
1 10 V4

EXAMPLE APPLICATIONS ON PLATFORM 1
(RTC SCHEDULER WITH INTERRUPTS,
BASIC PERIPHERAL USE)

V4
9/25/2025

2 10 V4

Where are we in the class?

Learn Platform 1: RTCS Scheduler
(Non-Preemptive Prioritized

Multirate Tasks with Interrupts)

Build Example Applications
with Platform 1

Embedded System Requirements
and Characteristics

Concurrent Systems Concepts and
Issues: Process Implementations

and Relationships in HW & SW

Evaluate Application
Performance

Learn Platform 2: RTXv5 RTOS
(+ task preemption and many
integrated support features)

Improve Performance:
Use HW, SW, OS Better

Build Example Applications
with Platform 2

Evaluate Application
Performance

Improve Performance:
Use HW, SW, OS Better

3 10 V4

TOP-LEVEL VIEW OF APPLICATION
PROCESSES

4 10 V4

1. Quadrature Decoder w/Limit Switch
2. Waveform Generator
3. Blinky Control Panel
4. Touchscreen
5. Serial UART Communications
6. LCD Controller
7. Scope
8. SMPS Controller
9. More Comms

1. SPI
2. Higher protocol layers: I2C, Secure Digital via SPI

Example Application and Subsystem Processes

5 10 V4

Applications: Functionality First, then Performance
μSD via SPI

Comms.I2C Comms.SMPS ControllerScopeLCD
Controller

Serial
Comms.Touch screen

Blinky
Control

Panel

Waveform
Generator

Quad. Dec.
w/Z Limit

Switch
PWM OutOutIn, OutInSimple Digital

In
te

rf
ac

in
g

Pr
ov

id
in

g
Fu

nc
tio

na
lit

y

In, OutIn, OutBus OutIn, OutPWMComplex Digital

ADC In with Sync.
Sampling

ADC In,
Cmp InADC InADC In, CMP

In, DAC OutOutAnalog

2111,2020, 141,21,2# Processes for
async. exec. A

sy
nc

Tx Rdy, Rx
Done events.

Prod. &
Cons.

Data Producers &
Consumers. I2C

Device read
response.

ADC In with Sync.
Sampling

Ana. Edge Det.,
Periodic In.

Smplg., Buffer
mgt.

Tx Rdy, Rx
Done events.

Producer &
Consumer

Periodic
Output

Updates

Digital Edge
Detection

Sync and Do:
Coarse Triggering

Sy
nc

 a
nd

 … I2C message internal
events & timing

reqts. for conditions,
data

When to notify
receiver?

ADC conv.
time

ADC conv.
time

Internal, Fine Grain
Block/Sched/Trig

Tx, Rx byte
queuesTx, Rx MsgsLCD Ctlr Sharing,

Data buffer mgt.
Tx, Rx byte

queues
Sync and Don’t:
Sharing & Races

Data buffer
Shared

Position
Variable

Inter-Process
Comm.IP

C

1211Timing Stability

M
ee

tin
g

Pe
rf

. R
eq

ts
.

1111Responsiveness
1 – series of timed

I/O events per
message. FSM vs.

RTOS

221- Perf.
Optimiz.2Reducing SW

Overhead

2222
Tolerating Timing

Mismatches

6 10 V4

 Quadrature Decoder with Zero Limit Switch

 Waveform Generator

Quadrature Decoder with Zero Limit Switch
Waveform Generator

7 10 V4

 Switchable On/Off LED

 Analog Level Alarm LED
 Uses analog comparator

 Dimmable LED

 Switchable Flashing/Off LED

Blinky Control Panel

8 10 V4

Touch Screen Interface

 Resistive touchscreen structure
 Sandwich of two partially

conductive clear plastic sheets
 Sheet has terminal along two

edges: L and R, T and B
 Example sheet resistances: L to R:

300 Ω, T to B: 400 Ω

 Behavior
 Sheets are normally separated, so

infinite resistance between L (or R)
and T (or B)

 Pressing screen connects sheets at
point of contact, creating
conductive path between L (or R)
and T (or B)

 Make two voltage dividers
 Use digital outputs to drive a

terminal (L) with Vsupply, other
terminal of that sheet (R) with 0 V

 Use ADC to measure voltage on
either terminal of other sheet (T, B)

 Disable digital outputs driving L, R
 Repeat using digital outputs to

drive T, B, read L or R with ADC

 Driver Operation
 Read X position

(between L and R),
remove offsets, scale to
output units (pixels)

 Repeat for Y position
(between T and B)

L R
T

B

9 10 V4

Serial Communications

 Use UART peripheral’s receiver and transmitter
 Convert between serial and parallel formats
 Provide event notifications: transmit, receive, error, etc.

 Two processes: receive data, transmit data
 Receive and transmit operations probably not synchronized,

so Rx and Tx process must be able to make independent
progress

 Why the ?
 Not defining those process details yet, since multiple

approaches possible
 Approaches depend on how and when that process

synchronizes with the UART
 After receiving a byte?
 After receiving a specific byte?
 After receiving N bytes

 Note: last two approaches probably need to buffer
intermediate data

RxD

TxD

?

?

10 10 V4

 MCU emulates parallel bus interface used by LCD Controller

 MCU sends sequence of bytes (1 command +
N data parameters) to LCD Controller

LCD Controller

11 10 V4

Any Synchronization Needed with LCD Controller?

 Could MCU have to wait for LCD controller?
 Data sheet shows timing requirements

 MCU’s emulated bus interface is slower than max
speed for LCDC, so don’t need to synchronize

 Upcoming: SecureDigital flash memory controller
is much slower …

12 10 V4

 Three sequential states (phases) in scope process
 Detect trigger condition (wait for trigger)
 Data acquisition: Start running (sync) after event detected (valid

trigger). Periodically sample with ADC, save results in buffer.
 Plot data from buffer.

Oscilloscope Behavior: High-Level View

Data
Acquisition

13 10 V4

 Can a state’s code run non-stop after it starts, or is internal
synchronization needed after a state starts?
 Break down states for Detect Trigger, Acquire Data where synchronization

is needed

 Detect trigger - No
 Convert input with ADC, analyze, decide until valid trigger detected.
 Can’t run non-stop. Need to sync to each ADC conversion complete event

 Acquire data - No
 Uses ADC, and time of starting conversion matters
 Can’t run non-stop, needs to synchronize twice internally for each

sample:
 Sync start of conversion to correct time (periodic at sampling rate)
 Sync reading A/D result to conversion completion

 Plot data – Yes
 LCD Controller is fast enough to keep up with CPU at full speed

Oscilloscope Behavior: Internal Synchronization?
SD

SA

SP

14 10 V4

 LED current rises exponentially with voltage
 Use control system to regulate current

 Use switching power converter (buck) to
efficiently reduce voltage

 Measure current through LED using sense resistor RS
 Switching causes voltage ripple on sense voltage Vs

 When to sample?
 Red: not synchronized with switching, lots

of varying error due to ripple
 Orange: synchronized with switching, constant error or no error from ripple.

 How to synchronize ADC sampling with power converter’s switching?
 Timer generating PWM signal also triggers ADC sampling (followed by A/D conversion)

Constant-Current LED Driver with Buck Converter

15 10 V4

FIRST VERSIONS OF APPLICATIONS WITH
RTC SCHEDULER AND INTERRUPTS

16 10 V4

 Quadrature Decoder with Zero Limit Switch
 Uses GPIO Port inputs
 Design 1: Periodic task, as RTCS doesn’t have edge events

 One Task
 Poll GPIO Z for 1, else poll A for edge, then sample B.

 Two Tasks
 Poll GPIO Z, zero pos if Z==1
 Poll A to detect edge (can be blocking or non-blocking (RTCS will share

CPU)), then sample B, update pos.
 Problems: max event rate is limited unless greedy scheduling

 Design 2: Event-triggered:
 Use port interrupts for A, Z rising edges to trigger ISR(s).
 ISR(s) can do all work. Otherwise could release task(s) to finish.
 Possible data race condition for pos.

 Waveform Generator
 Design

 Uses DAC output
 One periodic task to calculate new value, update DAC.

 Problems
 Max rate is limited by scheduler tick frequency.
 Timing stability suffers from task interference

 Blinky Control Panel
 Independent tasks
 Use GPIO, ADC, DAC
 Block until ADC done

 Flash LED with periodic task
 Introduces timing interference with multiple tasks

 Touch Screen Interface
 Periodic task: Check for touch, then config for X, do ADC (block), read, then

repeat for Y.
 Interrupt driven? Could do, not needed yet. Do later (low power operation to

wake up MCU)
 Serial Comms

 Uses UART
 Sync and comm between ISRs and tasks

 ISRs release tasks when?
 Rx: Received new character? N more characters? Special character

(buffering)? (FIFO full?)
 Tx: Tx buffer ready to accept new character? Done sending character?

 Evaluate performance limits: RX or TX time vs. interference.  will lead to
buffering multiple data entries

 LCD Controller
 Parallel bus interface, bit-banging it
 Higher-level protocol on top of bytes

 Scope
 Sync for triggering, Then stable timing for data capture

 SMPS Controller
 Synchronous sampling by ADC
 Closed-loop control
 PWM

LN10 – First pass through apps

17 10 V4

Building Blocks in First Pass (V1) for Sync and Do/Don’t

 Main function/thread
 Basic peripheral operation
 MCU’s Built-in Scheduler: Interrupt system

 When interrupt is requested, interrupt system forces CPU to run that interrupt’s service routine
 Use interrupt requests from peripherals (event detectors)

 Task Scheduler: RTCS
 RTC = run to completion
 Tasks run to completion = tasks run sequentially, not concurrently.
 Good fit for some systems, not for others.

 RTCS Task Synchronization Support: releasing a task to run
 Time-triggered: On every timer tick, RTCS examines task scheduling table to see if it’s time to release any tasks. Releases tasks as appropriate.
 Event-triggered: Not supported natively in scheduler. Task or ISR can detect event, then request scheduler to run a service task in response.

Use API call (RTCS_Release_Task())
 Preemption

 Tasks may not preempt tasks
 ISRs may preempt tasks
 ISRs may preempt ISRs

18 10 V4

RTC Scheduler API
/* Initializes task table. Configures LPTimer to generate
interrupt at freq Hz. Maximum freq is 500 Hz using
LPTimer. Can get higher tick frequency by using a
different timer (e.g TPM). */
void RTCS_Init(uint32_t freq);

/* Updates TicksToNextRelease (and possibly
ReleasesPending) for each enabled, non-null task with
TicksToNextRelease ("TTNR")> 0. For each such task,
decrement TTNR. If TTNR reaches 0, then increment
ReleasesPending, and copy Period to TTNR. Must be called
from ISR for tick timer. */
void RTCS_Timer_Tick(void);

/* Runs the scheduler and never returns. Scheduler
searches RTCS_Task_Table from [0] (highest priority)
looking for the first enabled, non-null task entry with
ReleasesPending > 0. When it is found, decrement
ReleasesPending, and run task. Then repeat, starting at
[0] again. Must call RTCS_Add_Task at least once before
this call. */
void RTCS_Run_Scheduler(void);

/* Look up priority/position in table of given task.
Returns -1 for error. */
int RTCS_Find_Task_Priority(void (*task)(void));

/* Adds task to table at entry number “priority”,
overwriting what was there previously. Sets
TicksToNextRelease to period, ReleasesPending to 1
(request first run ASAP), and enables task. */
int RTCS_Add_Task(void (*task)(void), uint32_t priority,
uint32_t period);

/* Request task run by incrementing ReleasesPending
(number of unfulfilled run requests) for given task.
Should be changed to protect against race conditions. */
int RTCS_Release_Task_i(int i);
int RTCS_Release_Task(void (*task)(void));

/* Enable or disable task by updating its Enable flag
based on enable parameter (1 = enable, 0 = disable) */
int RTCS_Enable_Task(void (*task)(void), uint32_t enable);
int RTCS_Enable_Task_i(int i, uint32_t enable);

/* Write period to Period, and reload TicksToNextRelease
with period. If release_now is > 0, increment
ReleasesPending to trigger run ASAP. */
int RTCS_Set_Task_Period(void (*task)(void), uint16_t
period, int release_now);
int RTCS_Set_Task_Period_i(int i, uint16_t period, int
release_now);

19 10 V4

 RTCS doesn’t support these events, so use time-
triggered sampling approach instead
 Periodically sample Z to detect 1
 Periodically sample A to detect 0->1 transition

 Port/GPIO and interrupt system do support events
 Use interrupts to detect A, Z events
 ISR can do work, or ask RTCS to release task to do

work.

Quadrature Decoder with Zero Limit Switch – V1

20 10 V4

 Simple – Periodic task! If scheduler can release task …
 at the frequency we want
 with timing which is stable enough

Waveform Generator – V1

21 10 V4

Blinky Control Panel – V1

22 10 V4

Touchscreen Interface - V1

 Poll periodically
 Internal synchronization to ADC:

use busy-waiting
 Could also make this event-triggered

 Need to reconfigure hardware, add
software

 Will examine later

23 10 V4

 Many types of implementations possible
 Requirements for all

 Receiver handler sync with UART
 Synchronize receive handler code to data reception event
 Read data from UART before next item overwrites it

 Transmitter handler sync with UART
 Synchronize transmit handler code to transmitter event
 Events: Ready for new data, or transmission complete

 Write data to UART preferably right after event, for performance

 Sync transmitter and receiver handlers with each other or other processes
 Need to notify of new data and communicate that data

 Event-driven implementation
 Use UART ISR for Tx, Rx events.
 ISR asks scheduler to run handler task for event with RTCS_Release_Task
 How much work to do in ISR depends on response time for handler tasks

Serial Communications - V1

24 10 V4

 Controller interface can be part of existing thread (called as subroutine) because no
internal sync required

LCD Controller Interface - V1

25 10 V4

Scope – V1 – Closer look at Internal Synchronization
SD

SA

SP

SD SD SA SA SA

26 10 V4

 How to synchronize these parts
(using RTCS, ADC and polling)?
 RTCS doesn’t let a task pause

partway through and let
scheduler run a different task

 So, use three tasks to implement
scope: Task_SD, Task_SA, Task_SP.
Enable and disable them to
control their execution.

 Could also restructure scope task
into a finite state machine (see
FSM tasks in ESF Chapter 3)

 Task_SD: Detect trigger
 Task is event triggered: run when

user interface says so (calls
RTCS_Release_Task())

 Internal synchronization
 Start A/D conversion

 Wait for (sync to) event: greedy
polling of ADC Conversion
Complete flag (CoCo)

 Analyze, decide if trigger condition
was met.

 If trigger detected, Task_SD…
 Disables self

(RTCS_Enable_Task(…,0)

 Releases Task_SA
(RTCS_Release_Task())

Scope – V1
SD

SA

SP

27 10 V4

 Task_SA: Acquire data samples
 Wait until (sync to) time n*TSample (except 1st time, to simplify design).

How?
 RTCS only schedules tasks, so would have to split Task_SA’s SA_1 code into a

separate task, or convert Task_SA into an FSM with states SA_1, SA_2.
 For initial implementation (V1), just get it working. Start conversions as fast as

possible, accept no control of timing initially.
 SA_1: Start A/D conversion
 Wait for (sync to) event: ADC Conversion Complete*. How?
 Use scheduler? Split into another task, convert Task_SA into FSM
 Simple version: use greedy polling loop

 * Could remove by overlapping with next wait until time n*Tsample
 SA_2: Read and save A/D result
 Read A/D result, save

 Repeat if more samples needed, else Task_SA …
 Disables self (RTCS_Enable_Task(…,0)
 Releases Task_SP (RTCS_Release_Task())

 Task_SP: Convert and plot data on LCD
 Can run non-stop, no sync needed
 When done plotting, Task_SP …
 Disables self (RTCS_Enable_Task(…,0)
 Releases Task_SA (RTCS_Release_Task())

Scope – V1
SD

SA

SP

28 10 V4

 Maybe later implement Scope function with internal FSM?
 Each call to Scope function executes code for one state

 Would allow use of synchronization and scheduling by
 RTCS task scheduler at a finer grain than with just three states

(SD, SA, SP)

 MCU’s interrupt system, using peripheral state and events
(CoCo, timer overflow)

Scope – Future Version Possibilities

