NC STATE UNIVERSITY

APPLICATION DESIGN BASICS

USING THE RTC SCHEDULER WITH INTERRUPTS

V2
9/14/2025

Where are we in the class?

Embedded System Requirements
and Characteristics

\

Concurrent Systems Concepts and
Issues: Process Implementations
and Relationships in HW & SW

Learn Platform 1: RTCS Scheduler
(Non-Preemptive Prioritized
Multirate Tasks with Interrupts)

\

Build Example Applications
with Platform 1

\

Evaluate Application
Performance

\

Improve Performance:
Use HW, SW, OS Better

NC STATE UNIVERSITY

Learn Platform 2: RTXv5 RTOS
(+ task preemption and many
integrated support features)

\\

Build Example Applications
with Platform 2

Evaluate Application
Performance

\

Improve Performance:
Use HW, SW, OS Better

NC STATE UNIVERSITY

Example Applications: Key Requirements and Challenges

Comms.

Application Providing Functionality Meeting Performance Requirements
Sync and Sync and Inter- Reducin Toleratin
Digital Analog Y Y , . Timing Responsive & olerating
Interfacing | Interfacin Do: Don’t: Sharing |Process Stabilit ness Software | Timing
8 & Triggering | & Races Comm. 4 Overhead |Mismatches
Blinky Control In, Out,
Panel PWM
Quadrature In
Decoder
Waveform Out
Generator
Oscilloscope In
Serial Comms. In, Out
12C Comms. In, Out
LCD Controller Out
Touchscreen In
SMPS Controller Out In
pSD via SPI In. Out

3

Application Design Overview

Identify system’s inputs, outputs and processes, and
their key connections

Identify key hardware, software stages in each process
= Initially consider only peripheral’s fundamental features
(examine enhancements later as needed)
Analyze each process to find key synchronization
requirements (e.g. timing, events)
= What triggers/releases/allows process (e.g. thread’s work
code) to start execution: event or time?
= Do A once for every time E1 happens
= Do Bevery 100 ms
= |sthere any internal synchronization (wait until)?

= Do X, wait at least 3.2 ms but no more than 3.8 ms, do Y, Wait for
event E, do Z.

NC STATE UNIVERSITY

= Analyze key process interactions

= |dentify and describe synchronization and communication
between processes

= Triggering, shared data and resources (one-way data flows, other
data flows)

= |dentify implicit sync. required within the communication.

= Notification of new data? Buffer old data? How much? how to
manage buffer? How to handle overrun condition?

= Choose mechanisms to support and implement these
requirements and interactions
* Program structure
= Interrupt/Scheduler/OS support
= Algorithms to implement in your code

= Continue with design and implementation

= Functionality first, then performance
= |terate design to improve performance

NC STATE UNIVERSITY

Application Design Overview

= |dentify system fundamentals: inputs, outputs and = Analyze key process interactions
processes, and their key connections = |dentify and describe synchronization and communication
= |dentify key hardware, software stages in each process between processes
= Triggering, shared data and resources (one-way data flows, other

= Initially consider only peripheral’s fundamental features

. data flows
(examine enhancements later as needed))

. . .. = |dentify implicit sync. required within the communication.
= Analyze each process to find I/O-driven synchronization yimp v a

requirements

= What triggers/releases/allows process (e.g. thread’s work
code) to start execution: event or time?

= Notification of new data? Buffer old data? How much? how to
manage buffer? How to handle overrun condition?

= Choose mechanisms to support and implement these

requirements and interactions
= Do A once for every time E1 happens

* Program structure
= Do Bevery 100 ms

= |sthere any internal synchronization (wait until)? * Interrupt/Scheduler/OS support

= Do X, wait at least 3.2 ms but no more than 3.8 ms, do Y, Wait for " Algorithms to implement in your code

eventE, do Z. = Continue with design and implementation
= Functionality first, then performance
= |terate design to improve performance

ldentify System Fundamentals

[=:

Za!

‘ PR A
A" 1o

= |dentify system’s inputs,

Condrol
,4/‘4,:}'? T
outputsanclprocesseé, T Gt Tt
and their key connections SheH Pesitisn _
= Note feedback between “ Pobtlon. —— \li
f)utput(motor) and some Eucoder | \)‘\Q%/W/;A,@ @Hf@(5 Y /
Inputs i 12057 (ol — {/l\/\@{/pf 2 "\&ler N
: / =7)
Zeed M { .
\Q// //J\’V/L ~ _ - B ~ _ e
. ,/ffjf,
= ldentify key hardwareand | % A
. /V, _/{’4(/"[- / V\CQ’(DL?
software stages in each S, i
Ulﬁ!‘f/a T o Cj(j £ Ku(’ A ~).; j\ - /
process | e ey W Lehon AT M\ Dy, Bt
2l A AP~ . [
= |nitially consider only Jhatt r\/_ — \\f> oy | ,;?">
ally cor bor 22 wt —— Lo\ S} GPOET——
peripheral’s fundamental ‘9‘“0w\ A > GhID [T\ rlie Mh’ﬁ T\ /“kr~7ﬂpﬁ,
.] 5| G Herwa O eeton
features (later will Cwcedtr E — € 1< At,f, Bt
examine enhancements Afton e

as needed)

Zﬁ’ (© //fV“A_;, ‘ 4 IL?M ,JE:J;' e ;

S "K‘IL ‘T

Synchronization Requirements for Inputs and Outputs

c | ¢ - “
R Aag el { >
Lok A o |
\j) “J'\L\" - (7\ Tee ge(.
| Zﬁe \\AU\T | o ‘ fl> . //}—'Q',\\ Y, _/
, SIADC U
S [N P /
‘4/\ AL - / 14_ \ - \/j 2 \ AT »9(-’3
LNt < A PR — Lot AGHIO ——=2}) ler —>H |
vsctio b [) A o ™ 4 ' ~ Mgter LS ™ — D0 VV"*V! (“T’(
Y L M€ N FToOv L
2) s (;))74;} > D) et r & 7 P \\0 0
| ‘; R
Po (O o /
i | /
) + N bl
Zeco Liw Gatas I8
Wi ff a

= Analysis may drive early design decisions: using interrupts, hardware peripheral features, etc.

= Initial synchronization: What triggers/releases/allows process (e.g. thread’s work code) to start execution? Event or time?
= Get Target Position: Time-based (periodic): run at least 5 times /second (at most every 200 ms)

Detect Position: Event: run on rising edge of A or rising edge of Z.
= Separate ISRs or single ISR?

Control Motor: Time-based (periodic): run every 1 ms to set Speed to 1 (1 kHz PWM output signal) and update Direction
= |s there any more synchronization within the process (wait until)? Event or time?

Control Motor: Time-based (delay). Clear Speed to 0 after O to 1 ms, depending on data for drive level
7

NC STATE UNIVERSITY

Sync. and Comm. from Key Interactions between Processes

set il
% ctejtiomete, AV\CQ {coq
n o~ ,
U@f‘/% \\,\\ R @d—-'{///‘;{’EW/ L t‘\)\ /.‘ b - —{
S5 pertA w
f orudlee ™ el Sieto
/w?j:' 2 Ufzﬂézht#/; — Corioo\ = GPIO bmkr
L/QL c ((OV\ K — "“> GLI@ - T ‘rcffW\\V\C 7 {‘A {\’t/c(D‘\Q ~on >H5(/O(
Enceyer B ————AFTO | 7 De 7 e
o . PO/F—(VIO/(_\‘_ [3'\(141 C

Zeco Lt 4 D55 10 |
Switty AT

= |dentify and describe synchronization and communication between processes
= Additional triggering, shared data and resources (one-way data flows, other data flows, ...)
= |dentify implicit sync. required within the communication.
= Notification of new data? Buffer old data? How much? how to manage buffer? How to handle overrun condition? ...

Extended Topic Map: Class 08

Processes and Concurrency

rE tems
Embedded Systems Processes and
Design Space on -
Application m Process
haracteristi & Co aint Precise g mplementation be
Both Hardware and i -
on o

oftware Processes

Sched:
Share CPU
ime

Data Loss &
Duplicatio
m Cost of Precise

10 . .
ming

!

Dependences
veen Processe

+Interrupts: | {

Infinite | /
“ | Fore/Back

Notification/
Flow Ctl./

PIY” Cpde Implemergations

\
ag Buffer Buffe

RTCS Run-to-
Completion
Scheduler

y__OS Mechanisms

NC STATE UNIVERSITY

Direct or
Indirect

Split
Receiver

andshaking

Buffering
oncept:
m Split urgent/
Orde N deferrable work
~J

managed
buffer

NC STATE UNIVERSITY

APPLICATION DESIGN USING RTCS

Checklist for Using RTC Scheduler

1. Add RTCS folder to project directory
2. Add RTCS folder to include search path
3. Linkin scheduler tick routine

1. Add call to tick_timer_intr() to a periodic interrupt.

2. Add #include “rtcs.h” to that source file too.
4. Create code for your tasks in tasks.[ch]

5. Modify main code to
1. Add your tasks to scheduler task table
2. Start up the scheduler

NC STATE UNIVERSITY

NC STATE UNIVERSITY

RTCS_DEMO PROGRAM:
INDEPENDENT R, G, B LED FLASHING

NC STATE UNIVERSITY

Example Application (RTCS Demo)

Toggle red LED every 500 ms

Toggle green LED every 490 ms
Toggle blue LED every 480 ms

How would you code this without a scheduler?

With a periodic scheduler, consider greatest common divisor (GCD) of periods

NC STATE UNIVERSITY

Demo Code for a Task

void Task_R(void) {
static uint8_t LED_On=0; Set (1) a debug output bit to see
on scope/logic analyzer when task
PTB_>PSOR = MASK(DEBUG_RED_POS); starts running
if (LED_On)

PTB->PCOR
else
PTB->PSOR = MASK(RED_LED_POS);

LED_On = 1 - LED_On; / Clear (0) the debug output bit to see

hen task stops runnin
PTB->PCOR = MASK(DEBUG_RED_POS); v ¢ Stops running
}

MASK (RED_LED_POS) ;

NC STATE UNIVERSITY

Demo Scheduler Start-Up

int main (void) {
Init_Debug_Signals();
Init_RGB_LEDsS();

RTCS_Init(100); // 100 Hz timer ticks
RTCS_Add_Task(Task_R, 0, 50);
RTCS_Add_Task(Task_G, 1, 49);
RTCS_Add_Task(Task_B, 2, 48);

RTCS_Run_Scheduler(); // This call never returns

NC STATE UNIVERSITY

RGB/FLASHER PROGRAM WITH RTCS

NC STATE UNIVERSITY

RGB/Flasher Upgrade to RTCS

ESF textbook Chapter 3 example
= LED behavior: flash (White/Off) or sequence (R/G/B)

= LED timing: slow or fast

How to port the program to use the RTCS?

Version 1
= Simple port, start with switch polling version (V2)

= Uses a few RTCS features

Version 2
= Better port, start with switch interrupt version (V3)

= Takes advantage of more RTCS features

Code for both is in course repository in RTCS folder

NC STATE UNIVERSITY

RGB/FLASHER PROGRAM WITH RTCS

NC STATE UNIVERSITY

RTCS_RGB_Flasher_1 & @ swiches
Based on V2 I 1
@ Qig e Task_Read

Switches

Task_Read_
Switches

L
I gv\pﬂ)e/

| g_w_delay I I g_flash_LED I | g_RGB_delay I

Task_Flash Task_RGB RTCS Task_Table

RTCS_ Run
_Scheduler

= Switches polled by periodic Task_Read_Switcheg
= Enables and disables tasks
= Modifies global delay variables
= LEDs
= Task _RGB and Task_Flash control LED timing using a Some o rmm—=="

busy-wait Delay function “4hA
19 I RGB LEDs

g RGB_delay

Task Flash

NC STATE UNIVERSITY

Where is the Idle Time?

' main e
----- Nao =
; gri

_______________) J
RunRTE Run_RTCS_Schedul —
un cheduler -
_________ Scheduler~ - - 1] U‘\]
ot o Teeefe Task_Read_Switches L l L
A4 "4 —
Task-_Read_ Task_RGB Task_Flash Task_RGB vr' L[I“J
Switches 7 | S
/; Delay / AAA %
Control_ Control_ Task Flash “ '
RGB_LEDs RGB_LEDs — I\
Delay

= Analysis
= Examine call graph
= Consider code execution timeline
= |dle time is buried within task call to in busy-wait Delay function
= Not available to scheduler ,

20

NC STATE UNIVERSITY
RTCS_RGB FIasher_Z
Based on V3 \ @ Switches @ @ Switches
| |

]
Interrupt
Service
)(Routine

Scheduler
|g w delayl Ig flash LED| Ig RGB delayl

Y = = s f (2.
e (S&
Task_Flash_FSM Task_RGB_FSM :>

RTCS Task_Table

RTCS_ Run

= Switches trigger interrupts when pressed or released Scheduler

= Handled by ISR PORTD_IRQHandler
= |SR enables, disables tasks, and changes task periods.

No more g_*_delay global variables! Task_RGB_FSM
= LEDs
= Task _RGB and Task_Flash broken into FSMs (one state LT e ===
per color)
= Scheduler controls LED timing (via task periods, m ROB LEDs

2! changed by PORTD_IRQHandler)

NC STATE UNIVERSITY

Where is the Idle Time?

main (
: Tle
R ‘ |
Scheduler . | Run_RTCS Schedler |_— /077717 Dl et Al
* ------------- . PORTD_IRQHandler | | \
PORTD_ *
IRQHandler Task_RGB Task_Flash Task_RGB y \
& & Task_Flash LR l {
Control_ Control_
. RGB_LEDs RGB_LEDs B Widte ade
= Analysis

= Examine call graph
= Consider code execution timeline

= |dle time
= Available to scheduler!

22

NC STATE UNIVERSITY

How to Change Program Components?

= Tasks

= Get rid deciding whether to run and busy wait delay
= Switch ISR

= Update scheduler’s task table (not g_*) based on desired behavior

= Variables

= g w_delay, g flash_LED, g RGB _delay aren’t needed any more since scheduler will take care of
them

23

NC STATE UNIVERSITY

Task Changes

/-Eliminate run test

void Task Fiash ysmivold) ¢ = Eliminate delay loop calls
static enum {ST WHITE, ST BLACK} next state = ST WHITE; ’
as scheduler will provide

1 = T as

switch (next state) { delays
case ST WHITE:
Control RGB LEDs(l, 1, 1); n Slmllar Changes for
DI de ey
next state = ST BLACK; Task RGB FSM
break; - -

case ST BLACK:
Control RGB LEDs(0, 0O, 0);

belay g vwndeday)r
next state = ST WHITE;
break;

default:
next state = ST WHITE;
break;

24

Switch ISR Changes

NC STATE UNIVERSITY
void PORTD IRQHandler (void) {

FTBE—>FPS0OR = MESK{DEBUG_ISR_PGS];
[/ Read switches

= Variables g w_delay, g_flash_LED, if ((PORTD->ISFR & MASK(SW1 POS))) {
g RGB_delay aren’t needed any more since if (SWITCH_PRESSED(SW1_POS)) { // flash white
- - . . . RTCS Enable Task(Task Flash F5M, 1};
scheduler will take care of their function RTCS Release Task(Task Flash FSM);
= Use RTCS interface functions to update : Z‘?gi—fn‘able—rﬂask S
scheduling information RTCS_Enable Task(Task Flash FSM, 0);

= Code will update scheduler’s data to “Make it RIES Brable Teskllash nol B s
” RTCS Release Task(Task RGB F3M);

SO }
= |f SW1 pressed)
if ((PORTD->ISFR & MASK(SW2 POS)}) {
= Enable Task_Flash_FSM, request to run it e powlEb e PRI o

RTCS Set Task Period(Task Flash FSM, W _DELAY FAST);
RTCS Set Task Period(Task RGB FSM, RGB DELAY FAST);

and disable Task_RGB_FSM

B}) } else {
Else do opposite RTCS Set Task Period(Task Flash FSM, W DELAY SLOW):;

Task_RGB_FSM based on if SW2 is pressed) :

. // clear status flags
= Set, clear debug bit to show start and end of L T - AU

ISR on scope/logic analyzer PTB->PCOR = MASK (DEBUG ISR POS) ;
25
}

NC STATE UNIVERSITY

Scheduler Set-Up

int main {(void) {
Init Debug Signals();
Iﬂit_RGE_LEDS[};
Init Interrupts():;

RTCS Init{(100); // 100 Hz timer tlﬂ%i\owrﬁd

S
RTCE_Edd Task(Task Flash FSM, 0, W DELAY SLOW) ;
RTCS Enable Task(Task Flash FSM, 0);

RTCS Add Task(Task RGB FSM, 1, RGB DELAY SLOW);
B e e Y ~— =
RTCS Enable Task(Task RGB FSM, 1);

RTCS Run Scheduler(}; // This call never returns

26

NC STATE UNIVERSITY

i i o pyve
E:(éagr:ple TTSN}ZOV\:'ng Sc 1egfcqa|§££perat'°n v o T,
F 3 w4 I c O 1 R IO
= RelPndg. |0 7o
e Enabled | I 0 [
S [Flsh_@m [TTNR BE T ‘ . — %}
f,'j RPN) : | 5 (
Rel.Pndg. | o
- Enabled | \ %@ | {:0
(_|Switch ‘ __ '
TimerTick ISR | 7] : — - R i
Switch ISR . l
cheddler GoPY PO R0 [’7"{ it ng‘ﬂ athnagass B
Task_RGB_FSM - ‘ el \ ‘
Tasﬂ(/Qilash_FSM 1
LD

NC STATE UNIVERSITY

Analyze Resulting Performance with Logic Analyzer

= Measure the responsiveness...
= For switch 1 (Flash/RGB)

= For switch 2 (Fast/Slow)

= How much idle time?

28

29

NC STATE UNIVERSITY

EXAMPLE APPLICATIONS: FIRST VERSIONS
WITH RTC SCHEDULER AND INTERRUPTS

Example Applications

30

NC STATE UNIVERSITY

