
1 09 V3

APPLICATION DESIGN PROCESS USING PLATFORM 1
(RTC SCHEDULER WITH INTERRUPTS)

V3
9/18/2025

2 09 V3

Where are we in the class?

Learn Platform 1: RTCS Scheduler
(Non-Preemptive Prioritized

Multirate Tasks with Interrupts)

Build Example Applications
with Platform 1

Embedded System Requirements
and Characteristics

Concurrent Systems Concepts and
Issues: Process Implementations

and Relationships in HW & SW

Evaluate Application
Performance

Learn Platform 2: RTXv5 RTOS
(+ task preemption and many
integrated support features)

Improve Performance:
Use HW, SW, OS Better

Build Example Applications
with Platform 2

Evaluate Application
Performance

Improve Performance:
Use HW, SW, OS Better

3

Extended Topic Map: Class 09

Process
Implementation

Dependences
between Processes

Hardware
Processes

Software
Processes

Sched:
Share CPU

Time

Communication

Mutual
Exclusion

Both Hardware and
Software Processes

Mem-
Mapped
Periph.
Access

Embedded Systems
Design Space(s)

DMA
Ctlr

Sync. to What?
Do or Don’t?

How?

Intrpt
System

Notification/
Flow Ctl./

Handshaking

Data Loss &
Duplication

Buffering
Split

Receiver
Process?

Split urgent/
deferrable work

Direct or
Indirect
Comm.?

SW?

Why
use…?

HW?

+ Coop.
Sched. Tasks

Infinite
loop in
main

+ Task
Priorities

+ Task
Preemption

RTCS Run-to-
Completion
Scheduler

RTXv5
RTOS

FSMs for
Responsiveness

How?

“DIY” Code Implementations

Shared
Variables

How?

OS Mechanisms

Event Flag Semaphore

Shared
Variables

Mutex Lock

Concepts How?

In
Order?

Cost of Precise
Timing

Buffering
Concepts

Why?

Message
Queue

How?

Double
Buffer

Circular
Buffer

Req/Ack
Flags

DMA-
managed

buffer

Mailbox

How?

Cost of
Precise Timing

CPU
per

Process

Application
Characteristics

Requirements
& Constraints

Processes and Concurrency
for Embedded Systems

Processes and
Concurrency

Peri-
pherals

Dedic. HW
Interconn.

DMA
Ctlr

Ordering/
Triggering

Concepts

Synchronization

Polling
(Prog’d

I/O)

+Interrupts:
Fore/Back

ground
Serializing

Server

4 09 V3

EXAMPLE APPLICATIONS: FIRST VERSIONS
WITH RTC SCHEDULER AND INTERRUPTS

5 09 V3

Applications: Functionality First, then Performance
SMPS

Controller
μSD via SPI

Comms.I2C Comms.Serial Comms.ScopeTouch
screen

LCD
Controller

Waveform
Generator

Quad. Dec. w/Z
Limit Switch

Blinky Control
Panel

PWM OutOutInIn, OutSimple Digital

In
te

rf
ac

in
g

Pr
ov

id
in

g
Fu

nc
tio

na
lit

y

In, OutIn, OutIn, OutBus OutPWMComplex Digital
ADC In with

Sync.
Sampling

ADC In,
Cmp InADC InOutADC In, CMP In,

DAC OutAnalog

12121,20, 101,21,24
Processes for async.

exec. A
sy

nc

ADC In with
Sync.

Sampling

Tx Rdy, Rx
Done events.
Prod. & Cons.

Data Producers &
Consumers. I2C Device

read response.

Tx Rdy, Rx Done
events. Producer

& Consumer

Ana. Edge Det.,
Periodic In. Smplg.,

Buffer mgt.

Periodic
Output

Updates

Digital Edge
Detection

Sync and Do: Coarse
Triggering

Sy
nc

 a
nd

 …

I2C message internal
events & timing reqts.

for conditions, data

ADC
conv.
time

ADC conv. timeInternal, Fine Grain
Block/Sched/Trig

Tx, Rx byte
queuesTx, Rx MsgsTx, Rx byte

queues
LCD Ctlr Sharing,
Data buffer mgt.

Sync and Don’t:
Sharing & Races

Data bufferShared Position
VariableInter-Process Comm.IP

C

1211Timing Stability

M
ee

tin
g

Pe
rf

.
Re

qt
s.

1111Responsiveness

2
1 – series of timed I/O
events per message.

FSM vs. RTOS
21- Perf.

Optimiz.2
Reducing SW

Overhead

2222Tolerating Timing
Mismatches

6 09 V3

Application Design Overview

 Note: Provide just enough detail, but not too much.
Later design stages and iteration will address details as
needed.

 Identify system’s inputs, outputs and processes, and
their key connections

 Identify key hardware, software stages in each process
 Initially consider only peripheral’s fundamental features

(examine enhancements later as needed)
 Analyze processes for synchronization and

communication driven by I/O requirements
 May be event-triggered or time-triggered
 What triggers/releases/allows process (e.g. thread’s work

code) to start execution: event or time?
 Do A once for every time E1 happens
 Do B every 100 ms

 Is there any internal synchronization (wait until)? Again,
may be triggered by event or time
 Do X, wait at least 3.2 ms but no more than 3.8 ms, do Y, Wait

for event E, do Z.

 Analyze process interactions for sync. and comm.
 Identify explicit sync. and comm. between processes

 Triggering, shared data and resources (one-way data flows,
other data flows)

 Identify implicit sync. required by any communication
 Notification of new data? Buffer old data? How much? how to

manage buffer? How to handle overrun condition?

 Define architecture (high-level design)
 Select how to implement most critical/difficult processing

chain steps and interactions
 Draw from toolbox of methods

 Hardware: peripherals, DMA, programmable logic
 Software: Program structure, algorithms
 Both: Interrupts, task scheduler, support features from OS

 Continue with detailed design and implementation
 Functionality first, then performance
 Iterate design to improve performance

7 09 V3

Identify I/O Signals & Devices, Processes, Major Connections

 Identify system’s input and
output devices and signals
and processes, and their key
connections
 Note feedback from output

(motor) to some inputs
 Information for key signals

 Name
 Format: analog? digital?

comm. protocol? bit width? …
 Does it have challenging

timing or performance
requirements?

8 09 V3

Identify Hardware and Software Stages

 Identify key hardware and software stages in each process
 Add hardware peripherals known to be needed

 Conversion from/to analog
 Generating or processing complex signals

 Initially consider only peripheral’s fundamental features (later will examine enhancements as needed)

GPIO

GPIO Motor
Drive
Ckt

GPIO

GPIO

ADC

9 09 V3

 Analysis may identify challenges early, steer design
 Use interrupts, HW peripheral features, etc? Covered

soon in Define Architecture stage.
 Synchronization events (triggers) may be based on

time or events
 Can convert event trigger to time trigger if sampled

often enough.
 Frequency depends on minimum event duration

(pulse width) and maximum detection latency
allowed

 Synchronization: What allows scheduler to run
process (e.g. code to do work): Event or time?

 Start with shaft position sensing
 Quadrature Decoder
 Handle Zero Limit Switch

 Consequences of timing errors?

Examine Sync. Requirements from Inputs and Outputs
Tough to do with general-purpose computers – need hardware processes and good sync/comm support

SynchronizationUrgencyProcess ProcessingTrigger
Read Z, B. Inc/Dec/Zero pos variableEvent: A ↑HighQDecPosUpdate

Zero pos variableEvent: Z ↑HighZLimPosUpdate

DetPos - QD
A

DetPos - ZL
Z

GPIO

GPIO

10 09 V3

 What triggers GetTargetPosition?
 Time-triggered, periodic: run at least at 10 Hz

to make it responsive for operator (every 100 ms)
 GetTargetPosition must trigger A/D conversion

 ADC is shared with other processes
 Two kinds of ADC: very slow (vs. CPU), or expensive (as fast

as CPU)
 Our ADC’s 3 us conversion takes multiple CPU clock cycles

(144 CPU clock cycles in our 48 MHz MCU)
 More synchronization: code needs to wait for end of A/D

conversion. How?
 Blindly wait in a loop for a fixed amount of time?
 ADC provides “conversion complete” flag (COCO). Loop code

can poll COCO, repeat (blocking rest of this code) until done.
 144 << 48,000,000 per second. Many applications can tolerate

this waste.
 COCO flag can request interrupt, trigger ISR

 Put rest of work from that process in the ISR? Now need to
support even more synchronization and communication.

Examine Sync. Requirements from Inputs and Outputs
Additional

SynchronizationPrimary SynchronizationUrgencyProcess
ProcessingTriggerProcessingTrigger
Read result,

scale, update
target_position

Event:
Conversion
Complete

Start ADC
Conversion

Time, periodic
(100 ms)LowGetTarget

Position

GetTargetPosition() {
Configure A/D converter
Start A/D conversion
Wait for end of conversion
Read conversion result
Convert result to target position

}

11 09 V3

Examine Sync. Requirements from Inputs and Outputs
 Use PWM Motor On (MOn) signal:

pulse-width modulated
 Motor runs more smoothly.

 Switches between accelerating, coasting each period.
 Make period short compared with inertial time

constant for motor
 Power electronics now are simple, low-cost, efficient
 Doesn’t generate big bursts of electromagnetic noise

 What triggers GeneratePWM?
 Time-triggered. Needs to run periodically

(e.g. every 1 ms) to set MOn to 1
 Is there any more sync. within the process?

 Yes. Time-triggered, one-shot delay to clear MOn
to 0 after on_time delay (e.g. 0 to 1 ms)

 Consequences of timing errors?
 Feasibility?

 Possible to implement in software but not scalable:
limited timing precision and processor sharing

 Most MCUs include timer peripherals which can
generate PWM output signals, since useful across so
many applications

Additional
Synchronization(s)Primary SynchronizationUrgencyProcess

ProcessingTriggerProcessingTrigger
Lower MOn to

0
Time Delay:

on_time
Raise MOn signal

to 1Periodic: 1 msHighGenerate
PWM

GPIO

GPIO Motor
Drive
Ckt

12 09 V3

Examine Sync. Requirements from Inputs and Outputs

 What triggers ControlMotor?
 Run periodically to simplify design and

stability/response analysis of controller
 Alternative: Whenever new data is received

 How often? Every 1 ms?
 Does it make sense to run faster than PWM

frequency? Usually not, since PWM on_time
usually updated once per period

 How slow can we go?

 Consequences of timing errors?
 Control loop stability

SynchronizationUrgencyProcess

ProcessingTrigger
Measure position error, calculate new

motor effort and direction. Update
MDir.

Periodic: 1 kHz?
Simplify Control

Theory
ModerateControl

Motor

ControlMotor() {
error = target_pos - pos
effort = calculated of error
on_time = absval(effort) * period
MDir = sign of effort

}

13 09 V3

Sync. and Comm. from Key Interactions between Processes

 Identify and describe synchronization and communication between processes
 Additional triggering, shared data and resources (one-way data flows, other data flows, …)

 Identify implicit sync. required within the communication.
 Notification of new data? Handle over-run how? Buffer old data? How much? How to manage buffer? etc.

Data Races Possible. Remember to protect
Critical Sections accessing pos variable.

14 09 V3

Define Architecture (High-Level Design)

 We have a high-level plan for what to do

 Next, refine that plan to decide how to do it
 Decide how key stages in key processing

chains will be performed
 Pick from toolbox of methods

 Hardware, software, scheduler, OS, and
combinations

 Note that a stage in the processing chain may
contain another processing chain

15 09 V3

 Blinky Control Panel
 Quadrature Decoder w/Limit Switch
 Waveform Generator
 LCD Controller
 Touch screen
 Scope
 Communications

 Basic: Serial Comms., SPI
 Higher protocol layers: I2C, Secure Digital via SPI

 SMPS Controller

Example Applications and Subsystems

