NC STATE UNIVERSITY

APPLICATION DESIGN PROCESS USING PLATFORM 1
(RTC SCHEDULER WITH INTERRUPTS)

V2
9/18/2025

09v2

Where are we in the class?

Embedded System Requirements
and Characteristics

\\'

Concurrent Systems Concepts and
Issues: Process Implementations
and Relationships in HW & SW

Learn Platform 1: RTCS Scheduler
(Non-Preemptive Prioritized
Multirate Tasks with Interrupts)

—

Build Example Applications
with Platform 1

Evaluate Application
Performance

\

Improve Performance:
Use HW, SW, OS Better

2 09 v2

NC STATE UNIVERSITY

Learn Platform 2: RTXv5 RTOS
(+ task preemption and many
integrated support features)

S,

Build Example Applications
with Platform 2

Evaluate Application
Performance

\

Improve Performance:
Use HW, SW, OS Better

Extended Topic Map: Class 09

Processes and Concurrency

rE tems
Embedded Systems Processes and
Design Space oncurren
Application Cost of Process Dependences
aracteristics & Constraints Precise Timing mplementation between Processes

Both Hardware and
oftware Processes

Sched: Notification/ Split Direct or
Share CPU m Flow Ctl./ Buffering Receiver Indirect
ime 2 g

Process? Comm.?

- - iming oncepts
J

“PIY” Code Implemeggations
managed

\
Req/ACk
ariabl VTS ag = B o
es g iffer iffer buffer
- v E&D v__OS Mechanisms
RTXv5 m Message

Split urgent/
able wor

+Interrupts: |/

Infinite | ;
b Fore/Back

DMA-

RTCS Run-to-
Completion
Scheduler

09v

NC STATE UNIVERSITY

EXAMPLE APPLICATIONS: FIRST VERSIONS
WITH RTC SCHEDULER AND INTERRUPTS

>

oplications: Functionality First, then Performance

NC STATE UNIVERSITY

09v2

Blinky Control{Quad. Dec. w/Z| Waveform LCD Touch Scope Serial Comms 2C Comms pSD via SPI SMPS
Panel Limit Switch [Generator | Controller | screen P ’ ’ Commes. Controller
- Simple Digital In, Out In Out PWM Out
=|__Complex Digital PWM Bus Out In, Out In, Out In, Out
© -
g Analo ADC In, CMPIn, out ADC In ADC n, ADg Irr:cwIth
1= g DAC Out Cmpln yne.
Sampling
> (9)
2 f,:>,~# Processes for async. 4 1.2 1.2 0 0,1 12 5 1 5 1
T < exec.
o - -
.g Sync and Do: Coarse Digital Edge Periodic A.na..Edge Det., Tx Rdy, Rx Done Data Producers &' TxRdy, Rx | ADC In with
c Triggering Detection Output Periodic In. Smplg., |events. Producer[Consumers. I2C Device| Done events. Sync.
tie ; g8 Updates Buffer mgt. & Consumer read response. Prod. & Cons.| Sampling
o |- -
ol
% 2| Internal, Fine Grain . ADC 12C messggg internal
= S Block/Sched/Tri ADC conv. time conv. events & timing reqts.
o |c g time for conditions, data
7
Sync and Don’t: LCD Ctlr Sharing, Tx, Rx byte Tx. Rx Msgs Tx, Rx byte
Sharing & Races Data buffer mgt. gueues ’ g gueues
g Inter-Process Comm. Sha\r/:t;liaPSEtlon Data buffer
Timing Stability 1 2 1
"a:; Responsiveness 1 1 1
a . T -
a0 2 Reducing SW 1- Perf. 1-series of timed /O
£ g Overhead 2 Obtimiz 2 events per message. 2
R vernea prmiz. FSMvs. RTOS
Z . . .
Tole.ratlng Timing 5 5 5 5
Mismatches
5

Application Design Overview

Note: Provide just enough detail, but not too much.
Later design stages and iteration will address details as
needed.

Ildentify system’s inputs, outputs and processes, and
their key connections

|ldentify key hardware, software stages in each process

= Initially consider only peripheral’s fundamental features
(examine enhancements later as needed)
Analyze processes for synchronization and
communication driven by 1/O requirements
= May be event-triggered or time-triggered
= What triggers/releases/allows process (e.g. thread’s work
code) to start execution: event or time?
= Do A once for every time E1 happens
= Do Bevery 100 ms
= |s there any internal synchronization (wait until)? Again,
may be triggered by event or time

= Do X, wait at least 3.2 ms but no more than 3.8 ms, do Y, Wait
for event E, do Z.

09v2

NC STATE UNIVERSITY

= Analyze process interactions for sync. and comm.

Identify explicit sync. and comm. between processes

= Triggering, shared data and resources (one-way data flows,
other data flows)

Identify implicit sync. required by any communication

= Notification of new data? Buffer old data? How much? how to
manage buffer? How to handle overrun condition?

= Define architecture (high-level design)

Select how to implement most critical/difficult processing
chain steps and interactions

Draw from toolbox of methods

= Hardware: peripherals, DMA, programmable logic

= Software: Program structure, algorithms

= Both: Interrupts, task scheduler, support features from OS

= Continue with detailed design and implementation

Functionality first, then performance
Iterate design to improve performance

NC STATE UNIVERSITY

ldentify 1/O Signals & Devices, Processes, Major Connections

= |dentify system’s input and 6‘(?@(6«1[
output devices and signals ComLm A Rl
and processes, and their key Kush —%7&)&a"ﬁé’
connections P@}IZLWV(
= Note feedback from output f;byz;% >% \\;i
(motor) to some inputs ?o Qﬁ\@ﬂ 7‘

PQD ' | 1 Dy bt
= Information for key signal Vo /- ec V\”@W‘J‘\m‘ﬂ\
ormation ey srals Eucwdes - %wjm Dt 51

= Format: analog? digital? i Zl m O'\' o /
comm. protocol? bit width? ... (Zeg O (\M‘{ 5 _? P5 MF (S -

= Does it have challenging 7 5w At Z e SR
timing or performance \ \ i

3 ——
\~ —

requirements?

7 09 v2

NC STATE UNIVERSITY

ldentify Hardware and Software Stages

SelTond |
Cp?m;m 'L’Moﬁ ADC [>Gret Target
k] Pesftion
Shatt S N |
?O/ﬂ”@“ A — GPIO ? &beé @Wfrol 1 D{)?, Lof
7 Ewepoer B Tep (plats 7 |Metor or > GPIO — Motor 5 Nk
‘ ZLim PPV Lewmbit e A il Bl
(Zé’a(‘w{,_ﬁ_emo_?B’uF&é,,,_,,_ MO{.\ //
\ 7 §W\'{C[/L Z % WeiTe e

— =
\M C—

= |dentify key hardware and software stages in each process

= Add hardware peripherals known to be needed
Conversion from/to analog
Generating or processing complex signals

= |nitially consider only peripheral’s fundamental features (later will examine enhancements as needed)

8 09 v2

Examine Sync. Requirements from Inputs and Outputs

Tough to do with general-purpose computers — need hardware processes and good sync/comm support

= Analysis may identify challenges early, steer design
= Use interrupts, HW peripheral features, etc? Covered

soon in Define Architecture stage.

= Synchronization events (triggers) may be based on

time or events
= Can convert event trigger to time trigger if sampled
often enough.
= Frequency depends on minimum event duration
(pulse width) and maximum detection latency
allowed
= Synchronization: What allows scheduler to run
process (e.g. code to do work): Event or time?

= Start with shaft position sensing
= Quadrature Decoder
= Handle Zero Limit Switch

= Consequences of timing errors?

9 09 v2

St
Po Lrflon

7 EMCB&@/‘

A Bt

=

A,B GPIO |5 RODec &V\J{/f\el

Pos UP&:&Z 7 M O%D(
Zlam

NC STATE UNIVERSITY

_ - Updzte
Zecd \owit 2Bt [crio|> BsUpoe LA
7 switdn Z
i i
A Z)
Synchronization
Process Urgency : Y .
Trigger Processing
QDecPosUpdate] High Event: AP Read Z, B. Inc/Dec/Zero pos variable
ZLimPosUpdate High Event: Z 1 Zero pos variable

NC STATE UNIVERSITY

Examine Sync. Requirements from Inputs and Outputs

: o Additional
Primary Synchronization .
_ . Process |Urgency Synchronization
* What triggers GetTargetPosition: Trigger Processing Trigger Processing
= Time-triggered, periodic: run at least at 10 Hz :
; K gi; P Ve ; 100 GetTarget Low Time, periodic Start ADC Coi\\//zrr];ion SF;Z?: Les;elltt,e
o make it responsive for operator (every ms) Position (100 ms) Conversion onversion| sc et, (E)sition
= GetTargetPosition must trigger A/D conversion P geLp

= ADC is shared with other processes -

n ¥

= Two kinds of ADC: very slow (vs. CPU), or expensive (as fast as Ak ¥
CPU) pXF)
= Our ADC’s 3 us conversion takes multiple CPU clock cycles (t" el 7
(144 CPU clock cycles in our 48 MHz MCU) (}@: - e -.‘: F J{’ 1
. 1N,

= More synchronization: code needs to wait for end of A/D
conversion. How?
= Blindly wait in a loop for a fixed amount of time?

= ADC provides “conversion complete” flag (COCO). Loop code Wait £ i of _
can poll COCO, repeat (blocking rest of this code) until done. aitt ror end or conversion

= 144 << 48,000,000 per second. Many applications can tolerate this Read conversion result
waste. Convert result to target position

GetTargetPosition() {
Configure A/D converter
Start A/D conversion

= COCO flag can request interrupt, trigger ISR }

= Put rest of work from that process in the ISR? Now need to support
even more synchronization and communication.

10 09 v2

NC STATE UNIVERSITY

Examine Sync. Requirements from Inputs and Outputs

Use PWM Motor On (MOn) signal:
pulse-width modulated

Process|Urgency

Primary Synchronization

Additional
Synchronization(s)

= Motor runs more smoothly.

Trigger

Processing

Trigger Processing

= Switches between accelerating, coasting each period. [Generate
= Make period short compared with inertial time PWM

Periodic: 1 ms

Raise MOnssignal| Time Delay:

constant for motor
= Power electronics now are simple, low-cost, efficient >
= Doesn’t generate big bursts of electromagnetic noise

What triggers GeneratePWM? ?W@%(\P’g.

= Time-triggered. Needs to run periodically
(e.g. every 1 ms)

= SetMOntol
Is there any more sync. within the process?

= Yes. Time-triggered, one-shot delay.

= Clear MOn to O after on_time delay (e.g. 0 to 1 ms)
Consequences of timing errors?
Feasibility?

= Possible to implement in software but not scalable:

limited timing precision and processor sharing

= Most MCUs include timer peripherals which can generate
PWM output signals, since useful across so many applications
09 v2

on_time 0
frol 1 Dy bt
Contro MDir >Mo+of
JIA b bit AN
MOn. o NWilo
; . \8

GeneratePWM() {

Wait for on_time

Lower MOn to

NC STATE UNIVERSITY

Examine Sync. Requirements from Inputs and Outputs

ControlMotor() { Process | Urgency Synchronization
error = target pos - pos Trigger Processing
effort = calculated of error Control Periodic: 1 kHz? |Measure position error, calculate new
on_time = absval(effort) * period Motor Moderate |Simplify Control| motor effort and direction. Update
MDir = sign of effort Theory MDir.

} 3 &

Cowtrol UC L pere
= What triggers ControlMotor? 7| \etor- sy >M°+°F"'
58 ' Mo \PUW\ :L\>WM bit 1
= Run periodically to simplify design and GPIO

stability/response analysis of controller
= Alternative: Whenever new data is received
= How often? Every 1 ms?
= Does it make sense to run faster than PWM
frequency?
= How slow can we go?
= Consequences of timing errors?
= Control loop stability

12 09 v2

NC STATE UNIVERSITY

Sync. and Comm. from Key Interactions between Processes

S e i
tomete, el N
ometes %_ﬁ (ﬂ%’rg{q %/Pf cugc/% S
[ADC | Postt A PO Dy, it

544% 20y B4 ik
e e TR T P” W

Elr\ca;)t’f B ’*——‘—”‘—'% TDivectod

1 Tg Bt
Ze(0 Lwr{‘ i/sffﬁfﬁ-

§bu'c C[{' 'Z

-_/IZ:L_.Lﬁ(k /O

= |dentify and describe synchronization and communication between processes
= Additional triggering, shared data and resources (one-way data flows, other data flows, ...)
= |dentify implicit sync. required within the communication.
= Notification of new data? Handle over-run how? Buffer old data? How much? How to manage buffer? etc.

13 09 v2

NC STATE UNIVERSITY

Define Architecture (High-Level Design)

= We have a high-level plan for what to do

‘el hadl g e

0'('6 z e1l€ Am‘
e ol R CfféT e\a wa(}(i
4ot ;77 e ot sy
‘ 21y, 46%5 + ’D Covﬁm\
Y pe T Tsa—%‘ i e TS @9 Be%
jzf},_b(k 4 J.D\zf&

Zewlit 4 Dhl5
Surtly Z

= Next, refine that plan to decide how to do it

= Decide how key stages in key processing
chains will be performed

= Pick from toolbox of methods

= Hardware, software, scheduler, OS, and
combinations

= Note that a stage in the processing chain may
contain another processing chain

14 09 v2

NC STATE UNIVERSITY

Example Applications and Subsystems

= Blinky Control Panel

= Quadrature Decoder w/Limit Switch
= Waveform Generator

= LCD Controller

= Touch screen

= Scope

= Communications

= Basic: Serial Commes., SPI
= Higher protocol layers: I°C, Secure Digital via SPI

= SMPS Controller

15 09 v2

16

09v

SLIDES FOR LATER

NC STATE UNIVERSITY

Processing Chain Stage Options

17 09 v2

NC STATE UNIVERSITY

NC STATE UNIVERSITY

Input Processes Output
Devices and Devices and
Signals Signals

Process Analysis Template

Hardware Stages Software Stages Hardware Stages

Add I/0O-
driven Sync
and Comm

Add inter-
process-
driven Sync
and Comm

18 09 v2

NC STATE UNIVERSITY

Synchronization Requirements for Inputs and Outputs

A
& MEeTES "ineelog &5
J | L\ iz
VO T Aa & “ N
viigge z yVLD ﬂ
v SIADC. T 4 = G
A‘/“ / i i N~ \:. , . \ R /E \
yauvine 4.1 — L QL) VLY RS
/- | Cocho AP E——2brsr .«
—+ y, \ —) ol \ (o
s, y/A - A A . .] |- L) SN AR 2 atr
/ DT —— L —~ (N of (O
- NEE > | > y g2 vwawn & // e s
ps) DX
- 7 B 7 (| R) ‘ i
] g N .
o - v /‘,.,‘7 ~’-~*

—~
—~
A},

= Analysis may drive early decisions: using interrupts, HW peripheral features, etc. Covered in Define Architecture soon.

= First synchronization: What triggers/releases/allows process (e.g. thread’s work code) to start execution? Event or time?
= Get Target Position: Time-triggered, periodic: run at least 5 times /second (at most every 200 ms)
= Detect Position: Event-triggered: run on rising edge of A or rising edge of Z.

= Could also be time-triggered if polled frequently enough

Control Motor: Time-triggered, periodic: run every 1 ms to set Speed to 1 (1 kHz PWM output signal) and update Direction

Is there any more synchronization within the process after the first sync.? Event or time?

= Control Motor: Time-triggered, delay. Clear Speed to 0 after 0 to 1 ms, depending on drive effort requested
19 09 v2

NC STATE UNIVERSITY

Sync. and Comm. from Key Interactions between Processes

'd /' t ’_‘__
PET 1B

Yotejtiomete,s %{@q

UpHpp— L y o
vil& a——— L -3 1 \~ Qk
(;,qé Sl S N O 4 P C/‘ =t

/‘ “, / /‘\‘/B\,D)'\/ / ~ \ —ey €())

. 5 T et 3 A . | peec .
4 g " 2 Digital ‘f(/r*/? e . [@"'—7’3{ 6P —g De f('r'y,“\?i? n
9/ lton. K —c——— { 6}1@ T “\\ 64_‘»"«(,{\,,\;\,\(/7 MgTer Drcr:"vi‘c'«:\ 610
;./‘(r}/’/ B T = ’7(__] \‘) - :’\“\} & %}*“’(

— [
Vof, 'F_fl o

X / TNE 5"'/\7;7.‘ t -'_'—'V_' = j
Zf (© Z/: Wi o ’/'t;/.' 1,1«/: ' /\,j /f Eﬁ;
Wi] =

I

= |dentify and describe synchronization and communication between processes
= Additional triggering, shared data and resources (one-way data flows, other data flows, ...)
= |dentify implicit sync. required within the communication.

= Notification of new data? Handle over-run how? Buffer old data? How much? How to manage buffer? etc.
20 09 v2

NC STATE UNIVERSITY

Process Analysis Template

1. Inputs, processes, outputs, key connections
2. Key hardware and software stages in processes

3. Process synchronization and communication

1. From system inputs and outputs
2. Frominteractions between processes (IPC)

1 Input Processes Output
Devices Devices
and and
Signals Signals

2 Hardware Stages Software Stages Hardware

Stages

3 Addl/O-

driven
Sync and
Comm

21 Adainter-

Slide Completion Plan

= #7. Update hand diagrams to match phases
1, 2 (adding PWM generator?), scan,
integrate

= #8, #9, #10. Sync for /O

= Add pseudocode listings

= Diagram for timing of control loop and PWM
output

= #12: Arch:

= Add bullet: Is trigger synchronized with software?
Sync or async?

= Synch methods: plot time overhead, fairness

= Processing chain stage diagram: cleaner, blocks
(table?)

22 09 v2

NC STATE UNIVERSITY

Setlatit

Potactioveter Prols
Uplf
% = &5%’(
gj;ii N - I Byl‘([ct;(s‘/; i (ﬁé(/\ j—WMD :
Ence) y :
i B - \ GPID ﬂb({’&{w\\v\c /‘7%;5;?\ 7\'@!2 ;Eeé
\(f “(

2e0o Lt M/I

§W(

“Pﬁ'“‘*@/ et f—“—”——> Motor.
LI i
X - it
B /Z /\ 3 -
) Ay

24 09 v2

NC STATE UNIVERSITY

Moo [l | T
Mk }%:ﬁ%ﬁ

— _ - Lo

Scheduler Feature Summary

= To be added...

25 09 v2

NC STATE UNIVERSITY

NC STATE UNIVERSITY

1. Triggering

= Two basic triggering options = Allow multiple pending trigger requests?
= Time-triggered: periodic thread runs every X = What if periodic 2 ms thread hasn’t gotten to
ms. (Could have aperiodic time triggers too) run for 7 ms?
= Structure the thread as an infinite loop with an OS = What if 5 events have occurred but thread
delay call or wait for next interval hasn’t run yet?
= Event-triggered: Thread can run after event Y
happens

= Use an OS-provided synchronization primitive
(event, semaphore etc.) to signal the event has
occurred

= Structure the thread as an infinite loop with an OS
wait call

= Will need the triggering thread(s) to use the OS
signal call

26 09 v2

NC STATE UNIVERSITY

2. Messages

= Does the thread pass data to another = Does handshaking matter?

thread (one-way, only one writer)? = Does sender care if receiver has gotten the

= |f so, use OS-provided message primitives notification?

= How much information is to be passed? = Allow multiple pending messages, or just

= Event: something (implicitly defined) has use the last one?
happened = How much (if any) information buffering is
needed? Depends on how many events can

= Data + event = message: something has
occur before other thread can service them.

happened, and here are the explicit details
= Single item:
= OS: use event or mailbox
= Multiple items:
= OS: use queue

27 09 v2

NC STATE UNIVERSITY

3. Shared Data and Resources

= Do multiple threads need to update = Protect the object
shared data or a common resource? = Reduce or disable preemption manually
= Sharing data in a preemptive system = Use algorithm for protection: access flag,

double buffering, etc.
= Apply architectural solution (e.g. server)
= Use OS-provided support: mutex

(threads, ISRs) introduces risks

= |f data updates are not atomic (are divisible
and can be interrupted)
= Anything which takes multiple instructions to

modify (anything in memory!)

= Multiword variable (long int, float, double)
= Multiword structure or object

= |f multiple threads can write to the same data
variable

28 09 v2

29

09v

POWER AND ENERGY
MANAGEMENT

NC STATE UNIVERSITY

NC STATE UNIVERSITY

Automatically Saving Power & Energy when ldle

30

Scheduler knows if system is idle (no tasks
ready to execute)

= So it can put processor into low-power mode
Any enabled IRQ will wake up MCU, run ISR
After ISR, scheduler resumes running (and
perhaps sleeping!)

Special case: multiple tasks may be ready to

run

= Break out of for loop after completing one
task in order to restart at top of priority table

= There may still be other tasks (lower priority)
with runs requested

= Add variable to count how many tasks were
run in this while loop iteration, use this to
sleep

09v2

void RTCS_Run_Scheduler(void) {

ala
”"

}

Loop forever */
while (1) {
tasks_run = 0
/* Check each task */
for (i=0 ; i1<RTCS_MAX_TASKS ; i++) {
1f task 1 is ready
run task 1
tasks_run++;
break;
} // at end of for loop
if tasks_run ==
// go to sleep
_wfi(O
} // end of while Toop

	Default Section
	Slide 1: Application Design Process Using Platform 1 (RTC Scheduler with Interrupts)
	Slide 2: Where are we in the class?
	Slide 3: Extended Topic Map: Class 09

	Applications
	Slide 4: Example Applications: First Versions with RTC Scheduler and Interrupts
	Slide 5: Applications: Functionality First, then Performance
	Slide 6: Application Design Overview
	Slide 7: Identify I/O Signals & Devices, Processes, Major Connections
	Slide 8: Identify Hardware and Software Stages
	Slide 9: Examine Sync. Requirements from Inputs and Outputs
	Slide 10: Examine Sync. Requirements from Inputs and Outputs
	Slide 11: Examine Sync. Requirements from Inputs and Outputs
	Slide 12: Examine Sync. Requirements from Inputs and Outputs
	Slide 13: Sync. and Comm. from Key Interactions between Processes
	Slide 14: Define Architecture (High-Level Design)
	Slide 15: Example Applications and Subsystems

	For Later
	Slide 16: Slides for Later
	Slide 17: Processing Chain Stage Options
	Slide 18: Process Analysis Template
	Slide 19: Synchronization Requirements for Inputs and Outputs
	Slide 20: Sync. and Comm. from Key Interactions between Processes
	Slide 21: Process Analysis Template
	Slide 22: Slide Completion Plan
	Slide 23
	Slide 24
	Slide 25: Scheduler Feature Summary
	Slide 26: Triggering
	Slide 27: 2. Messages
	Slide 28: 3. Shared Data and Resources
	Slide 29: Power and Energy Management
	Slide 30: Automatically Saving Power & Energy when Idle

