NC STATE UNIVERSITY

06: Scheduling and Dispatching,
Response Time Analysis and OS Wish List

9/8/2025

NC STATE UNIVERSITY

Overview

= Where are we?

= Examining the Processing Chain
= Scheduling and Dispatching: Where are they done?
= Response Time Analysis

OS Wish List

NC STATE UNIVERSITY

SW Processes: CPU Scheduling, Synchronization & Communication
[E:r;ep_ts forZE\gle Processj

What: Implement single process Des:gn?ardwarg p— T — —DeSIgn sojtware
HW Implem SW Implem. of
of Process Process on CPU
communication activities

What:Add more processes mdeendent concurrent
Multiple Dedicated
CPUs
drive many

re HW
HW Implem.
of each Process
= CPU scheduling decisions
C\/\m of Process Synchronization.and Communication J g
What: Provide syfichronization and communicatigfi between processes
L4

L 4

=

At least one Synchronization and

shared CPU

Variables OS Synch &

Programmed Interrupt
l/O: System: Event

Direct
Memory
Access

Programmed |/O:

Dedicated
Interconnect

shared with Comm
correct primitives:
algorithms Sem, etc.

SW wrrites to
peripherals

SW reads/polls | | triggers SW
peripherals Handler

NC STATE UNIVERSITY

Extended Topic Map: Class 06

Processes and Concurrency
for Embedded Systems
Processes and
Concurrency

Process Dependences
Implementation between Processes
Both Hardware and Communication
Software Processes

Notification/
Flow Ctl./
Handshaking

Embedded Systems
Design Space(s)

Requirements Cost of
& Constraints Precise Timing

Application
Characteristics

Synchronization

Direct or
Indirect
Comm.?

Split
Receiver
Process?

Buffering

Sched:
Share CPU
Time

N
PIY” Cpde Implemeggfations

Shared i ligi Rea/Ack) i
e) (i) (o, () (G| e
buffer
v__ OS Mechanisms
lMutex Lock | _M ilb Message
ailbox Oueue

+Interrupts
:/[Fore/Back [’
ground

Infinite |\ ;
loop in |
main

FSMs for RUES [Niies v
Responsiveness Cs°?Pc||e'|:i°n Event Flag)
cheduler

NC STATE UNIVERSITY

Software Processes and Arm CPU Modes

= Arm CPU may run a SW process in... = Transitions
= Thread Mode = Thread mode -> handler mode: When
= Handler Mode starting to respond to an interrupt or

= Main differences: These don’t matter yet exception request

= Which stack pointers (SP) are available
= Main SP, Process SP

= Which access privilege levels are available

= Handler mode -> thread mode: after finishing
handling last nested interrupt or exception
request

= Unprivileged level prevents using certain
instructions and accessing certain peripherals,
control registers and memory regions

= Privileged level has no restrictions

NC STATE UNIVERSITY

Processing Chain: Schedule and Dispatch Stages

NC STATE UNIVERSITY

Processing Chain Refinement

)

/rl/rr’;f-{ I — ‘ o) |
—) g / ~ . 2 N 177/ [7 | 7" L b {
Hly a Lonvwrstyn | /;I ARy WP Z (G J \‘// Cetl 1 4 NS S| A (
./.' § A {] ~ NSNS ‘l
, f : : I p | | ‘ !'13 \ | ‘:
ZEGWAN | | ZOWY, 74 P i)/"’7”) | |
VK4 D - - L -
= |s data visible to software? = Schedule Process: Use detector’s decision to pick
= Yes: variable in memory which processing to do next (e.g. do process work)
= No: Need to convert data so it is visible = Dispatch Process: Start it running (or resume it)

= Trigger data conversion = Do Work: Perform processing work to handle event

= Convert Data: Sample and quantize signal into
digital data

= Detect Event: analyze data, decide if event
happened

= Save that decision for scheduler

Dispatching a Software Process

Comes after scheduling, but let’s get it out of the way early

= Dispatch = cause SW process to start/resume
executing

= Different methods available

= Implicit: next instruction in code is part

of the process
if (ev_A det) {
// implicit dispatcher
a_work 1 ..;
a_work 2 ..;
a_work 3 ..;

}
= Subroutine call to with process’ root
(overall) function — for better modularity

if (ev_A det) {
A Work(); // Subroutine call is dispatcher

}

Interrupt Controller forces CPU to execute

ISR containing code or call to process root function
// Interrupt System is dispatcher
ISR _Peripheral {

a_work 1 ..;

a_work 2 ..;

a_work 3 ..;

}

Process or interrupt handler ask OS to do something,
which may cause OS to run its scheduler and
dispatch a process with context switching.

Interrupt Controller forces CPU to execute handler
which doeg werketpaayyaksenask QSstodder
somethinESRaPgchpiriipEalise OS to run its scheduler
and dispatclﬁ—%?:r{éc;ess;with context switching.

a_work 3 ..;
0S_reschedule();

}

NC STATE UNIVERSITY

NC STATE UNIVERSITY

Scheduling & Dispatching: Decide what to do next, and start it

= Behavior depends on two decisions

= 1. Is this process allowed to run?

= Yes: Dispatch and run it
= No: 2. What kind of event detection test?

= Non-blocking: Advance to detect stage
for next process (via scheduler or program
structure) and continue

= Blocking: Repeat software starting with
detect (analyze and decide) by looping
back to it

Detect Event

| _Analyze | Decide _ Schedule Dispatch | Do Work
—ARuwn Xehe > - %]

, ™ Ye
[?/, =2 Nun Y < Jez ;:} m

NC STATE UNIVERSITY

System Timelines for Non-Blocking vs. Blocking Detection

= Resulting system timelines
= Non-blocking detection: round-robin

= Blocking detection: greedy

Processing Chain Variations 1: Where to Detect & Schedule?

main() { A Det_Sched_Work() { ISR_A() {
while (1) { ev_det = .. A _AllWork();
// Detect Event for A if (ev_det) A _Work(); }
ev_A det = ... }
if (ev_A_det) { B_Det_Sched Work() { main() {
ev_A det = 0; do { // blocking while (1) {
A Work(); ev_det = ..
} } while (!ev_det); 1}
// Detect Event for B B_Work();
ev_B det = ... }
if (ev_B det) { main() A
ev_B det = 0; while (1) {
B_Work(); A Det_Sched_Work();
}} B _Det_Sched Work();
}}
= Main Thread Loop: Scheduling loop = Process: in Do Work = Interrupt System: Hardware
in main thread = May have built-in = Peripheral detects, interrupt
= Main polling event detection code Detect/Schedule/Do controller schedules & dispatches,
= Schedule may be single non-blocking interrupt handler (ISR) does all the

test or looping blocking test work

Processing Chain Variations 2: Where to Detect & Schedule?

= |nterrupt System & (Main or Process): Multiple
locations

Combines interrupt approach with another

= Allows splitting of work between ISR and thread for better
responsiveness

= Needs synchronization between processes
= Results in foreground/background system
Operation

= Peripheral detects, interrupt controller schedules, handler
does some work and requests more processing (ev_A_det)

= Main loop detects request, schedules process, process does
requested processing work

= Could instead use A_Det_Sched_FinishWork()

Note:

Operating system will give us a scheduling point
(reschedule and dispatch) every time our process uses
the OS

NC STATE UNIVERSITY

volatile int ev_A det = 0; main() {

while (1) {

ISR A() { if (ev_A det > 0) {
A _StartWork(); ev_A det = 0;
ev_A det = 1; A FinishWork();

} ¥

A FinishWork() { B _Det_Sched Work();
- }

} ¥

B Det _Sched Work() {
do {

ev_det = ..
} while (!ev_det);
B _Work();
}

NC STATE UNIVERSITY

Response Time Analysis

NC STATE UNIVERSITY

Starting Point for Response Time Analysis

= Response time =time between event and /f\’“‘”‘““* A)
completion of response processing Q; il T)
= RTA for which process? | Pone

= This process?

= QOther processes in the system? How does this process
affect/disrupt timing for the other processes in the system?

= Managing variations in processing chain structure
= Standardize to simplify timing analysis:
= Assume detection (analyze, decide) and simple mini-scheduler
(if) for process is performed in its Do Work stage
= Still have outer scheduler deciding which process to run next

= Process Do Work stage is short if event not detected, longer if
event is detected

= Can link multiple processing chains together if the
processes synchronize with each other

NC STATE UNIVERSITY

Overview of Basic Approach to RTA

= Two parts
= How much processing time is needed for software process A’s instructions?
= What else can run between input event at t, ... and response processing completion
att, 4one? How long does it take?
- InEIudes other processes and the scheduler/operating system process(es)

= Part 1: How much processing time is needed for software process A’s

instructions?
= May have range of possible times. Variations comes from:
= Which instructions in A are executed. Dependence

on variations in
= |nput data, event timing & sequences, ... l /(I/ } ‘/'
= How long the hardware takes to execute those > M}‘N o U a\% i
\
instructions. Dependence on variations in #7 §;§\5 (\&)(\oy\)" \MZ{/C.
/(If > V’\‘Z/ﬂk Ui‘e:(

= Instruction execution time from pipeline, multiple

function units, out-of-order, branch prediction, etc. ’(/\M&\ % O/C’

= Memory system access time from flash accelerator, cache, = o
virtual memory system... \YL Luz@& <

/

Overview of Basic Approach to RTA

- Process A

i S | — | | X
, 3 | 2 N\ |
() :IH\I(.) l ¥ P ("65‘}\‘»1“: | 2 A P - |
5 / (\ U \ (o A \) - ;
] . (\J N | | ¢ /
{ = h \ ./ {
/k'{ R\ € . . /\/P AW
= Two parts = Breaking down whatelse ™
= How much processing time is needed for software = How soon does the scheduler start running A?

= |s a process already running that will delay when the
scheduler gets to run? U

= Does the scheduler have other processes to run before
starting A? V

= Can anything delay A after it has started?

= Can anything preempt A after it starts running? I, X

= Could A have to wait for another process for
synchronization? Y

process A’s instructions?
= What else can run between input event at t, .,cnt
and response processing completion at t, 4.7 How

long does it take?
= Includes other processes and the scheduler/operating
system process(es)

NC STATE UNIVERSITY

RTA Examples with Four Schedulers

= Workload

= Processes: P1, P2, P3, P4
= Structure for each process

= Run Detect code first
= |f detected, run Work code

= Triggering Events (or conditions): E1, E2, E3, E4

= Scheduler Versions
= V1. Fixed order round-robin. P1, P2, P3, P4, repeat.

= V2. And Interrupt detects event E1, Interrupt
handler sets flag requesting a run of P1

= V3. And Prioritize processes. P1 > P2 > P3 > P4
= V4. And Move P1 work into ISR

NC STATE UNIVERSITY

cDetect CWork
P1 1 4
P2 1 5
P3 2 7
P4 1 1

Execution: Event Timing R1

Event Time (R1)
E1 19.5
E2 8.5
E3 6.5
E4 n/a

NC STATE UNIVERSITY

N [Pl (o] B M w |
2| [55 i) 1 Y Bl
p| 3t =1 =
Pt B Bl @)
o TER B Dot

V21 | l * G
2] I 3w =)
;| 5. o R . E
1 B = 3 I

3 L0 5 2D o5 25

PR e |t () \

N L Y) » ow 5l I3
s|. = 0 | =1 151
“ @ 2]] B

Ve Meye PLwenk wlo TSR e |
el -3 Gl e m B
3 0 0 =] 5]
q | &\ ol Bl 5)

Execution Schedules With Event Timing R2

Event Time (R1)

El

E2

E3

E4

NC STATE UNIVERSITY

Execution Schedules With Event Timing R3

20

NC STATE UNIVERSITY

Event Time (R1)

El

E2

E3

E4

n/a

Response Times for Schedulers

NC STATE UNIVERSITY

Release Schedule R

Release Schedule R2

Release Schedule R3

Pl

P2

P3

P4

21

22

NC STATE UNIVERSITY

Observations

NC STATE UNIVERSITY

Observations

= Limitations of run-to-completion process model.
= Thread duration vs. responsiveness
= Thread preemption only by interrupts, complicating design
= Shortening threads with finite state machines

= Sync/comm/sched/dispatch operations are often interdependent
= |f scheduler/OS can see all these operations, it can make better decisions and offer more features

= Example: If process event test will block, then pause process execution and automatically switch in
another process. Reclaims idle time.

23

NC STATE UNIVERSITY

Observations

= Scheduling model variations: Where are detect and schedule performed?
= A. Main sched thread (Det, Sched) only: in main loop with polling detection
= B. Interrupt only: peripheral detects, interrupt controller schedules, handler does

= C. Main & Interrupt system:
= Peripheral detects, interrupt controller schedules, handler does some work and requests more processing
= Main loop detects by polling request, scheduling process, process does requested work

= D. Do Work/Handler

= Do Work/Handlerportion of process may also contain Get/Detect/Schedule/Do built in, where Schedule step
may be single non-blocking test or looping blocking test

24

25

NC STATE UNIVERSITY

OS Wish List

NC STATE UNIVERSITY

Wish List - Better control of responsiveness

= Methods to provide (“allocate”) responsiveness to processes (or parts within) as needed

= Don’t waste responsiveness on processes which don’t need as much
= Reduce vulnerability of responsiveness for urgent processing by isolating it from less urgent processing

" Improvements
= |Improve task execution order (not round-robin ABCD A B CD)
= Add process priorities, use to drive scheduling.
= Static priority?
= Dynamic? Based on slack time?

= Both?
= Improve run-to-completion processes (non-preemptive) with yield and resume features: Finite state
machines (FSMs), other methods. Cooperative multitasking

= Provide preemption of processes by higher priority processes

26

NC STATE UNIVERSITY
Generalize/standardize code structure for modular code

= Standardize data format for scheduler

= Essential data: process is ready (has permission to
run since event was detected). Count to 1 or higher?

= Provide protected interface for scheduler data.
E.g. request another run.

= Support scheduling decisions more locations:
scheduler code, user code

27

Features to simplify programming

= Support time-based process scheduling (e.g. with
periodic timer tick)
= Run this process every N ticks, etc.

= Features for synchronization between processes:

= Signaling event has occurred, counting pending un-
serviced events. E.g. for triggering processing:
ISR->thread, etc.

= Protecting critical sections with mutually exclusive
execution.

= Features for communication between processes

= Send a message: data and provide sync support for
receiver (and sender too!)

= Send a message, allowing multiple pending messages
(FIFO/queue)

28

NC STATE UNIVERSITY

NC STATE UNIVERSITY

Features to reclaim idle time

= Take advantage of OS knowledge of system state
= Switch processes when blocking

= Leverage preemption

29

30

NC STATE UNIVERSITY

Unused

NC STATE UNIVERSITY

Connections between Synchronization and Scheduling

Process A

= Synchronization must be able to make a process wait until an eve;zl;
= Spinlock example
= BTW, communication often includes synchronization (“Wait for message”)
= Consequences of a process waiting depend on implementation
= Dedicated processor (HW, SW on own CPU)? No problem, not delaying anything else.
= Shared processor (SW on shared CPU)? Has issues N7] T _ 3
= While waiting, process B is not doing useful work
= Waiting procissmight block all othegr processes A, C... /7 B ??é?-?-n???‘

using that CPU for simple schedulers (e.g. main loop) ,—___> C . _

—

= Relies on other support to make it practical. Time slicing, interrupt triggering handler to set X,
modifying B to share CPU, some other kind of scheduling, etc.

= QObservation and Opportunity

.@an@operations are good places to makdecisions.

= CPU could use that time to work on another process, sharing CPU time better.
= What does CPU do if sync condition test fails? Must choose from available methods

= When does CPU do next sync condition test?
31

Process B

// Detector

while (x<1)

X=0;

// Scheduler

task _ready = 1;

// Dispatcher

if (task_ready) {
// Handler process
do_the_work();

}
TR partlorx
B

NC STATE UNIVERSITY

Synchronization and Scheduling Interdependence

x=1; while (x<1
= Synchronization must be able to make a process wait until an event occurs A ()

= Spinlock example 2 ﬂ_ X=0; ,
= BTW, communication often includes synchronization (“Wait for message”) >)task ready =
= Consequences of a process waiting depend on implementation

if
= Dedicated processor (HW, SW on own CPU)? No problem, not delaying anything else. (task 3R
= Shared processor (SW on shared CPU)? Has issues # > dfl \@r‘&<i
V\é

= Waiting process might block all other processes A, C...
using that CPU for simple schedulers (e.g. main loop) > C .)

—

Uf‘ol\l-f

. Wh.ile waiting, proeess B is not doing useful work /7 B ??é????? A" A (;

= Relies on other support to make it practical. Time slicing, interrupt triggering handler to set X,
modifying B to share CPU, some other kind of scheduling, etc.

= QObservation and Opportunity
-@n@operations are good places to makdecisions.
= CPU could use that time to work on another process, sharing CPU time better.
= What does CPU do if sync condition test fails? Must choose from available methods

= When does CPU do next sync condition test?
32

NC STATE UNIVERSITY

Synchronization and Scheduling Interdependence

x=1; = Synchronization must be able to make a process wait

(not proceed) until an condition becomes true occurs

= Synchronization by software polling
if (x>0)

= Version 1:
do work
= Test the condition
else _
do what? = If true, can continue doing the work while (x<1)
= |If not true, then do what? ;
x=0;
= Busy-wait polling example work

= Synchronization test done in software
= |f test succeeds, After test

33

Mechanisms for Sharing/Scheduling CPU’s Time

= Implicit, defined by instruction order in process code vw)t W}“E(«Q
= CPU’s interrupt system 50}43 T}\\

= Explicit software scheduler

= Where?
= Integrated into program? FSM, etc. *?Eq u (VL
= |n separate modular support software? 5 LLQB +$ l
= Key Feature: Cooperative or preemptive e 7/ -

process(task) scheduling?
= Preemption simplifies design of software, improves responsiveness (usually)

= Bottom line

= Choice of scheduling approach (and the underlying support it relies upon) affects feasibility of
different synchronization & communication options

34

NC STATE UNIVERSITY

Modular Software for Sched/Sync/Comm

= Design software process to use standardized _ — e o |
software component to schedule CPU time X)\.L ??: l/ T f\j{
= Simplifies design, makes it easier to get it right \ \ \-f- | sched

synch l/

= Also use for synchronization and communication

comm

= Benefits of Sched/Sync/Comm interactions

= Components can cooperate to provide useful (and more complex) X is True
behaviors, offloading implementation from process (easier!)

= Example: Process B awaits synchronization condition X
= If sync condition X is true, then

= if Bis highest priority ready process, then
= schedule B to resume running
= else B is not highest priority ready process, so

O|w| X >

X is False

= schedule the highest priority ready process to resume running

= else sync condition X is not true, so
= make a note that B is waiting for X, revisit issue when X becomes true

= schedule the highest priority ready process to resume running
= Package these up: foundation of an operating system

O|jom| X |>

35

NC STATE UNIVERSITY

CPU Scheduling of Software

= How do we want the CPU’s time to be = Implementation and resource
shared among software processes? requirements
= Fairly? = How hard will it be to implement thisin a
= Equal chances to run? scheduler?
= Equal time to run? Time-slice. = How will it affect our design process?

= Something else, some combination, etc.

= Priorities?
= Based on what? Urgency? Importance to

application?

= Static (fixed) or Dynamic (changing)?
= Affected by communication and synchronization?
= Something else, some combination, etc.

= Many other aspects possible to consider. We'll
see some useful ones later

36

(Original Version: Consequences on CPU Scheduling of

Software)
= How do we want the CPU’s time to be = What mechanism shares the CPU’s time?
shared? 90}@& \/a~ = Interrupt system
= Fairly? C ZD = Implicit software scheduler in program
= Equal chances to run? \,J\\ e X = Explicit software scheduler
= Equal time to run? Time-slice. P In program or support software?
= Other, mix f} = Cooperative or preemptive
= Priorities? AR jwa%&\pp\

" Based on what? = Bottom line: Choice of scheduling

. Other m,x approach |mpacts synch &/Tcomm c»z\(u

“@*9?\%0 cixt:::t ﬁ\)v\c\(\ @Wg \u

YW= & o

= Static or Dynamic?

Q)
37 =

	Roadmap
	Slide 1: 06: Scheduling and Dispatching, Response Time Analysis and OS Wish List
	Slide 2: Overview
	Slide 3: SW Processes: CPU Scheduling, Synchronization & Communication
	Slide 4: Extended Topic Map: Class 06
	Slide 5: Software Processes and Arm CPU Modes

	Schedule and Dispatch
	Slide 6: Processing Chain: Schedule and Dispatch Stages
	Slide 7: Processing Chain Refinement
	Slide 8: Dispatching a Software Process
	Slide 9: Scheduling & Dispatching: Decide what to do next, and start it
	Slide 10: System Timelines for Non-Blocking vs. Blocking Detection
	Slide 11: Processing Chain Variations 1: Where to Detect & Schedule?
	Slide 12: Processing Chain Variations 2: Where to Detect & Schedule?

	Response Time Analysis
	Slide 13: Response Time Analysis
	Slide 14: Starting Point for Response Time Analysis
	Slide 15: Overview of Basic Approach to RTA
	Slide 16: Overview of Basic Approach to RTA
	Slide 17: RTA Examples with Four Schedulers
	Slide 18: Execution: Event Timing R1
	Slide 19: Execution Schedules With Event Timing R2
	Slide 20: Execution Schedules With Event Timing R3
	Slide 21: Response Times for Schedulers

	Observations
	Slide 22: Observations
	Slide 23: Observations
	Slide 24: Observations

	OS Wish List
	Slide 25: OS Wish List
	Slide 26: Wish List - Better control of responsiveness
	Slide 27: Generalize/standardize code structure for modular code
	Slide 28: Features to simplify programming
	Slide 29: Features to reclaim idle time

	New Intro
	Slide 30: Unused
	Slide 31: Connections between Synchronization and Scheduling
	Slide 32: Synchronization and Scheduling Interdependence
	Slide 33: Synchronization and Scheduling Interdependence
	Slide 34: Mechanisms for Sharing/Scheduling CPU’s Time
	Slide 35: Modular Software for Sched/Sync/Comm
	Slide 36: CPU Scheduling of Software
	Slide 37: (Original Version: Consequences on CPU Scheduling of Software)

