS
SP N = LCD Controller is fast enough to keep up with CPU at full speed

S

Elot samples on display J

13 10Vv4

NC STATE UNIVERSITY

Constant-Current LED Driver with Buck Converter

. L T, =
I =1, (ekT — 1) A -
| — —_— Tngger
3‘ . 'L A/ X
U s it ~] — =)
S A\, Gectre T B
= — q 2) - \ —
N e 7 Leef TOMTA Gngee]) | T
lo=1) epols / ; RWZAN/
v:z >
zhs

= LED current rises exponentially with voltage
= Use control system to regulate current
= Use switching power converter (buck) to
efficiently reduce voltage
= Measure current through LED using sense resistor R.
= Switching causes voltage ripple on sense voltage V,
= When to sample?
= Red: not synchronized with switching, lots
of varying error due to ripple
= QOrange: synchronized with switching, constant error or no error from ripple.
= How to synchronize ADC sampling with power converter’s switching?
= Timer generating PWM signal also triggers ADC sampling (followed by A/D conversion)

14 10Vv4

NC STATE UNIVERSITY

FIRST VERSIONS OF APPLICATIONS WITH
RTC SCHEDULER AND INTERRUPTS

15 10V4

NC STATE UNIVERSITY

LN10 — First pass through apps

= Quadrature Decoder with Zero Limit Switch = Flash LED with periodic task
= Uses GPIO Port inputs = Introduces timing interference with multiple tasks
= Design 1: Periodic task, as RTCS doesn’t have edge events = Touch Screen Interface
= One Task = Periodic task: Check for touch, then config for X, do ADC (block), read, then
= Poll GPIO Z for 1, else poll A for edge, then sample B. repeat for Y.
= Two Tasks = Interruptdriven? Could do, not needed yet. Do later (low power operation to
= Poll GPIO Z, zero pos if Z==1 wake up MCU)
= Poll A to detect edge (can be blocking or non-blocking (RTCS will share = Serial Comms
CPU)), then sample B, update pos. = Uses UART
= Problems: max event rate is limited unless greedy scheduling = Syncand comm between ISRs and tasks
= Design 2: Event-triggered: = ISRs release tasks when?
= Use portinterrupts for A, Z rising edges to trigger ISR(s). = Rx: Received new character? N more characters? Special character
= |ISR(s) can do all work. Otherwise could release task(s) to finish. (buffering)? (FIFO full?)
= Possible data race condition for pos. = Tx: Tx buffer ready to accept new character? Done sending character?
= Waveform Generator = Evaluate performance limits: RX or TX time vs. interference. = will lead to
= Design buffering multiple data entries
= Uses DAC output = LCD Controller
= One periodic task to calculate new value, update DAC. = Parallel bus interface, bit-banging it
= Problems = Higher-level protocol on top of bytes
= Max rate is limited by scheduler tick frequency. = Scope
* Timing stability suffers from task interference = Sync for triggering, Then stable timing for data capture
= Blinky Control Panel = SMPS Controller
* Independent tasks = Synchronous sampling by ADC
* Use GPIO, ADC, DAC = Closed-loop control
= Block until ADC done = PWM

16 10V4

NC STATE UNIVERSITY

Building Blocks in First Pass (V1) for Sync and Do/Don’t

= Main function/thread
= Basic peripheral operation

= MCU’s Built-in Scheduler: Interrupt system
= When interrupt is requested, interrupt system forces CPU to run that interrupt’s service routine
= Use interrupt requests from peripherals (event detectors)

= Task Scheduler: RTCS

= RTC =run to completion
= Tasks run to completion = tasks run sequentially, not concurrently.
= Good fit for some systems, not for others.

= RTCS Task Synchronization Support: releasing a task to run
= Time-triggered: On every timer tick, RTCS examines task scheduling table to see if it’s time to release any tasks. Releases tasks as appropriate.
= Event-triggered: Not supported natively in scheduler. Task or ISR can detect event, then reauest scheduler to run a service task in response.

Use API call (RTCS_Release_Task())
= Preemption

= Tasks may not preempt tasks

= |SRs may preempt tasks

= |ISRs may preempt ISRs

17 10V4

RTC Scheduler API

/* Initializes task table. Configures LPTimer to generate
interrupt at freq Hz. Maximum freq is 500 Hz using
LPTimer. Can get higher tick frequency by using a
different timer (e.g TPM). */

void RTCS_Init(uint32_t freq);

/* Updates TicksToNextRelease (and possibly
ReleasesPending) for each enabled, non-null task with
TicksToNextRelease ("TTNR")> ©. For each such task,
decrement TTNR. If TTNR reaches 0, then increment
ReleasesPending, and copy Period to TTNR. Must be called
from ISR for tick timer. */

void RTCS_Timer_Tick(void);

/* Runs the scheduler and never returns. Scheduler
searches RTCS_Task _Table from [@] (highest priority)
looking for the first enabled, non-null task entry with
ReleasesPending > @. When it is found, decrement
ReleasesPending, and run task. Then repeat, starting at
[0] again. Must call RTCS_Add_Task at least once before
this call. */

void RTCS_Run_Scheduler(void);

/* Look up priority/position in table of given task.
Returns -1 for error. */
int RTCS_Find_Task_Priority(void (*task)(void));

18 10 V4

NC STATE UNIVERSITY

/* Adds task to table at entry number “priority”,
overwriting what was there previously. Sets
TicksToNextRelease to period, ReleasesPending to 1
(request first run ASAP), and enables task. */

int RTCS_Add_Task(void (*task)(void), uint32_t priority,
uint32_t period);

/* Request task run by incrementing ReleasesPending
(number of unfulfilled run requests) for given task.
Should be changed to protect against race conditions. */
int RTCS_Release_Task_i(int i);

int RTCS_Release_Task(void (*task)(void));

/* Enable or disable task by updating its Enable flag
based on enable parameter (1 = enable, © = disable) */

int RTCS_Enable_Task(void (*task)(void), uint32_t enable);
int RTCS_Enable_Task_i(int i, uint32_t enable);

/* Write period to Period, and reload TicksToNextRelease
with period. If release now is > @, increment
ReleasesPending to trigger run ASAP. */

int RTCS_Set_Task Period(void (*task)(void), uintl6_t
period, int release_now);

int RTCS_Set_Task Period _i(int i, uintl6_t period, int
release_now);

NC STATE UNIVERSITY

Quadrature Decoder with Zero Limit Switch — V1

| , :\'}(\ = "\‘ ‘ - \ | /;—!;f-, 5 /ﬂ/\j\?(;‘(’ ~_> Y
: = 2~ Z1
"N 1 /- ,J
S ol = ! r
_ L _ ‘ 7 1
fy &——— p 2 oy ——2 ,J
W N 2 ._.,. 2 j
74":0\7 p e 54 i__ﬁ’w/ -
\j ,,,,,
= RTCS doesn’t support these events, so use time- = Port/GPIO and interrupt system do support events
triggered sampling approach instead = Use interrupts to detect A, Z events
= Periodically sample Z to detect 1 = |SR can do work, or ask RTCS to release task to do
= Periodically sample A to detect 0->1 transition work.

19 10Vv4

NC STATE UNIVERSITY

Waveform Generator — V1

Yokt ARSI
G \ {, Cr {(A2 -.’(,(€ { VX AT R "éuv & ;: (1*_‘L
{U&J e \
5 c‘«;m \(

= Simple — Periodic task! If scheduler can release task ...
= at the frequency we want
= with timing which is stable enough

20 10Vv4

NC STATE UNIVERSITY

Blinky Control Panel -V1

AN {

| | .

S —=—— b} | R) “‘“ \ 21\ \
LT’———A & 3| G"‘){Covc\v\)zv "(b";:ﬁOC Cow, LowpC-Bed k@u.”/?’fft e, () e DAC l A

| >
ned 2 L = | L T . . :
% Lok =4 AL A—— — DAC
= \

-

|
— ens— — -],,,, -

21 10Vv4

NC STATE UNIVERSITY

Touchscreen Interface - V1

= Poll periodically

= Internal synchronization to ADC:
use busy-waiting

= Could also make this event-triggered

= Need to reconfigure hardware, add
software

= Will examine later

22 10Vv4

NC STATE UNIVERSITY

0 W I
_ ATk Ha L A

Serial Communications - V1

= Many types of implementations possible
= Requirements for all

= Receiver handler sync with UART
= Synchronize receive handler code to data reception event

= Read data from UART before next item overwrites it
= Transmitter handler sync with UART
= Synchronize transmit handler code to transmitter event % 3 7(W{ iy ~
= Events: Ready for new data, or transmission complete G/ | JZA . TN
= Write data to UART preferably right after event, for performance , e K S r— o)

= Sync transmitter and receiver handlers with each other or other processes 8 b
= Need to notify of new data and communicate that data =)LU\M&((:

= Event-driven implementation
= Use UART ISR for Tx, Rx events.
= |SR asks scheduler to run handler task for event with RTCS_Release_Task
= How much work to do in ISR depends on response time for handler tasks

23 10Vv4

NC STATE UNIVERSITY

LCD Controller Interface - V1

= Controller interface can be part of existing thread (called as subroutine) because no
internal sync required

24 10Vv4

NC STATE UNIVERSITY

Scope V1 - CloserlookatInternaISynchromzatlon

Start A/D conversion l

/
/
Not triggered , Wait for conv. complete
/
%

(SD_2 w

Read A/D result
Trigger condition detected?

/ A

. SA SA_1 1

i _ — 7| Start A/D conversion
5 —_

. \

\
\\Wait until next sample time \Wait for conv. complete
~ \
- 4

\“~(' SA 2 w

Q?ead and save A/D result j

SP

25 10V4 oo T P g

\

1}

” \
Start A/D conversion ;

1

1

1

]

1

/

/
Not triggered , Wait for conv. complete
&

%
(SD 2 w
Read A/D result
Trigger condition detected?

- Start A/D conversion

" SA SA
| > s corvrsn

|
v/

1 \
." l\Wait until next sample time \Wait for conv. complete

N \

™ s N

i SA 2 W

Q:{ead and save A/D result J

P w0

26 10Vv4

T NC STATE UNIVERSITY

’ SD ‘
/xXVai(for Trigger |
-

’
"Trigger condition detected

\
¥y _______

(g SA

= Task_SD: Detect trigger

N

Il samples plotted on display

L\Acquire Data Samples fromADC)

= Task is event triggered: run when
user interface says so (calls
RTCS_Release_Task())

= Internal synchronization
How to synchronize these parts = Start A/D conversion
(using RTCS, ADC and polling)? = Wait for (sync to) event: greedy

= RTCS doesn’t let a task pause polling of ADC Conversion
partway through and let Complete flag (CoCo)

scheduler run a different task = Analyze, decide if trigger condition
was met.

All samples acquired

\ Plot Data Samples on Display

= So, use three tasks to implement
scope: Task_SD, Task_SA, Task_SP. = If trigger detected, Task_SD...
Enable and disable them to = Disables self
control their execution. (RTCS_Enable_Task(...,0)

= Releases Task_SA

= Could also restructure scope task
(RTCS_Release_Task())

into a finite state machine (see
FSM tasks in ESF Chapter 3)

Start A/D conversion

/

/
Not triggered , Wait for conv. complete
/

%
(SD 2 |

Read A/D result ‘
Trigger condition detected?

{ SA SA_ 1
i 5 ’7l Start A/D conversion

7
. \

! \
! l\Wait until next sample time \Wait for conv. complete

N \

™ s +

Bk SA 2 w

Q?ead and save A/D result J

All samples taken

SP ‘

27 10Vv4

Elot samples on display J l'.

NC STATE UNIVERSITY

= Task_SA: Acquire data samples
= Wait until (sync to) time n*T

How?

= RTCS only schedules tasks, so would have to split Task_SA’s SA_1 code into a
separate task, or convert Task_SA into an FSM with states SA_1, SA_2.

= For initial implementation (V1), just get it working. Start conversions as fast as
possible, accept no control of timing initially.

SA_1: Start A/D conversion

Wait for (sync to) event: ADC Conversion Complete*. How?

= Use scheduler? Split into another task, convert Task_SA into FSM

= Simple version: use greedy polling loop

* Could remove by overlapping with next wait until time n*

SA_2:Read and save A/D result

= Read A/D result, save

Repeat if more samples needed, else Task_SA ...

= Disables self (RTCS_Enable_Task(...,0)

= Releases Task_SP (RTCS_Release_Task())

= Task_SP: Convert and plot data on LCD
= Can run non-stop, no sync needed
= When done plotting, Task_SP ...
= Disables self (RTCS_Enable_Task(...,0)
= Releases Task_SA (RTCS_Release_Task())

sample (€XCEPt 1% time, to simplify design).

sample

NC STATE UNIVERSITY

Scope — Future Version Possibilities

Start A/D conversion

o o
%_)

/
Not triggered , Wait for conv. complete
/

r - 2*’) = Maybe later implement Scope function with internal FSM?
Read A/D result ‘ = Each call to Scope function executes code for one state
Trigger condition detected?

Triggered

= Would allow use of synchronization and scheduling by
(s,l_) = RTCS task scheduler at a finer grain than with just three states

o= = P (SD, SA, SP)

/ \

\
l\Wait until next sample time \Wait for conv. complete

S g \é‘ = MCU’s interrupt system, using peripheral state and events
T (SA 2) (CoCo, timer overflow)

Q?ead and save A/D result J

All samples taken

S

Qlot samples on display J

28 10Vv4

