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Overview

= Where are we?

= Examining the Processing Chain
= Scheduling and Dispatching: Where are they done?
= Response Time Analysis

OS Wish List



NC STATE UNIVERSITY

SW Processes: CPU Scheduling, Synchronization & Communication
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Extended Topic Map: Class 06
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Software Processes and Arm CPU Modes

= Arm CPU may run a SW process in... = Transitions
= Thread Mode = Thread mode -> handler mode: When
= Handler Mode starting to respond to an interrupt or

= Main differences: These don’t matter yet exception request

= Which stack pointers (SP) are available
= Main SP, Process SP

= Which access privilege levels are available

= Handler mode -> thread mode: after finishing
handling last nested interrupt or exception
request

= Unprivileged level prevents using certain
instructions and accessing certain peripherals,
control registers and memory regions

= Privileged level has no restrictions
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Processing Chain: Schedule and Dispatch Stages
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Processing Chain Refinement
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= |s data visible to software? = Schedule Process: Use detector’s decision to pick
= Yes: variable in memory which processing to do next (e.g. do process work)
= No: Need to convert data so it is visible = Dispatch Process: Start it running (or resume it)

= Trigger data conversion = Do Work: Perform processing work to handle event

= Convert Data: Sample and quantize signal into
digital data

= Detect Event: analyze data, decide if event
happened

= Save that decision for scheduler



Dispatching a Software Process

Comes after scheduling, but let’s get it out of the way early

= Dispatch = cause SW process to start/resume
executing

= Different methods available

= Implicit: next instruction in code is part

of the process
if (ev_A det) {
// implicit dispatcher
a_work 1 ..;
a_work 2 ..;
a_work 3 ..;

}
= Subroutine call to with process’ root
(overall) function — for better modularity

if (ev_A det) {
A Work(); // Subroutine call is dispatcher

}

Interrupt Controller forces CPU to execute

ISR containing code or call to process root function
// Interrupt System is dispatcher
ISR _Peripheral {

a_work 1 ..;

a_work 2 ..;

a_work 3 ..;

}

Process or interrupt handler ask OS to do something,
which may cause OS to run its scheduler and
dispatch a process with context switching.

Interrupt Controller forces CPU to execute handler
which doeg werketpaayyaksenask QSstodder
somethinESRaPgchpiriipEalise OS to run its scheduler
and dispatclﬁ—%?:r{éc;ess;with context switching.

a_work 3 ..;
0S_reschedule();

}
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Scheduling & Dispatching: Decide what to do next, and start it

= Behavior depends on two decisions

= 1. Is this process allowed to run?

= Yes: Dispatch and run it
= No: 2. What kind of event detection test?

= Non-blocking: Advance to detect stage
for next process (via scheduler or program
structure) and continue

= Blocking: Repeat software starting with
detect (analyze and decide) by looping
back to it

Detect Event

| _Analyze | Decide _ Schedule Dispatch | Do Work
—ARuwn Xehe > - %]
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System Timelines for Non-Blocking vs. Blocking Detection

= Resulting system timelines
= Non-blocking detection: round-robin

= Blocking detection: greedy



Processing Chain Variations 1: Where to Detect & Schedule?

main() { A Det_Sched_Work( ) { ISR_A( ) {
while (1) { ev_det = .. A _AllWork();
// Detect Event for A if (ev_det) A _Work(); }
ev_A det = ... }
if (ev_A_det) { B_Det_Sched Work( ) { main() {
ev_A det = 0; do { // blocking while (1) {
A Work(); ev_det = ..
} } while (!ev_det); 1}
// Detect Event for B B_Work();
ev_B det = ... }
if (ev_B det) { main() A
ev_B det = 0; while (1) {
B_Work(); A Det_Sched_Work();
}} B _Det_Sched Work();
}}
= Main Thread Loop: Scheduling loop = Process: in Do Work = Interrupt System: Hardware
in main thread = May have built-in = Peripheral detects, interrupt
= Main polling event detection code Detect/Schedule/Do controller schedules & dispatches,
= Schedule may be single non-blocking interrupt handler (ISR) does all the

test or looping blocking test work



Processing Chain Variations 2: Where to Detect & Schedule?

= |nterrupt System & (Main or Process): Multiple
locations

Combines interrupt approach with another

= Allows splitting of work between ISR and thread for better
responsiveness

= Needs synchronization between processes
= Results in foreground/background system
Operation

= Peripheral detects, interrupt controller schedules, handler
does some work and requests more processing (ev_A_det)

= Main loop detects request, schedules process, process does
requested processing work

= Could instead use A_Det_Sched_FinishWork()

Note:

Operating system will give us a scheduling point
(reschedule and dispatch) every time our process uses
the OS

NC STATE UNIVERSITY

volatile int ev_A det = 0; main() {

while (1) {

ISR A( ) { if (ev_A det > 0) {
A _StartWork(); ev_A det = 0;
ev_A det = 1; A FinishWork();

} ¥

A FinishWork( ) { B _Det_Sched Work();
- }

} ¥

B Det _Sched Work( ) {
do {

ev_det = ..
} while (!ev_det);
B _Work();
}
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Response Time Analysis
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Starting Point for Response Time Analysis

= Response time =time between event and /f\’“‘”‘““* A )
completion of response processing Q; il T )
= RTA for which process? | Pone

= This process?

= QOther processes in the system? How does this process
affect/disrupt timing for the other processes in the system?

= Managing variations in processing chain structure
= Standardize to simplify timing analysis:
= Assume detection (analyze, decide) and simple mini-scheduler
(if) for process is performed in its Do Work stage
= Still have outer scheduler deciding which process to run next

= Process Do Work stage is short if event not detected, longer if
event is detected

= Can link multiple processing chains together if the
processes synchronize with each other



NC STATE UNIVERSITY

Overview of Basic Approach to RTA

= Two parts
= How much processing time is needed for software process A’s instructions?
= What else can run between input event at t, ... and response processing completion
att, 4one? How long does it take?
- InEIudes other processes and the scheduler/operating system process(es)

= Part 1: How much processing time is needed for software process A’s

instructions?
= May have range of possible times. Variations comes from:
=  Which instructions in A are executed. Dependence

on variations in
= |nput data, event timing & sequences, ... l /(I/ } ‘/'
= How long the hardware takes to execute those > M}‘N o U a\% i
\
instructions. Dependence on variations in #7 §;§\5 ( \&)(\oy\ )" \MZ{/C.
/(If > V’\‘Z/ﬂk Ui‘e:(

= Instruction execution time from pipeline, multiple

function units, out-of-order, branch prediction, etc. ’(/\M&\ % O/C’

= Memory system access time from flash accelerator, cache, = o
virtual memory system... \YL Luz@& <

/




Overview of Basic Approach to RTA

- Process A
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= Two parts = Breaking down whatelse ™
= How much processing time is needed for software = How soon does the scheduler start running A?

= |s a process already running that will delay when the
scheduler gets to run? U

= Does the scheduler have other processes to run before
starting A? V

= Can anything delay A after it has started?

= Can anything preempt A after it starts running? I, X

= Could A have to wait for another process for
synchronization? Y

process A’s instructions?
= What else can run between input event at t, .,cnt
and response processing completion at t, 4.7 How

long does it take?
= Includes other processes and the scheduler/operating
system process(es)

NC STATE UNIVERSITY



RTA Examples with Four Schedulers

= Workload

= Processes: P1, P2, P3, P4
= Structure for each process

= Run Detect code first
= |f detected, run Work code

= Triggering Events (or conditions): E1, E2, E3, E4

= Scheduler Versions
= V1. Fixed order round-robin. P1, P2, P3, P4, repeat.

= V2. And Interrupt detects event E1, Interrupt
handler sets flag requesting a run of P1

= V3. And Prioritize processes. P1 > P2 > P3 > P4
= V4. And Move P1 work into ISR

NC STATE UNIVERSITY

cDetect CWork
P1 1 4
P2 1 5
P3 2 7
P4 1 1




Execution: Event Timing R1

Event Time (R1)
E1 19.5
E2 8.5
E3 6.5
E4 n/a
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Execution Schedules With Event Timing R2

Event Time (R1)
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Execution Schedules With Event Timing R3

20
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Event Time (R1)
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Response Times for Schedulers

NC STATE UNIVERSITY

Release Schedule R

Release Schedule R2

Release Schedule R3
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P3

P4
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Observations
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Observations

= Limitations of run-to-completion process model.
= Thread duration vs. responsiveness
= Thread preemption only by interrupts, complicating design
= Shortening threads with finite state machines

= Sync/comm/sched/dispatch operations are often interdependent
= |f scheduler/OS can see all these operations, it can make better decisions and offer more features

= Example: If process event test will block, then pause process execution and automatically switch in
another process. Reclaims idle time.

23
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Observations

= Scheduling model variations: Where are detect and schedule performed?
= A. Main sched thread (Det, Sched) only: in main loop with polling detection
= B. Interrupt only: peripheral detects, interrupt controller schedules, handler does

= C. Main & Interrupt system:
= Peripheral detects, interrupt controller schedules, handler does some work and requests more processing
= Main loop detects by polling request, scheduling process, process does requested work

= D. Do Work/Handler

= Do Work/Handlerportion of process may also contain Get/Detect/Schedule/Do built in, where Schedule step
may be single non-blocking test or looping blocking test

24
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OS Wish List
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Wish List - Better control of responsiveness

= Methods to provide (“allocate”) responsiveness to processes (or parts within) as needed

= Don’t waste responsiveness on processes which don’t need as much
= Reduce vulnerability of responsiveness for urgent processing by isolating it from less urgent processing

" Improvements
= |Improve task execution order (not round-robin ABCD A B CD)
= Add process priorities, use to drive scheduling.
= Static priority?
= Dynamic? Based on slack time?

= Both?
= Improve run-to-completion processes (non-preemptive) with yield and resume features: Finite state
machines (FSMs), other methods. Cooperative multitasking

= Provide preemption of processes by higher priority processes

26
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Generalize/standardize code structure for modular code

= Standardize data format for scheduler

= Essential data: process is ready (has permission to
run since event was detected). Count to 1 or higher?

= Provide protected interface for scheduler data.
E.g. request another run.

= Support scheduling decisions more locations:
scheduler code, user code

27



Features to simplify programming

= Support time-based process scheduling (e.g. with
periodic timer tick)
= Run this process every N ticks, etc.

= Features for synchronization between processes:

= Signaling event has occurred, counting pending un-
serviced events. E.g. for triggering processing:
ISR->thread, etc.

= Protecting critical sections with mutually exclusive
execution.

= Features for communication between processes

= Send a message: data and provide sync support for
receiver (and sender too!)

= Send a message, allowing multiple pending messages
(FIFO/queue)

28
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Features to reclaim idle time

= Take advantage of OS knowledge of system state
= Switch processes when blocking

= Leverage preemption

29
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Unused
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Connections between Synchronization and Scheduling

Process A

= Synchronization must be able to make a process wait until an eve;zl;
= Spinlock example
= BTW, communication often includes synchronization (“Wait for message”)
= Consequences of a process waiting depend on implementation
= Dedicated processor (HW, SW on own CPU)? No problem, not delaying anything else.
= Shared processor (SW on shared CPU)? Has issues N7] T _ 3
=  While waiting, process B is not doing useful work
=  Waiting procissmight block all othegr processes A, C... /7 B ??é?-?-n???‘

using that CPU for simple schedulers (e.g. main loop) ,—___> C . _

—

= Relies on other support to make it practical. Time slicing, interrupt triggering handler to set X,
modifying B to share CPU, some other kind of scheduling, etc.

= QObservation and Opportunity

.@an@operations are good places to makdecisions.

= CPU could use that time to work on another process, sharing CPU time better.
= What does CPU do if sync condition test fails? Must choose from available methods

= When does CPU do next sync condition test?
31

Process B

// Detector

while (x<1)

X=0;

// Scheduler

task _ready = 1;

// Dispatcher

if (task_ready) {
// Handler process
do_the_work();

}
TR partlorx
B
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Synchronization and Scheduling Interdependence

x=1; while (x<1
= Synchronization must be able to make a process wait until an event occurs A ( )

= Spinlock example 2 ﬂ_ X=0; ,
= BTW, communication often includes synchronization (“Wait for message”) >)task ready =
= Consequences of a process waiting depend on implementation

if
= Dedicated processor (HW, SW on own CPU)? No problem, not delaying anything else. (task 3R
= Shared processor (SW on shared CPU)? Has issues # > dfl \@r‘&<i
V\é

= Waiting process might block all other processes A, C...
using that CPU for simple schedulers (e.g. main loop) > C . )

—

Uf‘ol\l-f

. Wh.ile waiting, proeess B is not doing useful work /7 B ??é????? A" A (;

= Relies on other support to make it practical. Time slicing, interrupt triggering handler to set X,
modifying B to share CPU, some other kind of scheduling, etc.

= QObservation and Opportunity
-@n@operations are good places to makdecisions.
= CPU could use that time to work on another process, sharing CPU time better.
= What does CPU do if sync condition test fails? Must choose from available methods

= When does CPU do next sync condition test?
32
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Synchronization and Scheduling Interdependence

x=1; = Synchronization must be able to make a process wait

(not proceed) until an condition becomes true occurs

= Synchronization by software polling
if (x>0)

= Version 1:
do work
= Test the condition
else _
do what? = If true, can continue doing the work while (x<1)
= |If not true, then do what? ;
x=0;
= Busy-wait polling example work

= Synchronization test done in software
= |f test succeeds, After test

33



Mechanisms for Sharing/Scheduling CPU’s Time

= Implicit, defined by instruction order in process code vw)t W}“E(«Q
= CPU’s interrupt system 50}43 T}\\

= Explicit software scheduler

= Where?
= Integrated into program? FSM, etc. *?Eq u (VL
= |n separate modular support software? 5 LLQB +$ l
= Key Feature: Cooperative or preemptive e 7/ -

process(task) scheduling?
= Preemption simplifies design of software, improves responsiveness (usually)

= Bottom line

= Choice of scheduling approach (and the underlying support it relies upon) affects feasibility of
different synchronization & communication options

34
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Modular Software for Sched/Sync/Comm

= Design software process to use standardized _ — e o |
software component to schedule CPU time X )\.L ??: l/ T f\j{
= Simplifies design, makes it easier to get it right \ \ \-f- | sched

synch l/

= Also use for synchronization and communication

comm

= Benefits of Sched/Sync/Comm interactions

= Components can cooperate to provide useful (and more complex) X is True
behaviors, offloading implementation from process (easier!)

= Example: Process B awaits synchronization condition X
= If sync condition X is true, then

= if Bis highest priority ready process, then
= schedule B to resume running
= else B is not highest priority ready process, so

O|w| X >

X is False

= schedule the highest priority ready process to resume running

= else sync condition X is not true, so
= make a note that B is waiting for X, revisit issue when X becomes true

= schedule the highest priority ready process to resume running
= Package these up: foundation of an operating system

O|jom| X |>

35
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CPU Scheduling of Software

= How do we want the CPU’s time to be = Implementation and resource
shared among software processes? requirements
= Fairly? = How hard will it be to implement thisin a
= Equal chances to run? scheduler?
= Equal time to run? Time-slice. = How will it affect our design process?

= Something else, some combination, etc.

= Priorities?
= Based on what? Urgency? Importance to

application?

= Static (fixed) or Dynamic (changing)?
= Affected by communication and synchronization?
= Something else, some combination, etc.

= Many other aspects possible to consider. We'll
see some useful ones later

36



(Original Version: Consequences on CPU Scheduling of

Software)
= How do we want the CPU’s time to be = What mechanism shares the CPU’s time?
shared? 90}@& \/a~ = Interrupt system
= Fairly? C ZD = Implicit software scheduler in program
= Equal chances to run? \,J\\ e X = Explicit software scheduler
= Equal time to run? Time-slice. P In program or support software?
= Other, mix f} = Cooperative or preemptive
= Priorities? AR jwa%&\pp\

" Based on what? = Bottom line: Choice of scheduling

. Other m,x approach |mpacts synch &/Tcomm c»z\(u

“@*9?\%0 cixt:::t ﬁ\)v\c\(\ @Wg \u

YW= & o

= Static or Dynamic?

Q)
37 =
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