
1

06: Scheduling and Dispatching,
Response Time Analysis and OS Wish List

9/8/2025

2

▪ Where are we?

▪ Examining the Processing Chain
▪ Scheduling and Dispatching: Where are they done?

▪ Response Time Analysis

▪ OS Wish List

Overview

3

SW Processes: CPU Scheduling, Synchronization & Communication

Concepts of Process Synchronization and Communication

Concepts for Single Process

HW Implem.

of Process

SW Implem. of

Process on CPU

What: Add more processes: independent, concurrent

What: Implement single process

HW Implem.

of each Process

Multiple Dedicated

CPUs

Design hardware

Add more HW

Design software

Add CPUs Share CPU

At least one

shared CPU

What: Provide synchronization and communication between processes

HW→HW SW→HW HW→SW SW→SW

Dedicated

Interconnect

Direct

Memory

Access

Programmed I/O:

SW writes to

peripherals

Programmed

I/O:

SW reads/polls

peripherals

Interrupt

System: Event

triggers SW

Handler

Variables

shared with

correct

algorithms

OS Synch &

Comm

primitives:

Sem, etc.

Synchronization and

communication activities

drive many

CPU scheduling decisions

4

Extended Topic Map: Class 06

Process

Implementation

Dependences

between Processes

Hardware

Processes

Software

Processes

Sched:

Share CPU

Time

Communication

Mutual

Exclusion

Both Hardware and

Software Processes

Mem-

Mapped

Periph.

Access

Embedded Systems

Design Space(s)

DMA

Ctlr

Sync. to What?

Do or Don’t?
How?

Intrpt

System

Notification/

Flow Ctl./

Handshaking

Data Loss &

Duplication
Buffering

Split

Receiver

Process?

Split urgent/

deferrable work

Direct or

Indirect

Comm.?

SW?

Why

use…?

HW?

+ Coop.

Sched. Tasks

Infinite

loop in

main

+ Task

Priorities

+ Task

Preemption

RTCS Run-to-

Completion

Scheduler

RTXv5

RTOS

FSMs for

Responsiveness

How?

“DIY” Code Implementations

Shared

Variables

How?

OS Mechanisms

Event Flag Semaphore

Shared

Variables

Mutex Lock

Concepts How?

In

Order?

Cost of Precise

Timing

Buffering

Concepts
Why?

Message

Queue

How?

Double

Buffer

Circular

Buffer

Req/Ack

Flags

DMA-

managed

buffer

Mailbox

How?

Cost of

Precise Timing

CPU

per

Process

Application

Characteristics

Requirements

& Constraints

Processes and Concurrency

for Embedded Systems

Processes and

Concurrency

Peri-

pherals

Dedic. HW

Interconn.

DMA

Ctlr

Ordering/

Triggering

Concepts

Synchronization

Polling

(Prog’d

I/O)

+Interrupts

: Fore/Back

ground
Serializing

Server

5

▪ Arm CPU may run a SW process in…
▪ Thread Mode

▪ Handler Mode

▪ Main differences: These don’t matter yet
▪ Which stack pointers (SP) are available

▪ Main SP, Process SP

▪ Which access privilege levels are available

▪ Unprivileged level prevents using certain
instructions and accessing certain peripherals,
control registers and memory regions

▪ Privileged level has no restrictions

▪ Transitions
▪ Thread mode -> handler mode: When

starting to respond to an interrupt or
exception request

▪ Handler mode -> thread mode: after finishing
handling last nested interrupt or exception
request

Software Processes and Arm CPU Modes

6

Processing Chain: Schedule and Dispatch Stages

7

▪ Is data visible to software?

▪ Yes: variable in memory

▪ No: Need to convert data so it is visible

▪ Trigger data conversion

▪ Convert Data: Sample and quantize signal into
digital data

▪ Detect Event: analyze data, decide if event
happened

▪ Save that decision for scheduler

▪ Schedule Process: Use detector’s decision to pick
which processing to do next (e.g. do process work)

▪ Dispatch Process: Start it running (or resume it)

▪ Do Work: Perform processing work to handle event

Processing Chain Refinement

8

▪ Dispatch = cause SW process to start/resume
executing

▪ Different methods available

▪ Implicit: next instruction in code is part
of the process

▪ Subroutine call to with process’ root
(overall) function – for better modularity

▪ Interrupt Controller forces CPU to execute
ISR containing code or call to process root function

▪ Process or interrupt handler ask OS to do something,
which may cause OS to run its scheduler and
dispatch a process with context switching.

▪ Interrupt Controller forces CPU to execute handler
which does work. It may also ask OS to do
something, which may cause OS to run its scheduler
and dispatch a process with context switching.

Dispatching a Software Process
Comes after scheduling, but let’s get it out of the way early

if (ev_A_det) {
 // implicit dispatcher
 a_work_1 …;
 a_work_2 …;
 a_work_3 …;
}

if (ev_A_det) {
 A_Work(); // Subroutine call is dispatcher
}

// Interrupt System is dispatcher
ISR_Peripheral {
 a_work_1 …;
 a_work_2 …;
 a_work_3 …;
}

// Interrupt System is dispatcher
ISR_Peripheral {
 a_work_1 …;
 a_work_2 …;
 a_work_3 …;
 OS_reschedule();
}

9

▪ Behavior depends on two decisions

▪ 1. Is this process allowed to run?
▪ Yes: Dispatch and run it

▪ No: 2. What kind of event detection test?

▪ Non-blocking: Advance to detect stage
for next process (via scheduler or program
structure) and continue

▪ Blocking: Repeat software starting with
detect (analyze and decide) by looping
back to it

Scheduling & Dispatching: Decide what to do next, and start it

Detect Event

Analyze Decide Schedule Dispatch Do Work

X X

Y Y

Z Z

X X

??

??

X

Y

Z

X

Y

Z

10

▪ Resulting system timelines
▪ Non-blocking detection: round-robin

▪ Blocking detection: greedy

System Timelines for Non-Blocking vs. Blocking Detection

11

▪ Main Thread Loop: Scheduling loop
in main thread

▪ Main polling event detection code

▪ Process: in Do Work

▪ May have built-in
Detect/Schedule/Do

▪ Schedule may be single non-blocking
test or looping blocking test

▪ Interrupt System: Hardware

▪ Peripheral detects, interrupt
controller schedules & dispatches,
interrupt handler (ISR) does all the
work

Processing Chain Variations 1: Where to Detect & Schedule?

main() {
 while (1) {
 // Detect Event for A
 ev_A_det = ….
 if (ev_A_det) {
 ev_A_det = 0;
 A_Work();
 }
 // Detect Event for B
 ev_B_det = ….
 if (ev_B_det) {
 ev_B_det = 0;
 B_Work();
}}

A_Det_Sched_Work() {
 ev_det = …
 if (ev_det) A_Work();
}
B_Det_Sched_Work() {
 do { // blocking
 ev_det = …
 } while (!ev_det);
 B_Work();
}
main() {
 while (1) {
 A_Det_Sched_Work();
 B_Det_Sched_Work();
}}

ISR_A() {
 A_AllWork();
}

main() {
 while (1) {
 …
}}

12

▪ Interrupt System & (Main or Process): Multiple
locations

▪ Combines interrupt approach with another

▪ Allows splitting of work between ISR and thread for better
responsiveness

▪ Needs synchronization between processes

▪ Results in foreground/background system

▪ Operation

▪ Peripheral detects, interrupt controller schedules, handler
does some work and requests more processing (ev_A_det)

▪ Main loop detects request, schedules process, process does
requested processing work

▪ Could instead use A_Det_Sched_FinishWork()

▪ Note:

▪ Operating system will give us a scheduling point
(reschedule and dispatch) every time our process uses
the OS

Processing Chain Variations 2: Where to Detect & Schedule?

volatile int ev_A_det = 0;

ISR_A() {

 A_StartWork();

 ev_A_det = 1;

}

A_FinishWork() {

 …

}

B_Det_Sched_Work() {

 do {

 ev_det = …

 } while (!ev_det);

 B_Work();

}

main() {

 while (1) {

 if (ev_A_det > 0) {

 ev_A_det = 0;

 A_FinishWork();

 }

 B_Det_Sched_Work();

 }

}

13

Response Time Analysis

14

▪ Response time = time between event and
completion of response processing

▪ RTA for which process?
▪ This process?

▪ Other processes in the system? How does this process
affect/disrupt timing for the other processes in the system?

▪ Managing variations in processing chain structure
▪ Standardize to simplify timing analysis:

▪ Assume detection (analyze, decide) and simple mini-scheduler
(if) for process is performed in its Do Work stage

▪ Still have outer scheduler deciding which process to run next

▪ Process Do Work stage is short if event not detected, longer if
event is detected

▪ Can link multiple processing chains together if the
processes synchronize with each other

Starting Point for Response Time Analysis

15

▪ Two parts

▪ How much processing time is needed for software process A’s instructions?

▪ What else can run between input event at tA_event and response processing completion
at tA_done? How long does it take?

▪ Includes other processes and the scheduler/operating system process(es)

▪ Part 1: How much processing time is needed for software process A’s
instructions?

▪ May have range of possible times. Variations comes from:

▪ Which instructions in A are executed. Dependence
on variations in

▪ Input data, event timing & sequences, …

▪ How long the hardware takes to execute those
instructions. Dependence on variations in

▪ Instruction execution time from pipeline, multiple
function units, out-of-order, branch prediction, etc.

▪ Memory system access time from flash accelerator, cache,
virtual memory system…

Overview of Basic Approach to RTA

16

▪ Two parts
▪ How much processing time is needed for software

process A’s instructions?
▪ What else can run between input event at tA_event

and response processing completion at tA_done? How
long does it take?
▪ Includes other processes and the scheduler/operating

system process(es)

▪ Breaking down what else
▪ How soon does the scheduler start running A?

▪ Is a process already running that will delay when the
scheduler gets to run? U

▪ Does the scheduler have other processes to run before
starting A? V

▪ Can anything delay A after it has started?
▪ Can anything preempt A after it starts running? I, X
▪ Could A have to wait for another process for

synchronization? Y

Overview of Basic Approach to RTA

17

▪ Workload
▪ Processes: P1, P2, P3, P4

▪ Structure for each process

▪ Run Detect code first

▪ If detected, run Work code

▪ Triggering Events (or conditions): E1, E2, E3, E4

▪ Scheduler Versions
▪ V1. Fixed order round-robin. P1, P2, P3, P4, repeat.

▪ V2. And Interrupt detects event E1, Interrupt
handler sets flag requesting a run of P1

▪ V3. And Prioritize processes. P1 > P2 > P3 > P4

▪ V4. And Move P1 work into ISR

RTA Examples with Four Schedulers

CDetect CWork

P1 1 4

P2 1 5

P3 2 7

P4 1 1

18

Execution: Event Timing R1

Event Time (R1)

E1 19.5

E2 8.5

E3 6.5

E4 n/a

19

Execution Schedules With Event Timing R2

Event Time (R1)

E1

E2

E3

E4 n/a

20

Execution Schedules With Event Timing R3
Event Time (R1)

E1

E2

E3

E4 n/a

21

Release Schedule R1 Release Schedule R2 Release Schedule R3

P1

P2

P3

P4

Response Times for Schedulers

22

Observations

23

▪ Limitations of run-to-completion process model.
▪ Thread duration vs. responsiveness

▪ Thread preemption only by interrupts, complicating design

▪ Shortening threads with finite state machines

▪ Sync/comm/sched/dispatch operations are often interdependent
▪ If scheduler/OS can see all these operations, it can make better decisions and offer more features

▪ Example: If process event test will block, then pause process execution and automatically switch in
another process. Reclaims idle time.

Observations

24

▪ Scheduling model variations: Where are detect and schedule performed?
▪ A. Main sched thread (Det, Sched) only: in main loop with polling detection

▪ B. Interrupt only: peripheral detects, interrupt controller schedules, handler does

▪ C. Main & Interrupt system:

▪ Peripheral detects, interrupt controller schedules, handler does some work and requests more processing

▪ Main loop detects by polling request, scheduling process, process does requested work

▪ D. Do Work/Handler

▪ Do Work/Handlerportion of process may also contain Get/Detect/Schedule/Do built in, where Schedule step
may be single non-blocking test or looping blocking test

Observations

25

OS Wish List

26

▪ Methods to provide (“allocate”) responsiveness to processes (or parts within) as needed
▪ Don’t waste responsiveness on processes which don’t need as much

▪ Reduce vulnerability of responsiveness for urgent processing by isolating it from less urgent processing

▪ Improvements
▪ Improve task execution order (not round-robin A B C D A B C D)

▪ Add process priorities, use to drive scheduling.

▪ Static priority?

▪ Dynamic? Based on slack time?

▪ Both?

▪ Improve run-to-completion processes (non-preemptive) with yield and resume features: Finite state
machines (FSMs), other methods. Cooperative multitasking

▪ Provide preemption of processes by higher priority processes

Wish List - Better control of responsiveness

27

▪ Standardize data format for scheduler
▪ Essential data: process is ready (has permission to

run since event was detected). Count to 1 or higher?

▪ Provide protected interface for scheduler data.
E.g. request another run.

▪ Support scheduling decisions more locations:
scheduler code, user code

Generalize/standardize code structure for modular code

28

▪ Support time-based process scheduling (e.g. with
periodic timer tick)
▪ Run this process every N ticks, etc.

▪ Features for synchronization between processes:
▪ Signaling event has occurred, counting pending un-

serviced events. E.g. for triggering processing:
ISR->thread, etc.

▪ Protecting critical sections with mutually exclusive
execution.

▪ Features for communication between processes
▪ Send a message: data and provide sync support for

receiver (and sender too!)

▪ Send a message, allowing multiple pending messages
(FIFO/queue)

Features to simplify programming

29

▪ Take advantage of OS knowledge of system state
▪ Switch processes when blocking

▪ Leverage preemption

Features to reclaim idle time

30

Unused

31

▪ Synchronization must be able to make a process wait until an event occurs

▪ Spinlock example

▪ BTW, communication often includes synchronization (“Wait for message”)

▪ Consequences of a process waiting depend on implementation

▪ Dedicated processor (HW, SW on own CPU)? No problem, not delaying anything else.

▪ Shared processor (SW on shared CPU)? Has issues

▪ While waiting, process B is not doing useful work

▪ Waiting process might block all other processes A, C…
using that CPU for simple schedulers (e.g. main loop)

▪ Relies on other support to make it practical. Time slicing, interrupt triggering handler to set X,
modifying B to share CPU, some other kind of scheduling, etc.

▪ Observation and Opportunity

▪ Synch and Comm operations are good places to make scheduling decisions.

▪ CPU could use that time to work on another process, sharing CPU time better.

▪ What does CPU do if sync condition test fails? Must choose from available methods

▪ When does CPU do next sync condition test?

Connections between Synchronization and Scheduling
Process B

…

// Detector

while (x<1)

 ;

x=0;

// Scheduler

task_ready = 1;

// Dispatcher

if (task_ready) {

 // Handler process

 do_the_work();

}

Process A

…

x=1;

…

32

▪ Synchronization must be able to make a process wait until an event occurs

▪ Spinlock example

▪ BTW, communication often includes synchronization (“Wait for message”)

▪ Consequences of a process waiting depend on implementation

▪ Dedicated processor (HW, SW on own CPU)? No problem, not delaying anything else.

▪ Shared processor (SW on shared CPU)? Has issues

▪ While waiting, process B is not doing useful work

▪ Waiting process might block all other processes A, C…
using that CPU for simple schedulers (e.g. main loop)

▪ Relies on other support to make it practical. Time slicing, interrupt triggering handler to set X,
modifying B to share CPU, some other kind of scheduling, etc.

▪ Observation and Opportunity

▪ Synch and Comm operations are good places to make scheduling decisions.

▪ CPU could use that time to work on another process, sharing CPU time better.

▪ What does CPU do if sync condition test fails? Must choose from available methods

▪ When does CPU do next sync condition test?

Synchronization and Scheduling Interdependence
…

while (x<1)

 ;

x=0;

task_ready = 1;

if
(task_ready)P

do the work

…

x=1;

…

33

▪ Synchronization must be able to make a process wait
(not proceed) until an condition becomes true occurs

▪ Synchronization by software polling

▪ Version 1:
▪ Test the condition

▪ If true, can continue doing the work

▪ If not true, then do what?

▪ Busy-wait polling example
▪ Synchronization test done in software

▪ If test succeeds, After test

Synchronization and Scheduling Interdependence

…

while (x<1)

 ;

x=0;

work

…

x=1;

…

…

if (x>0)

 do work

else

 do what?

34

▪ Implicit, defined by instruction order in process code

▪ CPU’s interrupt system

▪ Explicit software scheduler
▪ Where?

▪ Integrated into program? FSM, etc.

▪ In separate modular support software?

▪ Key Feature: Cooperative or preemptive
process(task) scheduling?

▪ Preemption simplifies design of software, improves responsiveness (usually)

▪ Bottom line
▪ Choice of scheduling approach (and the underlying support it relies upon) affects feasibility of

different synchronization & communication options

Mechanisms for Sharing/Scheduling CPU’s Time

35

▪ Design software process to use standardized
software component to schedule CPU time

▪ Simplifies design, makes it easier to get it right

▪ Also use for synchronization and communication

▪ Benefits of Sched/Sync/Comm interactions

▪ Components can cooperate to provide useful (and more complex)
behaviors, offloading implementation from process (easier!)

▪ Example: Process B awaits synchronization condition X

▪ If sync condition X is true, then

▪ if B is highest priority ready process, then

▪ schedule B to resume running

▪ else B is not highest priority ready process, so

▪ schedule the highest priority ready process to resume running

▪ else sync condition X is not true, so

▪ make a note that B is waiting for X, revisit issue when X becomes true

▪ schedule the highest priority ready process to resume running

▪ Package these up: foundation of an operating system

Modular Software for Sched/Sync/Comm

software process

synch sched

comm

software process

A

B

C

X

X is True

A

B

C

X

X is False

36

▪ How do we want the CPU’s time to be
shared among software processes?
▪ Fairly?

▪ Equal chances to run?

▪ Equal time to run? Time-slice.

▪ Something else, some combination, etc.

▪ Priorities?

▪ Based on what? Urgency? Importance to
application?

▪ Static (fixed) or Dynamic (changing)?

▪ Affected by communication and synchronization?

▪ Something else, some combination, etc.

▪ Many other aspects possible to consider. We’ll
see some useful ones later

▪ Implementation and resource
requirements
▪ How hard will it be to implement this in a

scheduler?

▪ How will it affect our design process?

CPU Scheduling of Software

37

▪ How do we want the CPU’s time to be
shared?
▪ Fairly?

▪ Equal chances to run?

▪ Equal time to run? Time-slice.

▪ Other, mix

▪ Priorities?

▪ Based on what?

▪ Static or Dynamic?

▪ Other, mix

▪ What mechanism shares the CPU’s time?
▪ Interrupt system

▪ Implicit software scheduler in program

▪ Explicit software scheduler

▪ In program or support software?

▪ Cooperative or preemptive

▪ Bottom line: Choice of scheduling
approach impacts synch & comm option
feasibility

(Original Version: Consequences on CPU Scheduling of
Software)

	Roadmap
	Slide 1: 06: Scheduling and Dispatching, Response Time Analysis and OS Wish List
	Slide 2: Overview
	Slide 3: SW Processes: CPU Scheduling, Synchronization & Communication
	Slide 4: Extended Topic Map: Class 06
	Slide 5: Software Processes and Arm CPU Modes

	Schedule and Dispatch
	Slide 6: Processing Chain: Schedule and Dispatch Stages
	Slide 7: Processing Chain Refinement
	Slide 8: Dispatching a Software Process
	Slide 9: Scheduling & Dispatching: Decide what to do next, and start it
	Slide 10: System Timelines for Non-Blocking vs. Blocking Detection
	Slide 11: Processing Chain Variations 1: Where to Detect & Schedule?
	Slide 12: Processing Chain Variations 2: Where to Detect & Schedule?

	Response Time Analysis
	Slide 13: Response Time Analysis
	Slide 14: Starting Point for Response Time Analysis
	Slide 15: Overview of Basic Approach to RTA
	Slide 16: Overview of Basic Approach to RTA
	Slide 17: RTA Examples with Four Schedulers
	Slide 18: Execution: Event Timing R1
	Slide 19: Execution Schedules With Event Timing R2
	Slide 20: Execution Schedules With Event Timing R3
	Slide 21: Response Times for Schedulers

	Observations
	Slide 22: Observations
	Slide 23: Observations
	Slide 24: Observations

	OS Wish List
	Slide 25: OS Wish List
	Slide 26: Wish List - Better control of responsiveness
	Slide 27: Generalize/standardize code structure for modular code
	Slide 28: Features to simplify programming
	Slide 29: Features to reclaim idle time

	New Intro
	Slide 30: Unused
	Slide 31: Connections between Synchronization and Scheduling
	Slide 32: Synchronization and Scheduling Interdependence
	Slide 33: Synchronization and Scheduling Interdependence
	Slide 34: Mechanisms for Sharing/Scheduling CPU’s Time
	Slide 35: Modular Software for Sched/Sync/Comm
	Slide 36: CPU Scheduling of Software
	Slide 37: (Original Version: Consequences on CPU Scheduling of Software)

