
1

APPLICATION DESIGN BASICS

USING THE RTC SCHEDULER WITH INTERRUPTS

V2
9/14/2025

2

Where are we in the class?

Learn Platform 1: RTCS Scheduler
(Non-Preemptive Prioritized

Multirate Tasks with Interrupts)

Build Example Applications
with Platform 1

Embedded System Requirements
and Characteristics

Concurrent Systems Concepts and
Issues: Process Implementations

and Relationships in HW & SW

Evaluate Application
Performance

Learn Platform 2: RTXv5 RTOS
(+ task preemption and many
integrated support features)

Improve Performance:
Use HW, SW, OS Better

Build Example Applications
with Platform 2

Evaluate Application
Performance

Improve Performance:
Use HW, SW, OS Better

3

Example Applications: Key Requirements and Challenges
Meeting Performance RequirementsProviding FunctionalityApplication

Tolerating
Timing
Mismatches

Reducing
Software
Overhead

Responsive
ness

Timing
Stability

Inter-
Process
Comm.

Sync and
Don’t: Sharing
& Races

Sync and
Do:
Triggering

Analog
Interfacing

Digital
Interfacing

In, Out,
PWM

Blinky Control
Panel

In
Quadrature
Decoder

Out
Waveform
Generator

InOscilloscope

In, OutSerial Comms.

In, OutI2C Comms.

OutLCD Controller

InTouchscreen

InOutSMPS Controller

In, Out
μSD via SPI
Comms.

4

Application Design Overview

 Identify system’s inputs, outputs and processes, and
their key connections

 Identify key hardware, software stages in each process
 Initially consider only peripheral’s fundamental features

(examine enhancements later as needed)

 Analyze each process to find key synchronization
requirements (e.g. timing, events)
 What triggers/releases/allows process (e.g. thread’s work

code) to start execution: event or time?
 Do A once for every time E1 happens
 Do B every 100 ms

 Is there any internal synchronization (wait until)?
 Do X, wait at least 3.2 ms but no more than 3.8 ms, do Y, Wait for

event E, do Z.

 Analyze key process interactions
 Identify and describe synchronization and communication

between processes
 Triggering, shared data and resources (one-way data flows, other

data flows)

 Identify implicit sync. required within the communication.
 Notification of new data? Buffer old data? How much? how to

manage buffer? How to handle overrun condition?

 Choose mechanisms to support and implement these
requirements and interactions
 Program structure
 Interrupt/Scheduler/OS support
 Algorithms to implement in your code

 Continue with design and implementation
 Functionality first, then performance
 Iterate design to improve performance

5

Application Design Overview

 Identify system fundamentals: inputs, outputs and
processes, and their key connections

 Identify key hardware, software stages in each process
 Initially consider only peripheral’s fundamental features

(examine enhancements later as needed)

 Analyze each process to find I/O-driven synchronization
requirements
 What triggers/releases/allows process (e.g. thread’s work

code) to start execution: event or time?
 Do A once for every time E1 happens
 Do B every 100 ms

 Is there any internal synchronization (wait until)?
 Do X, wait at least 3.2 ms but no more than 3.8 ms, do Y, Wait for

event E, do Z.

 Analyze key process interactions
 Identify and describe synchronization and communication

between processes
 Triggering, shared data and resources (one-way data flows, other

data flows)

 Identify implicit sync. required within the communication.
 Notification of new data? Buffer old data? How much? how to

manage buffer? How to handle overrun condition?

 Choose mechanisms to support and implement these
requirements and interactions
 Program structure
 Interrupt/Scheduler/OS support
 Algorithms to implement in your code

 Continue with design and implementation
 Functionality first, then performance
 Iterate design to improve performance

6

Identify System Fundamentals

 Identify system’s inputs,
outputs and processes,
and their key connections
 Note feedback between

output (motor) and some
inputs

 Identify key hardware and
software stages in each
process
 Initially consider only

peripheral’s fundamental
features (later will
examine enhancements
as needed)

7

Synchronization Requirements for Inputs and Outputs

 Analysis may drive early design decisions: using interrupts, hardware peripheral features, etc.
 Initial synchronization: What triggers/releases/allows process (e.g. thread’s work code) to start execution? Event or time?

 Get Target Position: Time-based (periodic): run at least 5 times /second (at most every 200 ms)
 Detect Position: Event: run on rising edge of A or rising edge of Z.

 Separate ISRs or single ISR?
 Control Motor: Time-based (periodic): run every 1 ms to set Speed to 1 (1 kHz PWM output signal) and update Direction

 Is there any more synchronization within the process (wait until)? Event or time?
 Control Motor: Time-based (delay). Clear Speed to 0 after 0 to 1 ms, depending on data for drive level

8

Sync. and Comm. from Key Interactions between Processes

 Identify and describe synchronization and communication between processes
 Additional triggering, shared data and resources (one-way data flows, other data flows, …)

 Identify implicit sync. required within the communication.
 Notification of new data? Buffer old data? How much? how to manage buffer? How to handle overrun condition? …

9

Extended Topic Map: Class 08

Process
Implementation

Dependences
between Processes

Hardware
Processes

Software
Processes

Sched:
Share CPU

Time

Communication

Mutual
Exclusion

Both Hardware and
Software Processes

Mem-
Mapped
Periph.
Access

Embedded Systems
Design Space(s)

DMA
Ctlr

Sync. to What?
Do or Don’t?

How?

Intrpt
System

Notification/
Flow Ctl./

Handshaking

Data Loss &
Duplication

Buffering
Split

Receiver
Process?

Split urgent/
deferrable work

Direct or
Indirect
Comm.?

SW?

Why
use…?

HW?

+ Coop.
Sched. Tasks

Infinite
loop in
main

+ Task
Priorities

+ Task
Preemption

RTCS Run-to-
Completion
Scheduler

RTXv5
RTOS

FSMs for
Responsiveness

How?

“DIY” Code Implementations

Shared
Variables

How?

OS Mechanisms

Event Flag Semaphore

Shared
Variables

Mutex Lock

Concepts How?

In
Order?

Cost of Precise
Timing

Buffering
Concepts

Why?

Message
Queue

How?

Double
Buffer

Circular
Buffer

Req/Ack
Flags

DMA-
managed

buffer

Mailbox

How?

Cost of
Precise Timing

CPU
per

Process

Application
Characteristics

Requirements
& Constraints

Processes and Concurrency
for Embedded Systems

Processes and
Concurrency

Peri-
pherals

Dedic. HW
Interconn.

DMA
Ctlr

Ordering/
Triggering

Concepts

Synchronization

Polling
(Prog’d

I/O)

+Interrupts:
Fore/Back

ground
Serializing

Server

10

APPLICATION DESIGN USING RTCS

11

Checklist for Using RTC Scheduler

1. Add RTCS folder to project directory
2. Add RTCS folder to include search path
3. Link in scheduler tick routine

1. Add call to tick_timer_intr() to a periodic interrupt.
2. Add #include “rtcs.h” to that source file too.

4. Create code for your tasks in tasks.[ch]
5. Modify main code to

1. Add your tasks to scheduler task table
2. Start up the scheduler

12

RTCS_DEMO PROGRAM:
INDEPENDENT R, G, B LED FLASHING

13

Example Application (RTCS_Demo)

 Toggle red LED every 500 ms
 Toggle green LED every 490 ms
 Toggle blue LED every 480 ms
 How would you code this without a scheduler?
 With a periodic scheduler, consider greatest common divisor (GCD) of periods

14

Demo Code for a Task
void Task_R(void) {
static uint8_t LED_On=0;

PTB->PSOR = MASK(DEBUG_RED_POS);

if (LED_On)
PTB->PCOR = MASK(RED_LED_POS);

else
PTB->PSOR = MASK(RED_LED_POS);

LED_On = 1 - LED_On;

PTB->PCOR = MASK(DEBUG_RED_POS);
}

Set (1) a debug output bit to see
on scope/logic analyzer when task

starts running

Clear (0) the debug output bit to see
when task stops running

15

Demo Scheduler Start-Up

int main (void) {
Init_Debug_Signals();
Init_RGB_LEDs();

RTCS_Init(100); // 100 Hz timer ticks
RTCS_Add_Task(Task_R, 0, 50);
RTCS_Add_Task(Task_G, 1, 49);
RTCS_Add_Task(Task_B, 2, 48);

RTCS_Run_Scheduler(); // This call never returns
}

16

RGB/FLASHER PROGRAM WITH RTCS

17

RGB/Flasher Upgrade to RTCS

 ESF textbook Chapter 3 example
 LED behavior: flash (White/Off) or sequence (R/G/B)

 LED timing: slow or fast

 How to port the program to use the RTCS?

 Version 1
 Simple port, start with switch polling version (V2)

 Uses a few RTCS features

 Version 2
 Better port, start with switch interrupt version (V3)

 Takes advantage of more RTCS features

 Code for both is in course repository in RTCS folder

18

RGB/FLASHER PROGRAM WITH RTCS

19

RTCS_RGB_Flasher_1

 Switches polled by periodic Task_Read_Switches
 Enables and disables tasks
 Modifies global delay variables

 LEDs
 Task_RGB and Task_Flash control LED timing using a

busy-wait Delay function

Based on V2
Task_Read_

Switches

Task_Flash

RTCS_Task_Table

Task_RGB

RGB LEDs

Switches

RTCS_ Run
_Scheduler

RTCS_
Timer_Tick

Scheduler

g_w_delay g_RGB_delay

20

Where is the Idle Time?

 Analysis
 Examine call graph
 Consider code execution timeline

 Idle time is buried within task call to in busy-wait Delay function
 Not available to scheduler

Run_RTCS_
Scheduler

Task_Read_
Switches

Task_RGB Task_Flash

DelayControl_
RGB_LEDs

main

DelayControl_
RGB_LEDs

Run_RTCS_Scheduler

Task_Read_Switches

Task_RGB

Delay

Task_Flash

Delay

21

 Switches trigger interrupts when pressed or released
 Handled by ISR PORTD_IRQHandler
 ISR enables, disables tasks, and changes task periods.

No more g_*_delay global variables!
 LEDs

 Task_RGB and Task_Flash broken into FSMs (one state
per color)

 Scheduler controls LED timing (via task periods,
changed by PORTD_IRQHandler)

Based on V3

Switch ISR

Task_Flash_FSM

RTCS_Task_Table

Task_RGB_FSM

RGB LEDs

Switches

RTCS_ Run
_Scheduler

RTCS_
Timer_Tick

Scheduler

RTCS_RGB_Flasher_2

22

Where is the Idle Time?

 Analysis
 Examine call graph
 Consider code execution timeline

 Idle time
 Available to scheduler!

Run_RTCS_
Scheduler

PORTD_
IRQHandler

Task_RGB Task_Flash

Control_
RGB_LEDs

main

Control_
RGB_LEDs

Run_RTCS_Scheduler

PORTD_IRQHandler

Task_RGB

Task_Flash

23

How to Change Program Components?

 Tasks
 Get rid deciding whether to run and busy wait delay

 Switch ISR
 Update scheduler’s task table (not g_*) based on desired behavior

 Variables
 g_w_delay, g_flash_LED, g_RGB_delay aren’t needed any more since scheduler will take care of

them

24

void Task_Flash_FSM(void) {
 static enum {ST_WHITE, ST_BLACK} next_state = ST_WHITE;

 if (g_flash_LED == 1) { // Only run task when in flash mode
 switch (next_state) {
 case ST_WHITE:
 Control_RGB_LEDs(1, 1, 1);
 Delay(g_w_delay);
 next_state = ST_BLACK;
 break;
 case ST_BLACK:
 Control_RGB_LEDs(0, 0, 0);
 Delay(g_w_delay);
 next_state = ST_WHITE;
 break;
 default:
 next_state = ST_WHITE;
 break;
 }
 }
}

Task Changes

 Eliminate run test

 Eliminate delay loop calls,
as scheduler will provide
delays

 Similar changes for
Task_RGB_FSM

25

Switch ISR Changes

 Variables g_w_delay, g_flash_LED,
g_RGB_delay aren’t needed any more since
scheduler will take care of their function
 Use RTCS interface functions to update

scheduling information

 Code will update scheduler’s data to “Make it
so”

 If SW1 pressed

 Enable Task_Flash_FSM, request to run it
and disable Task_RGB_FSM

 Else do opposite

 Update task periods Task_Flash_FSM and
Task_RGB_FSM based on if SW2 is pressed

 Set, clear debug bit to show start and end of
ISR on scope/logic analyzer

26

Scheduler Set-Up

27

Example Showing Scheduler Operation

28

Analyze Resulting Performance with Logic Analyzer

 Measure the responsiveness…
 For switch 1 (Flash/RGB)

 For switch 2 (Fast/Slow)

 How much idle time?

29

EXAMPLE APPLICATIONS: FIRST VERSIONS
WITH RTC SCHEDULER AND INTERRUPTS

30

Example Applications

