
1

APPLICATION DESIGN BASICS USING
RUN-TO-COMPLETION SCHEDULER WITH INTERRUPTS

V1

9/11/2025

2

Where are we in the class?

Learn Platform 1: RTCS Scheduler
(Non-Preemptive Prioritized

Multirate Tasks with Interrupts)

Build Example Applications
with Platform 1

Embedded System Requirements
and Characteristics

Concurrent Systems Concepts and
Issues: Process Implementations

and Relationships in HW & SW

Evaluate Application
Performance

Learn Platform 2: RTXv5 RTOS
(+ task preemption and many
integrated support features)

Improve Performance:
Use HW, SW, OS Better

Build Example Applications
with Platform 2

Evaluate Application
Performance

Improve Performance:
Use HW, SW, OS Better

3

Extended Topic Map: Class 08

Process

Implementation

Dependences

between Processes

Hardware

Processes

Software

Processes

Sched:

Share CPU

Time

Communication

Mutual

Exclusion

Both Hardware and

Software Processes

Mem-

Mapped

Periph.

Access

Embedded Systems

Design Space(s)

DMA

Ctlr

Sync. to What?

Do or Don’t?
How?

Intrpt

System

Notification/

Flow Ctl./

Handshaking

Data Loss &

Duplication
Buffering

Split

Receiver

Process?

Split urgent/

deferrable work

Direct or

Indirect

Comm.?

SW?

Why

use…?

HW?

+ Coop.

Sched. Tasks

Infinite

loop in

main

+ Task

Priorities

+ Task

Preemption

RTCS Run-to-

Completion

Scheduler

RTXv5

RTOS

FSMs for

Responsiveness

How?

“DIY” Code Implementations

Shared

Variables

How?

OS Mechanisms

Event Flag Semaphore

Shared

Variables

Mutex Lock

Concepts How?

In

Order?

Cost of Precise

Timing

Buffering

Concepts
Why?

Message

Queue

How?

Double

Buffer

Circular

Buffer

Req/Ack

Flags

DMA-

managed

buffer

Mailbox

How?

Cost of

Precise Timing

CPU

per

Process

Application

Characteristics

Requirements

& Constraints

Processes and Concurrency

for Embedded Systems

Processes and

Concurrency

Peri-

pherals

Dedic. HW

Interconn.

DMA

Ctlr

Ordering/

Triggering

Concepts

Synchronization

Polling

(Prog’d

I/O)

+Interrupts:

Fore/Back

ground
Serializing

Server

4

Application Design Overview

▪ Identify system’s inputs, outputs and processes, and
their key connections

▪ Identify key hardware, software stages in each process

▪ Initially consider only core peripheral features (later will
examine enhancements)

▪ Analyze each process to find key synchronization
requirements (e.g. timing, events)

▪ What triggers/releases/allows process (e.g. thread’s work
code) to start execution: event or time?

▪ Do A once for every time E1 happens

▪ Do B every 100 ms

▪ Is there any internal synchronization (wait until)?

▪ Do X, wait at least 3.2 ms but no more than 3.8 ms, do Y, Wait for
event E, do Z.

▪ Analyze key process interactions

▪ Identify and describe synchronization and communication
between processes

▪ Triggering, shared data and resources (one-way data flows, other
data flows)

▪ Identify implicit sync. required within the communication.

▪ Notification of new data? Buffer old data? How much? how to
manage buffer? How to handle overrun condition?

▪ Choose mechanisms to support and implement these
requirements and interactions

▪ Program structure

▪ Interrupt/Scheduler/OS support

▪ Algorithms to implement in your code

▪ Continue with design and implementation
▪ Functionality first, then performance

▪ Iterate design to improve performance

5

Example Applications: Key Requirements and Challenges
Application Providing Functionality Meeting Performance Requirements

Digital

Interfacing

Analog

Interfacing

Sync and

Do:

Triggering

Sync and

Don’t:

Sharing &

Races

Inter-

Process

Comm.

Timing

Stability

Responsive

ness

Reducing

Software

Overhead

Tolerating

Timing

Mismatches

Blinky Control

Panel

In, Out,

PWM

Quadrature

Decoder
In

Waveform

Generator
Out

Oscilloscope In

Serial Comms. In, Out

I2C Comms. In, Out

LCD Controller Out

Touchscreen In

SMPS Controller Out In

μSD via SPI

Comms.
In, Out

6

APPLICATION DESIGN USING RTCS

7

Checklist for Using RTC Scheduler

1. Add RTCS folder to project directory

2. Add RTCS folder to include search path

3. Link in scheduler tick routine
1. Add call to tick_timer_intr() to a periodic interrupt.

2. Add #include “rtcs.h” to that source file too.

4. Create code for your tasks in tasks.[ch]

5. Modify main code to
1. Add your tasks to scheduler task table

2. Start up the scheduler

8

RTCS_DEMO PROGRAM:
INDEPENDENT R, G, B LED FLASHING

9

Example Application (RTCS_Demo)

▪ Toggle red LED every 500 ms

▪ Toggle green LED every 490 ms

▪ Toggle blue LED every 480 ms

▪ How would you code this without a scheduler?

▪ With a periodic scheduler, consider greatest common divisor (GCD) of periods

10

Demo Code for a Task

void Task_R(void) {
 static uint8_t LED_On=0;

 PTB->PSOR = MASK(DEBUG_RED_POS);

 if (LED_On)
 PTB->PCOR = MASK(RED_LED_POS);
 else
 PTB->PSOR = MASK(RED_LED_POS);

 LED_On = 1 - LED_On;

 PTB->PCOR = MASK(DEBUG_RED_POS);
}

Set (1) a debug output bit to see

on scope/logic analyzer when task

starts running

Clear (0) the debug output bit to see

when task stops running

11

Demo Scheduler Start-Up

int main (void) {
 Init_Debug_Signals();
 Init_RGB_LEDs();

 RTCS_Init(100); // 100 Hz timer ticks
 RTCS_Add_Task(Task_R, 0, 50);
 RTCS_Add_Task(Task_G, 1, 49);
 RTCS_Add_Task(Task_B, 2, 48);

 RTCS_Run_Scheduler(); // This call never returns
}

12

RGB/FLASHER PROGRAM WITH RTCS

13

RGB/Flasher Upgrade to RTCS

▪ ESF textbook Chapter 3 example

▪ LED behavior: flash (White/Off) or sequence (R/G/B)

▪ LED timing: slow or fast

▪ How to port the program to use the RTCS?

▪ Version 1

▪ Simple port, start with switch polling version (V2)

▪ Uses a few RTCS features

▪ Version 2

▪ Better port, start with switch interrupt version (V3)

▪ Takes advantage of more RTCS features

▪ Code for both is in course repository in RTCS folder

14

RGB/FLASHER PROGRAM WITH RTCS

15

RTCS_RGB_Flasher_1

▪ Switches polled by periodic Task_Read_Switches

▪ Enables and disables tasks

▪ Modifies global delay variables

▪ LEDs

▪ Task_RGB and Task_Flash control LED timing using a
busy-wait Delay function

Based on V2

Task_Read_
Switches

Task_Flash

g_w_delay g_flash_LED g_RGB_delay

Task_RGB

RGB LEDs

Switches

Task_Read_
Switches

Task_Flash

RTCS_Task_Table

Task_RGB

RGB LEDs

Switches

RTCS_ Run
_Scheduler

RTCS_
Timer_Tick

Scheduler

g_w_delay g_RGB_delay

16

Where is the Idle Time?

▪ Analysis
▪ Examine call graph

▪ Consider code execution timeline

▪ Idle time is buried within task call to in busy-wait Delay function
▪ Not available to scheduler

Run_RTCS_
Scheduler

Task_Read_
Switches

Task_RGB Task_Flash

Delay
Control_

RGB_LEDs

main

Delay
Control_

RGB_LEDs

Run_RTCS_Scheduler

Task_Read_Switches

Task_RGB

Delay

Task_Flash

Delay

17

▪ Switches trigger interrupts when pressed or released

▪ Handled by ISR PORTD_IRQHandler

▪ ISR enables, disables tasks, and changes task periods.
No more g_*_delay global variables!

▪ LEDs

▪ Task_RGB and Task_Flash broken into FSMs (one state
per color)

▪ Scheduler controls LED timing (via task periods,
changed by PORTD_IRQHandler)

Based on V3

Interrupt
Service
Routine

Task_Flash_FSM

g_w_delay g_flash_LED g_RGB_delay

Task_RGB_FSM

RGB LEDs

Switches

Switch ISR

Task_Flash_FSM

RTCS_Task_Table

Task_RGB_FSM

RGB LEDs

Switches

RTCS_ Run
_Scheduler

RTCS_
Timer_Tick

Scheduler

RTCS_RGB_Flasher_2

18

Where is the Idle Time?

▪ Analysis
▪ Examine call graph

▪ Consider code execution timeline

▪ Idle time
▪ Available to scheduler!

Run_RTCS_
Scheduler

PORTD_
IRQHandler

Task_RGB Task_Flash

Control_
RGB_LEDs

main

Control_
RGB_LEDs

Run_RTCS_Scheduler

PORTD_IRQHandler

Task_RGB

Task_Flash

19

How to Change Program Components?

▪ Tasks

▪ Get rid deciding whether to run and busy wait delay

▪ Switch ISR

▪ Update scheduler’s task table (not g_*) based on desired behavior

▪ Variables

▪ g_w_delay, g_flash_LED, g_RGB_delay aren’t needed any more since scheduler will take care of
them

20

void Task_Flash_FSM(void) {
 static enum {ST_WHITE, ST_BLACK} next_state = ST_WHITE;

 if (g_flash_LED == 1) { // Only run task when in flash mode
 switch (next_state) {
 case ST_WHITE:
 Control_RGB_LEDs(1, 1, 1);
 Delay(g_w_delay);
 next_state = ST_BLACK;
 break;
 case ST_BLACK:
 Control_RGB_LEDs(0, 0, 0);
 Delay(g_w_delay);
 next_state = ST_WHITE;
 break;
 default:
 next_state = ST_WHITE;
 break;
 }
 }
}

Task Changes

▪ Eliminate run test

▪ Eliminate delay loop calls,
as scheduler will provide
delays

▪ Similar changes for
Task_RGB_FSM

21

Switch ISR Changes

▪ Variables g_w_delay, g_flash_LED,
g_RGB_delay aren’t needed any more since
scheduler will take care of their function

▪ Use RTCS interface functions to update
scheduling information

▪ Code will update scheduler’s data to “Make it
so”

▪ If SW1 pressed

▪ Enable Task_Flash_FSM, request to run it
and disable Task_RGB_FSM

▪ Else do opposite

▪ Update task periods Task_Flash_FSM and
Task_RGB_FSM based on if SW2 is pressed

▪ Set, clear debug bit to show start and end of
ISR on scope/logic analyzer

22

Scheduler Set-Up

23

Analyze Resulting Performance with Logic Analyzer

▪ Measure the responsiveness…

▪ For switch 1 (Flash/RGB)

▪ For switch 2 (Fast/Slow)

▪ How much idle time?

24

Example Showing Scheduler Operation

25

SLIDES FOR LATER

26

Scheduler Feature Summary

▪ To be added…

27

1. Triggering

▪ Two basic triggering options
▪ Time-triggered: periodic thread runs every X

ms. (Could have aperiodic time triggers too)

▪ Structure the thread as an infinite loop with an OS
delay call or wait for next interval

▪ Event-triggered: Thread can run after event Y
happens

▪ Use an OS-provided synchronization primitive
(event, semaphore etc.) to signal the event has
occurred

▪ Structure the thread as an infinite loop with an OS
wait call

▪ Will need the triggering thread(s) to use the OS
signal call

▪ Allow multiple pending trigger requests?
▪ What if periodic 2 ms thread hasn’t gotten to

run for 7 ms?

▪ What if 5 events have occurred but thread
hasn’t run yet?

28

2. Messages

▪ Does the thread pass data to another
thread (one-way, only one writer)?
▪ If so, use OS-provided message primitives

▪ How much information is to be passed?
▪ Event: something (implicitly defined) has

happened

▪ Data + event = message: something has
happened, and here are the explicit details

▪ Does handshaking matter?
▪ Does sender care if receiver has gotten the

notification?

▪ Allow multiple pending messages, or just
use the last one?
▪ How much (if any) information buffering is

needed? Depends on how many events can
occur before other thread can service them.

▪ Single item:

▪ OS: use event or mailbox

▪ Multiple items:

▪ OS: use queue

29

3. Shared Data and Resources

▪ Do multiple threads need to update
shared data or a common resource?

▪ Sharing data in a preemptive system
(threads, ISRs) introduces risks
▪ If data updates are not atomic (are divisible

and can be interrupted)

▪ Anything which takes multiple instructions to
modify (anything in memory!)

▪ Multiword variable (long int, float, double)

▪ Multiword structure or object

▪ If multiple threads can write to the same data
variable

▪ Protect the object
▪ Reduce or disable preemption manually

▪ Use algorithm for protection: access flag,
double buffering, etc.

▪ Apply architectural solution (e.g. server)

▪ Use OS-provided support: mutex

30

POWER AND ENERGY
MANAGEMENT

31

Automatically Saving Power & Energy when Idle

▪ Scheduler knows if system is idle (no tasks
ready to execute)
▪ So it can put processor into low-power mode

▪ Any enabled IRQ will wake up MCU, run ISR
▪ After ISR, scheduler resumes running (and

perhaps sleeping!)

▪ Special case: multiple tasks may be ready to
run
▪ Break out of for loop after completing one

task in order to restart at top of priority table
▪ There may still be other tasks (lower priority)

with runs requested
▪ Add variable to count how many tasks were

run in this while loop iteration, use this to
sleep

void RTCS_Run_Scheduler(void) {
/* Loop forever */
 while (1) {
 tasks_run = 0
 /* Check each task */
 for (i=0 ; i<RTCS_MAX_TASKS ; i++) {
 if task i is ready
 run task i
 tasks_run++;
 break;
 } // at end of for loop
 if tasks_run == 0
 // go to sleep
 __wfi()
 } // end of while loop
}

	Default Section
	Slide 1: Application Design Basics using Run-to-Completion Scheduler with Interrupts
	Slide 2: Where are we in the class?
	Slide 3: Extended Topic Map: Class 08
	Slide 4: Application Design Overview
	Slide 5: Example Applications: Key Requirements and Challenges

	Application Examples
	Slide 6: Application Design using RTCS
	Slide 7: Checklist for Using RTC Scheduler
	Slide 8: RTCS_Demo Program: INdependent R, G, B LED flashing
	Slide 9: Example Application (RTCS_Demo)
	Slide 10: Demo Code for a Task
	Slide 11: Demo Scheduler Start-Up
	Slide 12: RGB/Flasher Program with RTCS
	Slide 13: RGB/Flasher Upgrade to RTCS
	Slide 14: RGB/Flasher Program with RTCS
	Slide 15: RTCS_RGB_Flasher_1
	Slide 16: Where is the Idle Time?
	Slide 17: RTCS_RGB_Flasher_2
	Slide 18: Where is the Idle Time?
	Slide 19: How to Change Program Components?
	Slide 20: Task Changes
	Slide 21: Switch ISR Changes
	Slide 22: Scheduler Set-Up
	Slide 23: Analyze Resulting Performance with Logic Analyzer
	Slide 24: Example Showing Scheduler Operation

	For Later
	Slide 25: Slides for Later
	Slide 26: Scheduler Feature Summary
	Slide 27: Triggering
	Slide 28: 2. Messages
	Slide 29: 3. Shared Data and Resources
	Slide 30: Power and Energy Management
	Slide 31: Automatically Saving Power & Energy when Idle

