NC STATE UNIVERSITY

APPLICATION DESIGN BASICS USING
RUN-TO-COMPLETION SCHEDULER WITH INTERRUPTS

Vi1
9/11/2025

Where are we in the class?

Embedded System Requirements
and Characteristics

\\'

Concurrent Systems Concepts and
Issues: Process Implementations
and Relationships in HW & SW

Learn Platform 1: RTCS Scheduler
(Non-Preemptive Prioritized
Multirate Tasks with Interrupts)

S

Build Example Applications
with Platform 1

Evaluate Application
Performance

\

Improve Performance:
Use HW, SW, OS Better

NC STATE UNIVERSITY

Learn Platform 2: RTXv5 RTOS
(+ task preemption and many
integrated support features)

S,

Build Example Applications
with Platform 2

Evaluate Application
Performance

\

Improve Performance:
Use HW, SW, OS Better

Extended Topic Map: Class 08

Processes and Concurrency
rE tems

Embedded Systems
Design

Requirements
& Constraints

Processes and
oncurren

Precise Timing

Application
aracteristics

Process
mplementation

Both Hardware and
oftware Processes

m

Sched:
per Share CPU

groces

+Interrupts: |/
Fore/Back

Infinite | ;

RTCS Run-to-
Completion
Scheduler

Dependences
between Processes

i

Notification/

Flow Ctl./

m Cost of Precise
=10, . .
1Ming

\

ariables

((DIY” C

de Implemeggavions

A 4 v__ OS Mechanisms

NC STATE UNIVERSITY

\
ag Buffer Buffer

Direct or
Indirect
Comm.?

Split
Receiver
Process?

Buffering
oncepts

<

Split urgent/

dererrable wor

DMA-
managed
buffer

t Message I
ue

NC STATE UNIVERSITY

Application Design Overview

= |dentify system’s inputs, outputs and processes, and = Analyze key process interactions
their key connections = |dentify and describe synchronization and communication
= |dentify key hardware, software stages in each process between processes
= Initially consider only core peripheral features (later will - ;gfagilzrﬁfhared data and resources (one-way data flows, other

examine enhancements)

i .. = |dentify implicit sync. required within the communication.
= Analyze each process to find key synchronization yimp Y A

. .. = Notification of new data? Buffer old data? How much? how to
requirements (e.g. timing, events)

manage buffer? How to handle overrun condition?
= What triggers/releases/allows process (e.g. thread’s work

_ _ = Choose mechanisms to support and implement these
code) to start execution: event or time?

requirements and interactions
= Do A once for every time E1 happens

= Program structure
= Do Bevery 100 ms

= |s there any internal synchronization (wait until)? " Interrupt/Scheduler/OS support

= Do X, wait at least 3.2 ms but no more than 3.8 ms, do Y, Wait for " Algorithms to implement in your code

event E, do Z. = Continue with design and implementation
= Functionality first, then performance
= |terate design to improve performance

NC STATE UNIVERSITY

Example Applications: Key Requirements and Challenges

Application Providing Functionality Meeting Performance Requirements
Sync and : :
. Sync and 4 , Inter- - . |Reducing |Tolerating
Digital Analog Don’t: Timing Responsive -
: : Do: : Process . Software | Timing
Interfacing |Interfacing o Sharing & Stability ness :
Triggering Comm. Overhead |Mismatches
Races
Blinky Control In, Out,
Panel PWM
Quadrature In
Decoder
Waveform Out
Generator
Oscilloscope In
Serial Comms. In, Out
12C Comms. In, Out
LCD Controller Out
Touchscreen In
SMPS Controller Out In
uSD via SPI n Out

Comms.

NC STATE UNIVERSITY

APPLICATION DESIGN USING RTCS

Checklist for Using RTC Scheduler

1. Add RTCS folder to project directory
2. Add RTCS folder to include search path
Link in scheduler tick routine

1. Add call to tick_timer_intr() to a periodic interrupt.

2. Add #include “rtcs.h” to that source file too.
4. Create code for your tasks in tasks.[ch]

5. Modify main code to
1. Add your tasks to scheduler task table
2. Start up the scheduler

NC STATE UNIVERSITY

NC STATE UNIVERSITY

RTCS_DEMO PROGRAM:
INDEPENDENT R, G, B LED FLASHING

NC STATE UNIVERSITY

Example Application (RTCS_Demo)

= Toggle red LED every 500 ms

\
= Toggle green LED every 490 ms ~— é{D - /@M}
/

= Toggle blue LED every 480 ms

How would you code this without a scheduler?

With a periodic scheduler, consider greatest common divisor (GCD) of periods

— /OC// W W/R\ r@ﬁ B /(W VTR

NC STATE UNIVERSITY

Demo Code for a Task

void Task_R(void) {
static uint8_t LED_On=0; Set (1) a debug output bit to see
/ on scope/logic analyzer when task
PTB->PSOR = MASK(DEBUG_RED_POS) ; starts running
if (LED_On)
PTB->PCOR = MASK(RED_LED_POS);

else
PTB->PSOR = MASK(RED_LED_POS) ;

LED_On = 1 - LED_On; / Clear (0) the debug output bit to see

when task stops runnin
PTB->PCOR = MASK(DEBUG_RED_POS); P &
}

NC STATE UNIVERSITY

Demo Scheduler Start-Up

int main (void) {
Init_Debug_Signals();
Init_RGB_LEDs();

RTCS_Init(100); // 100 Hz timer ticks
RTCS_Add_Task(Task_R, 0, 50);
RTCS_Add_Task(Task_G, 1, 49);
RTCS_Add_Task(Task_B, 2, 48);

RTCS_Run_Scheduler(); // This call never returns

NC STATE UNIVERSITY

RGB/FLASHER PROGRAM WITH RTCS

NC STATE UNIVERSITY

RGB/Flasher Upgrade to RTCS

= ESF textbook Chapter 3 example
= LED behavior: flash (White/Off) or sequence (R/G/B)
= LED timing: slow or fast

= How to port the program to use the RTCS?

= Version 1
= Simple port, start with switch polling version (V2)
= Uses a few RTCS features

= Version 2
= Better port, start with switch interrupt version (V3)
= Takes advantage of more RTCS features

= Code for both is in course repository in RTCS folder

NC STATE UNIVERSITY

RGB/FLASHER PROGRAM WITH RTCS

NC STATE UNIVERSITY

RTCS _RGB_Flasher_1 & @ switches
Based on V/2 ' !
@ @ e Task_Read_

Switches

\ /

-~ -

Task_Read_
Switches

Ig_w_delay | Ig_flash_LED | I g_RGB_delay |

Task_Flash Task_RGB :> RTCS Task_Table

RTCS_ Run
_Scheduler

=

—_
g RGB_delay

= Switches polled by periodic Task_Read_Switches
= Enables and disables tasks

g w_delay

= Modifies global delay variables
= LEDs
= Task RGB and Task_Flash control LED timing using a D e m=”

busy-wait Delay function VIV
s I RGB LEDs

Task_Flash Task _RGB

NC STATE UNIVERSITY

Where is the Idle Time?

T

Run_RTCS Scheduler -‘ ﬂ -luﬁ tm
Task Read Switches Ll (, g A
Task_Read_ Task RGB Task_Flash Task_RGB *-\T“"T— L{ [—l N
Switches |1 - |
/; s
Control_ Control_ Task Flash - '
RGB_LEDs RGB_LEDs - ~
Delay
= Analysis

= Examine call graph
= Consider code execution timeline

= |dle time is buried within task call to in busy-wait Delay function
= Not available to scheduler

NC STATE UNIVERSITY

RTCS_RGB_Flasher_2

Based on V3 @ @ s @ @ Switches
- |

]

-

Interrupt

3 Routin
Scheduler

| g_w_delay | | g_flash_LED | | g_RGB_delay | 2
C
Task_Flash_FSM Task_RGB_FSM :>

RTCS_Task_Table

: . : RTCS_ Run
= Switches trigger interrupts when pressed or released Sdrerller

= Handled by ISR PORTD_IRQHandler
= ISR enables, disables tasks, and changes task periods.
No more g_*_delay global variables! Task_Flash_FSM Task_RGB_FSM
= LEDs
- - -

= Task RGB and Task_Flash broken into FSMs (one state R Iy =
per color) m
RGB LEDs

= Scheduler controls LED timing (via task periods,
"7 changed by PORTD_IRQHandler)

Where is the Idle Time?

PORTD _
IRQHandler

= Analysis

Run_RTCS_
_Scheduler

~
S~aa
_ - -
-
-

NC STATE UNIVERSITY

Run_RTCS Scheduler

PORTD _IRQHandler

Task_RGB

Task_Flash

&

\

Task RGB

Control_
RGB_LEDs

Control_
RGB_LEDs

Task Flash

= Examine call graph
= Consider code execution timeline

= |dle time

= Available to scheduler!

NC STATE UNIVERSITY

How to Change Program Components?

= Tasks

= Get rid deciding whether to run and busy wait delay

= Switch ISR

= Update scheduler’s task table (not g_*) based on desired behavior

= Variables

= g w_delay, g flash_LED, g RGB delay aren’t needed any more since scheduler will take care of
them

Task Changes

/-Eliminate run test

void Task Flash rEM{vord) f = Eliminate delay loop calls
static enum {ST WHITE, ST BLACK} next state = ST WHITE; y’ p)
as scheduler will provide

1 = as
switch (next state) { delays
case ST WHITE:
St Gl L = Similar changes for
next state = ST BLACK; Task RGB ESM
break; - -
case ST BLACK:
Control RGB LEDs (0, 0O, 0);
belay g wnderay)s
next state = ST WHITE;
break;
default:
next state = ST WHITE;
break;

20

NC STATE UNIVERSITY

NC STATE UNIVERSITY

Switch ISR Changes

void PORTD IRQHandler (void) {
PTE->PS0OEF = D‘ELSK[DEBUG_ISR_PDS] ;
// BRead switches

= Variables g w_delay, g _flash_LED, if ((PORTD->ISFR & MASK(SW1 POS))) {
g RGB_delay aren’t needed any more since if (SWITCH _PRESSED(SW1l _POS))} { // flash white
- - i i) RTCS Enable Task(Task Flash FsM, 1);:
scheduler will take care of their function RTCS Release Task(Task Flash FSM);
= Use RTCS interface functions to update } igi—fnﬁble—msk (Task_RGB_FSM, 0};
scheduling information RTCS Enable Task(Task Flash FSM, 0);

= Code will update scheduler’s data to “Make it RTCS_Enable_Task(Task_RGB_FSM, 1};
” RTCS Release Task(Task RGB_FSM);

SO }
= |f SW1 pressed '
1f ((PORTD->ISFR & MASEK(SWZ POS))) {
= Enable Task_Flash_FSM, request to run it 1f (SWITCH PRESSED (SW2_POS)) {

RTCS Set Task Period(Task Flash FSM, W DELAY FAST);
RTCS Set Task Period(Task RGE FSM, RGBE DELAY FAST);

and disable Task_ RGB_FSM

B} ; } else {
Else do OppOSIte RTCS Set Task Period(Task Flash FSM, W _DELAY SLOW);
. Update taSk periOdS TaSk_FIaSh_FSM and RTCS Set Task Pericd(Task RGBE FSM, RGE DELAY SLOW);

Task_RGB_FSM based on if SW2 is pressed)

// clear status flags

= Set, clear debug bit to show start and end of DORTD-STISER — Oxffffffff;

ISR on scope/logic analyzer PTE->PCOR = MASK (DEBUG ISR POS);
21
}

NC STATE UNIVERSITY

Scheduler Set-Up

int main (void) {
Init Debug Signals();
Init RGB LEDs();
Init Interrupts():;

RTCS Init(100); // 100 Hz timer tlc%%&mﬁ&

e
RTCS Add Task(Task Flash F3SM, U, W DELAY SLOW) ;
RTCS Enable Task(Task Flash FSM, 0);

RTCEﬁééé=iéﬁﬁi2§$k_RGE_F5Mr 1 RGB DELAY SLOW) ;
RTCS Enable Task(Task RGB FSM, 1);

RTCS Run Scheduler(); // This call never returns

22

NC STATE UNIVERSITY

Analyze Resulting Performance with Logic Analyzer

= Measure the responsiveness...
= For switch 1 (Flash/RGB)

= For switch 2 (Fast/Slow)

= How much idle time?

23

NC STATE UNIVERSITY

. . . AVE
Example Showing Scheduler Operation 7@-05%1&(?5@,\
RGB _ M TTNR | 4|4 ' \

et PLlob

: Releudy [20 |

e Enabled | | fH f

S [Flash %™ [TTINR |3 p—— l ——

5 OIS |) 2l |

Rel.Pndg. | 0 ‘

| Enabled | \ %@ ' TO

Switch) \ '
Timer Tick ISR | 7 W W W _i m n i
Switch ISR |
Scheduler copt| exod] hacoal |super '”I M m& PR IPN B PSS B AR
Task_RGB_FSM \ ‘
Task_Flash_FSM

| LED >

NC STATE UNIVERSITY

SLIDES FOR LATER

Scheduler Feature Summary

= To be added...

26

NC STATE UNIVERSITY

NC STATE UNIVERSITY

1. Triggering

= Two basic triggering options = Allow multiple pending trigger requests?
= Time-triggered: periodic thread runs every X = What if periodic 2 ms thread hasn’t gotten to
ms. (Could have aperiodic time triggers too) run for 7 ms?
= Structure the thread as an infinite loop with an OS = What if 5 events have occurred but thread
delay call or wait for next interval hasn’t run yet?
= Event-triggered: Thread can run after event Y
happens

= Use an OS-provided synchronization primitive
(event, semaphore etc.) to signal the event has
occurred

= Structure the thread as an infinite loop with an OS
wait call

= Will need the triggering thread(s) to use the OS
signal call

27

NC STATE UNIVERSITY

2. Messages

= Does the thread pass data to another = Does handshaking matter?

thread (one-way, only one writer)? = Does sender care if receiver has gotten the

= |f so, use OS-provided message primitives notification?

= How much information is to be passed? = Allow multiple pending messages, or just

= Event: something (implicitly defined) has use the last one?
happened = How much (if any) information buffering is

needed? Depends on how many events can

= Data + event = message: something has
occur before other thread can service them.

happened, and here are the explicit details
= Single item:
= OS: use event or mailbox
= Multiple items:
= OS: use queue

28

NC STATE UNIVERSITY

3. Shared Data and Resources

= Do multiple threads need to update = Protect the object
shared data or a common resource? = Reduce or disable preemption manually
= Sharing data in a preemptive system = Use algorithm for protection: access flag,

double buffering, etc.
= Apply architectural solution (e.g. server)
= Use OS-provided support: mutex

(threads, ISRs) introduces risks

= |f data updates are not atomic (are divisible
and can be interrupted)
= Anything which takes multiple instructions to

modify (anything in memory!)

= Multiword variable (long int, float, double)
= Multiword structure or object

= |f multiple threads can write to the same data
variable

29

NC STATE UNIVERSITY

POWER AND ENERGY
MANAGEMENT

NC STATE UNIVERSITY

Automatically Saving Power & Energy when ldle

31

Scheduler knows if system is idle (no tasks
ready to execute)

= So it can put processor into low-power mode
Any enabled IRQ will wake up MCU, run ISR
After ISR, scheduler resumes running (and
perhaps sleeping!)

Special case: multiple tasks may be ready to

run

= Break out of for loop after completing one
task in order to restart at top of priority table

= There may still be other tasks (lower priority)
with runs requested

= Add variable to count how many tasks were
run in this while loop iteration, use this to
sleep

void RTCS_Run_Scheduler(void) {

ala
”"

}

Loop forever */
while (1) {
tasks_run = 0
/* Check each task */
for (i=0 ; i1<RTCS_MAX_TASKS ; i++) {
1f task 1 is ready
run task 1
tasks_run++;
break;
} // at end of for loop
if tasks_run ==
// go to sleep
_wfi(O
} // end of while Toop

	Default Section
	Slide 1: Application Design Basics using Run-to-Completion Scheduler with Interrupts
	Slide 2: Where are we in the class?
	Slide 3: Extended Topic Map: Class 08
	Slide 4: Application Design Overview
	Slide 5: Example Applications: Key Requirements and Challenges

	Application Examples
	Slide 6: Application Design using RTCS
	Slide 7: Checklist for Using RTC Scheduler
	Slide 8: RTCS_Demo Program: INdependent R, G, B LED flashing
	Slide 9: Example Application (RTCS_Demo)
	Slide 10: Demo Code for a Task
	Slide 11: Demo Scheduler Start-Up
	Slide 12: RGB/Flasher Program with RTCS
	Slide 13: RGB/Flasher Upgrade to RTCS
	Slide 14: RGB/Flasher Program with RTCS
	Slide 15: RTCS_RGB_Flasher_1
	Slide 16: Where is the Idle Time?
	Slide 17: RTCS_RGB_Flasher_2
	Slide 18: Where is the Idle Time?
	Slide 19: How to Change Program Components?
	Slide 20: Task Changes
	Slide 21: Switch ISR Changes
	Slide 22: Scheduler Set-Up
	Slide 23: Analyze Resulting Performance with Logic Analyzer
	Slide 24: Example Showing Scheduler Operation

	For Later
	Slide 25: Slides for Later
	Slide 26: Scheduler Feature Summary
	Slide 27: Triggering
	Slide 28: 2. Messages
	Slide 29: 3. Shared Data and Resources
	Slide 30: Power and Energy Management
	Slide 31: Automatically Saving Power & Energy when Idle

