
1 09 v2

APPLICATION DESIGN PROCESS USING PLATFORM 1
(RTC SCHEDULER WITH INTERRUPTS)

V2

9/18/2025

2 09 v2

Where are we in the class?

Learn Platform 1: RTCS Scheduler
(Non-Preemptive Prioritized

Multirate Tasks with Interrupts)

Build Example Applications
with Platform 1

Embedded System Requirements
and Characteristics

Concurrent Systems Concepts and
Issues: Process Implementations

and Relationships in HW & SW

Evaluate Application
Performance

Learn Platform 2: RTXv5 RTOS
(+ task preemption and many
integrated support features)

Improve Performance:
Use HW, SW, OS Better

Build Example Applications
with Platform 2

Evaluate Application
Performance

Improve Performance:
Use HW, SW, OS Better

3

Extended Topic Map: Class 09

Process

Implementation

Dependences

between Processes

Hardware

Processes

Software

Processes

Sched:

Share CPU

Time

Communication

Mutual

Exclusion

Both Hardware and

Software Processes

Mem-

Mapped

Periph.

Access

Embedded Systems

Design Space(s)

DMA

Ctlr

Sync. to What?

Do or Don’t?
How?

Intrpt

System

Notification/

Flow Ctl./

Handshaking

Data Loss &

Duplication
Buffering

Split

Receiver

Process?

Split urgent/

deferrable work

Direct or

Indirect

Comm.?

SW?

Why

use…?

HW?

+ Coop.

Sched. Tasks

Infinite

loop in

main

+ Task

Priorities

+ Task

Preemption

RTCS Run-to-

Completion

Scheduler

RTXv5

RTOS

FSMs for

Responsiveness

How?

“DIY” Code Implementations

Shared

Variables

How?

OS Mechanisms

Event Flag Semaphore

Shared

Variables

Mutex Lock

Concepts How?

In

Order?

Cost of Precise

Timing

Buffering

Concepts
Why?

Message

Queue

How?

Double

Buffer

Circular

Buffer

Req/Ack

Flags

DMA-

managed

buffer

Mailbox

How?

Cost of

Precise Timing

CPU

per

Process

Application

Characteristics

Requirements

& Constraints

Processes and Concurrency

for Embedded Systems

Processes and

Concurrency

Peri-

pherals

Dedic. HW

Interconn.

DMA

Ctlr

Ordering/

Triggering

Concepts

Synchronization

Polling

(Prog’d

I/O)

+Interrupts:

Fore/Back

ground
Serializing

Server

4 09 v2

EXAMPLE APPLICATIONS: FIRST VERSIONS
WITH RTC SCHEDULER AND INTERRUPTS

5 09 v2

Applications: Functionality First, then Performance
Blinky Control

Panel
Quad. Dec. w/Z

Limit Switch
Waveform
Generator

LCD
Controller

Touch
screen Scope Serial Comms. I2C Comms. μSD via SPI

Comms.
SMPS

Controller

Pr
ov

id
in

g
Fu

nc
tio

na
lit

y

In
te

rf
ac

in
g Simple Digital In, Out In Out PWM Out

Complex Digital PWM Bus Out In, Out In, Out In, Out

Analog ADC In, CMP In,
DAC Out Out ADC In ADC In,

Cmp In

ADC In with
Sync.

Sampling

A
sy

n
c # Processes for async.

exec.
4 1,2 1,2 0 0, 1 1,2 2 1 2 1

Sy
nc

 a
nd

 …

Sync and Do: Coarse
Triggering

Digital Edge
Detection

Periodic
Output

Updates

Ana. Edge Det.,
Periodic In. Smplg.,

Buffer mgt.

Tx Rdy, Rx Done
events. Producer

& Consumer

Data Producers &
Consumers. I2C Device

read response.

Tx Rdy, Rx
Done events.
Prod. & Cons.

ADC In with
Sync.

Sampling

Internal, Fine Grain
Block/Sched/Trig

ADC conv. time
ADC
conv.
time

I2C message internal
events & timing reqts.

for conditions, data

Sync and Don’t:
Sharing & Races

LCD Ctlr Sharing,
Data buffer mgt.

Tx, Rx byte
queues Tx, Rx Msgs Tx, Rx byte

queues

IP
C Inter-Process Comm. Shared Position

Variable Data buffer

M
ee

tin
g

Pe
rf.

Re

qt
s.

Timing Stability 1 1 2 1
Responsiveness 1 1 1 1

Reducing SW
Overhead

2 1- Perf.
Optimiz. 2

1 – series of timed I/O
events per message.

FSM vs. RTOS
2

Tolerating Timing
Mismatches

2 2 2 2

6 09 v2

Application Design Overview

▪ Note: Provide just enough detail, but not too much.
Later design stages and iteration will address details as
needed.

▪ Identify system’s inputs, outputs and processes, and
their key connections

▪ Identify key hardware, software stages in each process
▪ Initially consider only peripheral’s fundamental features

(examine enhancements later as needed)

▪ Analyze processes for synchronization and
communication driven by I/O requirements
▪ May be event-triggered or time-triggered

▪ What triggers/releases/allows process (e.g. thread’s work
code) to start execution: event or time?
▪ Do A once for every time E1 happens

▪ Do B every 100 ms

▪ Is there any internal synchronization (wait until)? Again,
may be triggered by event or time
▪ Do X, wait at least 3.2 ms but no more than 3.8 ms, do Y, Wait

for event E, do Z.

▪ Analyze process interactions for sync. and comm.
▪ Identify explicit sync. and comm. between processes

▪ Triggering, shared data and resources (one-way data flows,
other data flows)

▪ Identify implicit sync. required by any communication
▪ Notification of new data? Buffer old data? How much? how to

manage buffer? How to handle overrun condition?

▪ Define architecture (high-level design)
▪ Select how to implement most critical/difficult processing

chain steps and interactions

▪ Draw from toolbox of methods
▪ Hardware: peripherals, DMA, programmable logic

▪ Software: Program structure, algorithms

▪ Both: Interrupts, task scheduler, support features from OS

▪ Continue with detailed design and implementation
▪ Functionality first, then performance

▪ Iterate design to improve performance

7 09 v2

Identify I/O Signals & Devices, Processes, Major Connections

▪ Identify system’s input and
output devices and signals
and processes, and their key
connections

▪ Note feedback from output
(motor) to some inputs

▪ Information for key signals

▪ Name

▪ Format: analog? digital?
comm. protocol? bit width? …

▪ Does it have challenging
timing or performance
requirements?

8 09 v2

Identify Hardware and Software Stages

▪ Identify key hardware and software stages in each process

▪ Add hardware peripherals known to be needed

▪ Conversion from/to analog

▪ Generating or processing complex signals

▪ Initially consider only peripheral’s fundamental features (later will examine enhancements as needed)

GPIO

GPIO Motor
Drive
Ckt

GPIO

GPIO

ADC

9 09 v2

▪ Analysis may identify challenges early, steer design
▪ Use interrupts, HW peripheral features, etc? Covered

soon in Define Architecture stage.

▪ Synchronization events (triggers) may be based on
time or events
▪ Can convert event trigger to time trigger if sampled

often enough.

▪ Frequency depends on minimum event duration
(pulse width) and maximum detection latency
allowed

▪ Synchronization: What allows scheduler to run
process (e.g. code to do work): Event or time?

▪ Start with shaft position sensing
▪ Quadrature Decoder

▪ Handle Zero Limit Switch

▪ Consequences of timing errors?

Examine Sync. Requirements from Inputs and Outputs
Tough to do with general-purpose computers – need hardware processes and good sync/comm support

Process Urgency Synchronization
Trigger Processing

QDecPosUpdate High Event: A ↑ Read Z, B. Inc/Dec/Zero pos variable

ZLimPosUpdate High Event: Z ↑ Zero pos variable

DetPos - QD
A

DetPos - ZL
Z

GPIO

GPIO

10 09 v2

▪ What triggers GetTargetPosition?
▪ Time-triggered, periodic: run at least at 10 Hz

to make it responsive for operator (every 100 ms)

▪ GetTargetPosition must trigger A/D conversion
▪ ADC is shared with other processes

▪ Two kinds of ADC: very slow (vs. CPU), or expensive (as fast as
CPU)

▪ Our ADC’s 3 us conversion takes multiple CPU clock cycles
(144 CPU clock cycles in our 48 MHz MCU)

▪ More synchronization: code needs to wait for end of A/D
conversion. How?
▪ Blindly wait in a loop for a fixed amount of time?

▪ ADC provides “conversion complete” flag (COCO). Loop code
can poll COCO, repeat (blocking rest of this code) until done.
▪ 144 << 48,000,000 per second. Many applications can tolerate this

waste.

▪ COCO flag can request interrupt, trigger ISR
▪ Put rest of work from that process in the ISR? Now need to support

even more synchronization and communication.

Examine Sync. Requirements from Inputs and Outputs

Process Urgency Primary Synchronization Additional
Synchronization

Trigger Processing Trigger Processing

GetTarget
Position Low Time, periodic

(100 ms)
Start ADC

Conversion

Event:
Conversion
Complete

Read result,
scale, update

target_position

GetTargetPosition() {

 Configure A/D converter

 Start A/D conversion

 Wait for end of conversion

 Read conversion result

 Convert result to target position

}

11 09 v2

Examine Sync. Requirements from Inputs and Outputs
▪ Use PWM Motor On (MOn) signal:

pulse-width modulated
▪ Motor runs more smoothly.

▪ Switches between accelerating, coasting each period.

▪ Make period short compared with inertial time
constant for motor

▪ Power electronics now are simple, low-cost, efficient

▪ Doesn’t generate big bursts of electromagnetic noise

▪ What triggers GeneratePWM?
▪ Time-triggered. Needs to run periodically

(e.g. every 1 ms)

▪ Set MOn to 1

▪ Is there any more sync. within the process?
▪ Yes. Time-triggered, one-shot delay.

▪ Clear MOn to 0 after on_time delay (e.g. 0 to 1 ms)

▪ Consequences of timing errors?

▪ Feasibility?
▪ Possible to implement in software but not scalable:

limited timing precision and processor sharing

▪ Most MCUs include timer peripherals which can generate
PWM output signals, since useful across so many applications

Process Urgency Primary Synchronization Additional
Synchronization(s)

Trigger Processing Trigger Processing
Generate

PWM High Periodic: 1 ms Raise MOn signal
to 1

Time Delay:
on_time

Lower MOn to
0

GPIO

GPIO

GeneratePWM() {

 MOn = 1

 Wait for on_time

 MOn = 0

}

12 09 v2

Examine Sync. Requirements from Inputs and Outputs

▪ What triggers ControlMotor?
▪ Run periodically to simplify design and

stability/response analysis of controller
▪ Alternative: Whenever new data is received

▪ How often? Every 1 ms?
▪ Does it make sense to run faster than PWM

frequency?

▪ How slow can we go?

▪ Consequences of timing errors?
▪ Control loop stability

Process Urgency Synchronization

Trigger Processing

Control
Motor Moderate

Periodic: 1 kHz?
Simplify Control

Theory

Measure position error, calculate new
motor effort and direction. Update

MDir.

GPIO

GPIO

ControlMotor() {

 error = target_pos - pos

 effort = calculated of error

 on_time = absval(effort) * period

 MDir = sign of effort

}

13 09 v2

Sync. and Comm. from Key Interactions between Processes

▪ Identify and describe synchronization and communication between processes

▪ Additional triggering, shared data and resources (one-way data flows, other data flows, …)

▪ Identify implicit sync. required within the communication.

▪ Notification of new data? Handle over-run how? Buffer old data? How much? How to manage buffer? etc.

14 09 v2

Define Architecture (High-Level Design)

▪ We have a high-level plan for what to do

▪ Next, refine that plan to decide how to do it

▪ Decide how key stages in key processing
chains will be performed

▪ Pick from toolbox of methods

▪ Hardware, software, scheduler, OS, and
combinations

▪ Note that a stage in the processing chain may
contain another processing chain

15 09 v2

▪ Blinky Control Panel

▪ Quadrature Decoder w/Limit Switch

▪ Waveform Generator

▪ LCD Controller

▪ Touch screen

▪ Scope

▪ Communications
▪ Basic: Serial Comms., SPI

▪ Higher protocol layers: I2C, Secure Digital via SPI

▪ SMPS Controller

Example Applications and Subsystems

16 09 v2

SLIDES FOR LATER

17 09 v2

Processing Chain Stage Options

18 09 v2

Process Analysis Template
Input
Devices and
Signals

Processes Output
Devices and
Signals

Hardware Stages Software Stages Hardware Stages

Add I/O-
driven Sync
and Comm

Add inter-
process-
driven Sync
and Comm

19 09 v2

Synchronization Requirements for Inputs and Outputs

▪ Analysis may drive early decisions: using interrupts, HW peripheral features, etc. Covered in Define Architecture soon.

▪ First synchronization: What triggers/releases/allows process (e.g. thread’s work code) to start execution? Event or time?
▪ Get Target Position: Time-triggered, periodic: run at least 5 times /second (at most every 200 ms)

▪ Detect Position: Event-triggered: run on rising edge of A or rising edge of Z.
▪ Could also be time-triggered if polled frequently enough

▪ Control Motor: Time-triggered, periodic: run every 1 ms to set Speed to 1 (1 kHz PWM output signal) and update Direction

▪ Is there any more synchronization within the process after the first sync.? Event or time?
▪ Control Motor: Time-triggered, delay. Clear Speed to 0 after 0 to 1 ms, depending on drive effort requested

20 09 v2

Sync. and Comm. from Key Interactions between Processes

▪ Identify and describe synchronization and communication between processes

▪ Additional triggering, shared data and resources (one-way data flows, other data flows, …)

▪ Identify implicit sync. required within the communication.

▪ Notification of new data? Handle over-run how? Buffer old data? How much? How to manage buffer? etc.

21 09 v2

1. Inputs, processes, outputs, key connections
2. Key hardware and software stages in processes
3. Process synchronization and communication

1. From system inputs and outputs
2. From interactions between processes (IPC)

Process Analysis Template

1 Input
Devices
and
Signals

Processes Output
Devices
and
Signals

2 Hardware Stages Software Stages Hardware
Stages

3 Add I/O-
driven
Sync and
Comm

Add inter-
process-
driven
Sync and
Comm

22 09 v2

Slide Completion Plan

▪ #7. Update hand diagrams to match phases
1, 2 (adding PWM generator?), scan,
integrate

▪ #8, #9, #10. Sync for I/O
▪ Add pseudocode listings

▪ Diagram for timing of control loop and PWM
output

▪ #12: Arch:
▪ Add bullet: Is trigger synchronized with software?

Sync or async?

▪ Synch methods: plot time overhead, fairness

▪ Processing chain stage diagram: cleaner, blocks
(table?)

23 09 v2

24 09 v2

25 09 v2

Scheduler Feature Summary

▪ To be added…

26 09 v2

1. Triggering

▪ Two basic triggering options
▪ Time-triggered: periodic thread runs every X

ms. (Could have aperiodic time triggers too)

▪ Structure the thread as an infinite loop with an OS
delay call or wait for next interval

▪ Event-triggered: Thread can run after event Y
happens

▪ Use an OS-provided synchronization primitive
(event, semaphore etc.) to signal the event has
occurred

▪ Structure the thread as an infinite loop with an OS
wait call

▪ Will need the triggering thread(s) to use the OS
signal call

▪ Allow multiple pending trigger requests?
▪ What if periodic 2 ms thread hasn’t gotten to

run for 7 ms?

▪ What if 5 events have occurred but thread
hasn’t run yet?

27 09 v2

2. Messages

▪ Does the thread pass data to another
thread (one-way, only one writer)?
▪ If so, use OS-provided message primitives

▪ How much information is to be passed?
▪ Event: something (implicitly defined) has

happened

▪ Data + event = message: something has
happened, and here are the explicit details

▪ Does handshaking matter?
▪ Does sender care if receiver has gotten the

notification?

▪ Allow multiple pending messages, or just
use the last one?
▪ How much (if any) information buffering is

needed? Depends on how many events can
occur before other thread can service them.

▪ Single item:

▪ OS: use event or mailbox

▪ Multiple items:

▪ OS: use queue

28 09 v2

3. Shared Data and Resources

▪ Do multiple threads need to update
shared data or a common resource?

▪ Sharing data in a preemptive system
(threads, ISRs) introduces risks
▪ If data updates are not atomic (are divisible

and can be interrupted)

▪ Anything which takes multiple instructions to
modify (anything in memory!)

▪ Multiword variable (long int, float, double)

▪ Multiword structure or object

▪ If multiple threads can write to the same data
variable

▪ Protect the object
▪ Reduce or disable preemption manually

▪ Use algorithm for protection: access flag,
double buffering, etc.

▪ Apply architectural solution (e.g. server)

▪ Use OS-provided support: mutex

29 09 v2

POWER AND ENERGY
MANAGEMENT

30 09 v2

Automatically Saving Power & Energy when Idle

▪ Scheduler knows if system is idle (no tasks
ready to execute)
▪ So it can put processor into low-power mode

▪ Any enabled IRQ will wake up MCU, run ISR
▪ After ISR, scheduler resumes running (and

perhaps sleeping!)

▪ Special case: multiple tasks may be ready to
run
▪ Break out of for loop after completing one

task in order to restart at top of priority table
▪ There may still be other tasks (lower priority)

with runs requested
▪ Add variable to count how many tasks were

run in this while loop iteration, use this to
sleep

void RTCS_Run_Scheduler(void) {
/* Loop forever */
 while (1) {
 tasks_run = 0
 /* Check each task */
 for (i=0 ; i<RTCS_MAX_TASKS ; i++) {
 if task i is ready
 run task i
 tasks_run++;
 break;
 } // at end of for loop
 if tasks_run == 0
 // go to sleep
 __wfi()
 } // end of while loop
}

	Default Section
	Slide 1: Application Design Process Using Platform 1 (RTC Scheduler with Interrupts)
	Slide 2: Where are we in the class?
	Slide 3: Extended Topic Map: Class 09

	Applications
	Slide 4: Example Applications: First Versions with RTC Scheduler and Interrupts
	Slide 5: Applications: Functionality First, then Performance
	Slide 6: Application Design Overview
	Slide 7: Identify I/O Signals & Devices, Processes, Major Connections
	Slide 8: Identify Hardware and Software Stages
	Slide 9: Examine Sync. Requirements from Inputs and Outputs
	Slide 10: Examine Sync. Requirements from Inputs and Outputs
	Slide 11: Examine Sync. Requirements from Inputs and Outputs
	Slide 12: Examine Sync. Requirements from Inputs and Outputs
	Slide 13: Sync. and Comm. from Key Interactions between Processes
	Slide 14: Define Architecture (High-Level Design)
	Slide 15: Example Applications and Subsystems

	For Later
	Slide 16: Slides for Later
	Slide 17: Processing Chain Stage Options
	Slide 18: Process Analysis Template
	Slide 19: Synchronization Requirements for Inputs and Outputs
	Slide 20: Sync. and Comm. from Key Interactions between Processes
	Slide 21: Process Analysis Template
	Slide 22: Slide Completion Plan
	Slide 23
	Slide 24
	Slide 25: Scheduler Feature Summary
	Slide 26: Triggering
	Slide 27: 2. Messages
	Slide 28: 3. Shared Data and Resources
	Slide 29: Power and Energy Management
	Slide 30: Automatically Saving Power & Energy when Idle

