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▪ Where are we?

▪ Examining the Processing Chain
▪ Scheduling and Dispatching: Where are they done?

▪ Response Time Analysis

▪ OS Wish List

Overview
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SW Processes: CPU Scheduling, Synchronization & Communication
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Extended Topic Map: Class 06
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▪ Arm CPU may run a SW process in…
▪ Thread Mode

▪ Handler Mode

▪ Main differences: These don’t matter yet
▪ Which stack pointers (SP) are available 

▪ Main SP, Process SP

▪ Which access privilege levels are available

▪ Unprivileged level prevents using certain 
instructions and accessing certain peripherals, 
control registers and memory regions

▪ Privileged level has no restrictions

▪ Transitions
▪ Thread mode -> handler mode: When 

starting to respond to an interrupt or 
exception request

▪ Handler mode -> thread mode: after finishing 
handling last nested interrupt or exception 
request

Software Processes and Arm CPU Modes
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Processing Chain: Schedule and Dispatch Stages
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▪ Is data visible to software?

▪ Yes: variable in memory

▪ No: Need to convert data so it is visible

▪ Trigger data conversion

▪ Convert Data: Sample and quantize signal into 
digital data

▪ Detect Event: analyze data, decide if event 
happened

▪ Save that decision for scheduler

▪ Schedule Process: Use detector’s decision to pick 
which processing to do next (e.g. do process work)

▪ Dispatch Process: Start it running (or resume it)

▪ Do Work: Perform processing work to handle event

Processing Chain Refinement



8

▪ Dispatch = cause SW process to start/resume 
executing

▪ Different methods available

▪ Implicit: next instruction in code is part 
of the process

▪ Subroutine call to with process’ root 
(overall) function – for better modularity

▪ Interrupt Controller forces CPU to execute 
ISR containing code or call to process root function

▪ Process or interrupt handler ask OS to do something, 
which may cause OS to run its scheduler and 
dispatch a process with context switching.

▪ Interrupt Controller forces CPU to execute handler 
which does work. It may also ask OS to do 
something, which may cause OS to run its scheduler 
and dispatch a process with context switching.

Dispatching a Software Process
Comes after scheduling, but let’s get it out of the way early

if (ev_A_det) {
 // implicit dispatcher
 a_work_1 …;
 a_work_2 …;
 a_work_3 …; 
}

if (ev_A_det) {
 A_Work(); // Subroutine call is dispatcher 
}

// Interrupt System is dispatcher
ISR_Peripheral {
 a_work_1 …;
 a_work_2 …;
 a_work_3 …;
}

// Interrupt System is dispatcher
ISR_Peripheral {
 a_work_1 …;
 a_work_2 …;
 a_work_3 …;
 OS_reschedule();
}
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▪ Behavior depends on two decisions

▪ 1. Is this process allowed to run? 
▪ Yes: Dispatch and run it

▪ No: 2. What kind of event detection test?

▪ Non-blocking: Advance to detect stage 
for next process (via scheduler or program 
structure) and continue

▪ Blocking: Repeat software starting with 
detect (analyze and decide) by looping 
back to it

Scheduling & Dispatching: Decide what to do next, and start it

Detect Event

Analyze Decide Schedule Dispatch Do Work

X X

Y Y

Z Z

X X

??

??

X

Y

Z

X

Y

Z
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▪ Resulting system timelines
▪ Non-blocking detection: round-robin  

▪ Blocking detection: greedy

System Timelines for Non-Blocking vs. Blocking Detection



11

▪ Main Thread Loop: Scheduling loop 
in main thread

▪ Main polling event detection code

▪ Process: in Do Work

▪ May have built-in 
Detect/Schedule/Do

▪ Schedule may be single non-blocking 
test or looping blocking test

▪ Interrupt System: Hardware

▪ Peripheral detects, interrupt 
controller schedules & dispatches, 
interrupt handler (ISR) does all the 
work

Processing Chain Variations 1: Where to Detect & Schedule?

main() {
 while (1) {
  // Detect Event for A
  ev_A_det = …. 
  if (ev_A_det) {
   ev_A_det = 0;
   A_Work(); 
  }
  // Detect Event for B
  ev_B_det = ….
  if (ev_B_det) {
   ev_B_det = 0;
   B_Work();
}}

A_Det_Sched_Work( ) {
 ev_det = …
 if (ev_det) A_Work();
}
B_Det_Sched_Work( ) {
 do { // blocking
  ev_det = …
 } while (!ev_det);
 B_Work();
}
main() {
 while (1) {
  A_Det_Sched_Work(); 
  B_Det_Sched_Work();
}}

ISR_A( ) {
 A_AllWork();
}

main() {
 while (1) {
  …
}}
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▪ Interrupt System & (Main or Process): Multiple 
locations

▪ Combines interrupt approach with another

▪ Allows splitting of work between ISR and thread for better 
responsiveness

▪ Needs synchronization between processes

▪ Results in foreground/background system

▪ Operation

▪ Peripheral detects, interrupt controller schedules, handler 
does some work and requests more processing (ev_A_det)

▪ Main loop detects request, schedules process, process does 
requested processing work

▪ Could instead use A_Det_Sched_FinishWork()

▪ Note: 

▪ Operating system will give us a scheduling point 
(reschedule and dispatch) every time our process uses 
the OS

Processing Chain Variations 2: Where to Detect & Schedule?

volatile int ev_A_det = 0;

ISR_A( ) {

 A_StartWork();

 ev_A_det = 1;

}

A_FinishWork( ) {

 …

}

B_Det_Sched_Work( ) {

 do {

  ev_det = …

 } while (!ev_det); 

 B_Work();

}

main() {

 while (1) {

  if (ev_A_det > 0) {

   ev_A_det = 0;

   A_FinishWork(); 

  }

  B_Det_Sched_Work();

 }

}
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Response Time Analysis
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▪ Response time = time between event and 
completion of response processing

▪ RTA for which process?
▪ This process?

▪ Other processes in the system? How does this process 
affect/disrupt timing for the other processes in the system?

▪ Managing variations in processing chain structure
▪ Standardize to simplify timing analysis: 

▪ Assume detection (analyze, decide) and simple mini-scheduler 
(if) for process is performed in its Do Work stage

▪ Still have outer scheduler deciding which process to run next

▪ Process Do Work stage is short if event not detected, longer if 
event is detected

▪ Can link multiple processing chains together if the 
processes synchronize with each other

Starting Point for Response Time Analysis
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▪ Two parts

▪ How much processing time is needed for software process A’s instructions? 

▪ What else can run between input event at tA_event and response processing completion 
at tA_done? How long does it take?

▪ Includes other processes and the scheduler/operating system process(es)

▪ Part 1: How much processing time is needed for software process A’s 
instructions?

▪ May have range of possible times. Variations comes from:

▪ Which instructions in A are executed. Dependence 
on variations in

▪ Input data, event timing & sequences, …

▪ How long the hardware takes to execute those 
instructions. Dependence on variations in

▪ Instruction execution time from pipeline, multiple 
function units, out-of-order, branch prediction, etc.

▪ Memory system access time from flash accelerator, cache, 
virtual memory system…

Overview of Basic Approach to RTA
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▪ Two parts
▪ How much processing time is needed for software 

process A’s instructions? 
▪ What else can run between input event at tA_event 

and response processing completion at tA_done? How 
long does it take?
▪ Includes other processes and the scheduler/operating 

system process(es)

▪ Breaking down what else 
▪ How soon does the scheduler start running A?

▪ Is a process already running that will delay when the 
scheduler gets to run? U

▪ Does the scheduler have other processes to run before 
starting A? V

▪ Can anything delay A after it has started?
▪ Can anything preempt A after it starts running? I, X
▪ Could A have to wait for another process for 

synchronization? Y

Overview of Basic Approach to RTA
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▪ Workload
▪ Processes: P1, P2, P3, P4

▪ Structure for each process 

▪ Run Detect code first

▪ If detected, run Work code

▪ Triggering Events (or conditions): E1, E2, E3, E4

▪ Scheduler Versions
▪ V1. Fixed order round-robin. P1, P2, P3, P4, repeat.

▪ V2. And Interrupt detects event E1, Interrupt 
handler sets flag requesting a run of P1 

▪ V3. And Prioritize processes. P1 > P2 > P3 > P4

▪ V4. And Move P1 work into ISR

RTA Examples with Four Schedulers

CDetect CWork

P1 1 4

P2 1 5

P3 2 7

P4 1 1
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Execution: Event Timing R1 

Event Time (R1)

E1 19.5

E2 8.5

E3 6.5

E4 n/a
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Execution Schedules With Event Timing R2

Event Time (R1)

E1

E2

E3

E4 n/a
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Execution Schedules With Event Timing R3
Event Time (R1)

E1

E2

E3

E4 n/a
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Release Schedule R1 Release Schedule R2 Release Schedule R3

P1

P2

P3

P4

Response Times for Schedulers
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Observations
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▪ Limitations of run-to-completion process model. 
▪ Thread duration vs. responsiveness

▪ Thread preemption only by interrupts, complicating design

▪ Shortening threads with finite state machines

▪ Sync/comm/sched/dispatch operations are often interdependent 
▪ If scheduler/OS can see all these operations, it can make better decisions and offer more features

▪ Example: If process event test will block, then pause process execution and automatically switch in 
another process. Reclaims idle time.

Observations
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▪ Scheduling model variations: Where are detect and schedule performed?
▪ A. Main sched thread (Det, Sched) only: in main loop with polling detection

▪ B. Interrupt only: peripheral detects, interrupt controller schedules, handler does

▪ C. Main & Interrupt system:

▪ Peripheral detects, interrupt controller schedules, handler does some work and requests more processing

▪ Main loop detects by polling request, scheduling process, process does requested work

▪ D. Do Work/Handler

▪ Do Work/Handlerportion of process may also contain Get/Detect/Schedule/Do built in, where Schedule step 
may be single non-blocking test or looping blocking test

Observations
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OS Wish List
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▪ Methods to provide (“allocate”) responsiveness to processes (or parts within) as needed
▪ Don’t waste responsiveness on processes which don’t need as much

▪ Reduce vulnerability of responsiveness for urgent processing by isolating it from less urgent processing

▪ Improvements
▪ Improve task execution order (not round-robin A B C D A B C D)

▪ Add process priorities, use to drive scheduling. 

▪ Static priority? 

▪ Dynamic? Based on slack time? 

▪ Both? 

▪ Improve run-to-completion processes (non-preemptive) with yield and resume features: Finite state 
machines (FSMs), other methods. Cooperative multitasking

▪ Provide preemption of processes by higher priority processes

Wish List - Better control of responsiveness
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▪ Standardize data format for scheduler
▪ Essential data: process is ready (has permission to 

run since event was detected). Count to 1 or higher?

▪ Provide protected interface for scheduler data. 
E.g. request another run.

▪ Support scheduling decisions more locations: 
scheduler code, user code

Generalize/standardize code structure for modular code
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▪ Support time-based process scheduling (e.g. with 
periodic timer tick)
▪ Run this process every N ticks, etc.

▪ Features for synchronization between processes: 
▪ Signaling event has occurred, counting pending un-

serviced events. E.g. for triggering processing: 
ISR->thread, etc.

▪ Protecting critical sections with mutually exclusive 
execution. 

▪ Features for communication between processes 
▪ Send a message: data and provide sync support for 

receiver (and sender too!)

▪ Send a message, allowing multiple pending messages 
(FIFO/queue)

Features to simplify programming 
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▪ Take advantage of OS knowledge of system state
▪ Switch processes when blocking

▪ Leverage preemption

Features to reclaim idle time
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Unused
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▪ Synchronization must be able to make a process wait until an event occurs

▪ Spinlock example

▪ BTW, communication often includes synchronization (“Wait for message”)

▪ Consequences of a process waiting depend on implementation

▪ Dedicated processor (HW, SW on own CPU)? No problem, not delaying anything else.

▪ Shared processor (SW on shared CPU)? Has issues

▪ While waiting, process B is not doing useful work 

▪ Waiting process might block all other processes A, C…
using that CPU for simple schedulers (e.g. main loop)

▪ Relies on other support to make it practical. Time slicing, interrupt triggering handler to set X, 
modifying B to share CPU, some other kind of scheduling, etc.

▪ Observation and Opportunity

▪ Synch and Comm operations are good places to make scheduling decisions.

▪ CPU could use that time to work on another process, sharing CPU time better. 

▪ What does CPU do if sync condition test fails? Must choose from available methods

▪ When does CPU do next sync condition test?

Connections between Synchronization and Scheduling
Process B

…

// Detector

while (x<1)

 ;

x=0;

// Scheduler

task_ready = 1;

// Dispatcher

if (task_ready) {

 // Handler process

 do_the_work();

}

Process A

…

x=1;

…
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▪ Synchronization must be able to make a process wait until an event occurs

▪ Spinlock example

▪ BTW, communication often includes synchronization (“Wait for message”)

▪ Consequences of a process waiting depend on implementation

▪ Dedicated processor (HW, SW on own CPU)? No problem, not delaying anything else.

▪ Shared processor (SW on shared CPU)? Has issues

▪ While waiting, process B is not doing useful work 

▪ Waiting process might block all other processes A, C…
using that CPU for simple schedulers (e.g. main loop)

▪ Relies on other support to make it practical. Time slicing, interrupt triggering handler to set X, 
modifying B to share CPU, some other kind of scheduling, etc.

▪ Observation and Opportunity

▪ Synch and Comm operations are good places to make scheduling decisions.

▪ CPU could use that time to work on another process, sharing CPU time better. 

▪ What does CPU do if sync condition test fails? Must choose from available methods

▪ When does CPU do next sync condition test?

Synchronization and Scheduling Interdependence
…

while (x<1)

 ;

x=0;

task_ready = 1;

if 
(task_ready)P

do the work

…

x=1;

…
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▪ Synchronization must be able to make a process wait 
(not proceed) until an condition becomes true occurs

▪ Synchronization by software polling

▪ Version 1: 
▪ Test the condition

▪ If true, can continue doing the work

▪ If not true, then do what?

▪ Busy-wait polling example
▪ Synchronization test done in software

▪ If test succeeds, After test 

Synchronization and Scheduling Interdependence

…

while (x<1)

 ;

x=0;

work

…

x=1;

…

…

if (x>0)

 do work

else

 do what?
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▪ Implicit, defined by instruction order in process code

▪ CPU’s interrupt system

▪ Explicit software scheduler
▪ Where?

▪ Integrated into program? FSM, etc.

▪ In separate modular support software?

▪ Key Feature: Cooperative or preemptive 
process(task) scheduling?

▪ Preemption simplifies design of software, improves responsiveness (usually)

▪ Bottom line
▪ Choice of scheduling approach (and the underlying support it relies upon) affects feasibility of 

different synchronization & communication options

Mechanisms for Sharing/Scheduling CPU’s Time
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▪ Design software process to use standardized 
software component to schedule CPU time

▪ Simplifies design, makes it easier to get it right

▪ Also use for synchronization and communication 

▪ Benefits of Sched/Sync/Comm interactions

▪ Components can cooperate to provide useful (and more complex) 
behaviors, offloading implementation from process (easier!)

▪ Example: Process B awaits synchronization condition X

▪ If sync condition X is true, then 

▪ if B is highest priority ready process, then

▪ schedule B to resume running

▪ else B is not highest priority ready process, so

▪ schedule the highest priority ready process to resume running

▪ else sync condition X is not true, so

▪ make a note that B is waiting for X, revisit issue when X becomes true

▪ schedule the highest priority ready process to resume running

▪ Package these up: foundation of an operating system

Modular Software for Sched/Sync/Comm

software process

synch sched

comm

software process

A

B

C

X

X is True

A

B

C

X

X is False
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▪ How do we want the CPU’s time to be 
shared among software processes? 
▪ Fairly? 

▪ Equal chances to run?

▪ Equal time to run? Time-slice.

▪ Something else, some combination, etc.

▪ Priorities? 

▪ Based on what? Urgency? Importance to 
application? 

▪ Static (fixed) or Dynamic (changing)?

▪ Affected by communication and synchronization?

▪ Something else, some combination, etc.

▪ Many other aspects possible to consider. We’ll 
see some useful ones later

▪ Implementation and resource 
requirements
▪ How hard will it be to implement this in a 

scheduler?

▪ How will it affect our design process?

CPU Scheduling of Software
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▪ How do we want the CPU’s time to be 
shared? 
▪ Fairly? 

▪ Equal chances to run?

▪ Equal time to run? Time-slice.

▪ Other, mix

▪ Priorities? 

▪ Based on what?

▪ Static or Dynamic? 

▪ Other, mix

▪ What mechanism shares the CPU’s time?
▪ Interrupt system

▪ Implicit software scheduler in program

▪ Explicit software scheduler

▪ In program or support software?

▪ Cooperative or preemptive

▪ Bottom line: Choice of scheduling 
approach impacts synch & comm option 
feasibility

(Original Version: Consequences on CPU Scheduling of 
Software)
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