
1

More Synchronization:
Synchronization, Communication 

and Mutual Exclusion
v.4 9/2/25



2

Extending the Topic Map

Process 

Implementation

Dependences 

between Processes

Hardware 

Processes

Software 

Processes

Sched: 

Share CPU 

Time

Communication

Mutual 

Exclusion

Both Hardware and 

Software Processes

Mem-

Mapped 

Periph. 

Access

Embedded Systems 

Design Space(s)

DMA 

Ctlr

Sync. to What?

Do or Don’t?
How?

Intrpt 

System

Notification/ 

Flow Ctl./ 

Handshaking

Data Loss & 

Duplication
Buffering

Split 

Receiver 

Process?

Split urgent/ 

deferrable work

Direct or 

Indirect 

Comm.?

SW?

Why 

use…?

HW?

+ Coop. 

Sched. Tasks

Infinite 

loop in 

main

+ Task 

Priorities

+ Task 

Preemption

RTCS Run-to-

Completion 

Scheduler

RTXv5 

RTOS

FSMs for 

Responsiveness

How?

“DIY” Code Implementations

Shared 

Variables

How?

OS Mechanisms

Event Flag Semaphore

Shared 

Variables

Mutex Lock

Concepts How?

In 

Order?

Cost of Precise 

Timing

Buffering 

Concepts
Why?

Message 

Queue

How?

Double 

Buffer

Circular 

Buffer

Req/Ack 

Flags

DMA-

managed 

buffer

Mailbox

How?

Cost of 

Precise Timing

CPU 

per 

Process

Application 

Characteristics

Requirements 

& Constraints

Processes and Concurrency 

for Embedded Systems

Processes and 

Concurrency

Peri-

pherals

Dedic. HW 

Interconn.

DMA 

Ctlr

Ordering/

Triggering

Concepts

Synchronization

Polling 

(Prog’d 

I/O)

+Interrupts

: Fore/Back 

ground
Serializing 

Server

Class 03

Class 04 (Today)



3

Blocking vs. Non-Blocking Tests

prev_A = read signal A from port

while (1) {

 // Quad Decoder - Blocking

 do {

  cur_A = read signal A from port

  detected = (prev_A==0) && (cur_A==1);

  prev_A = cur_A;

 } while (!detected);

 cur_B = read signal B from port

 if (cur_B==0)

  pos++;

 else

  pos--;

 // Other work X

 …

 // More other work Y

 …

}

prev_A = read signal A from port

while (1) {

 // Quad Decoder – Non-blocking

 cur_A = read signal A from port

 detected = (prev_A==0) && (cur_A==1);

 prev_A = cur_A;

 if (detected) {

  cur_B = read signal B from port

  if (cur_B==0)

   pos++;

  else

   pos--;

 }

 // Other work X

 …

 // More other work Y

 …

}



4

▪ Key Processes
▪ Software: DMA ISR calculates new 

waveform samples, stores them in buffer

▪ Hardware: DMA transfers 

▪ DMA transfers a sample from memory 
buffer

Waveform Generator: ISR to Refill Buffer

W7

DAC
VOut

Timer

ISR: 
Refill 

Buffer

NVIC
DMA Transfer One Sample

W9

DAC
VOut

Timer

ISR: Start to 
Refill Buffer

NVIC
DMA Transfer One Sample

Run
later



5

Sync and Don’t: Mutual Exclusion



6

All memory 
data object 

updates are 
critical sections

Data Race Corruption and Mutual Exclusion

Overlapped Critical sections: 
memory object updates, 
access to shared peripheralVulnerability

Fault Trigger

Preemption: 

Overlapping critical 

sections from 

different threads 

for same object

Solution
Ensure mutually exclusive execution of a 

resource’s critical sections by using 

protection algorithm in code, or prevent 

preemption of critical sections 

(interrupt/scheduler locking, mutex, …)

Load/Store 

Architecture: makes 

updates of all 

memory objects into 

critical sections



7

▪ Example: two threads increment shared variable counter
▪ “Threads” includes software processes, interrupt handlers, 

etc.

▪ Compiler translates C (source code) to Arm machine 
language instructions (object code) 

▪ Arm architecture is a Load/Store architecture
▪ Variables must be in CPU registers for instr. to process
▪ Arm architecture CPU core has 13 32-bit registers for this 

processing: r0 through r12
▪ Need to transfer data between memory and register

▪ For Arm code, any modification of a memory-resident 
variable uses at least 3 instructions
▪ Read: load memory value into register

▪ Modify value in register
▪ Write: store register value into memory 

▪ Compiler tries to eliminate extra work
▪ In a function, eliminates reads and writes that they don’t 

seem to do anything
▪ Volatile: tells compiler the variable may be changed by 

something else (software thread, hardware), so keep all of 
its reads and writes.

▪ For the increment operation, the compiler generates a 
series of machine language instructions: 
▪ T1.I1, T1.I2, T1.I3
▪ T2.I1, T2.I2, T2.I3

Different Threads Accessing Same Variable, Peripheral, …

Thread_1{

 counter = counter + 1;

 // T1.I1 load r0 from memory

 // T1.I2 add 1 to r0

 // T1.I3 store r0 to memory

}

Thread_2{

 counter = counter + 1;

 // T2.I1 load r3 from memory

 // T2.I2 add 1 to r3

 // T2.I3 store r3 to memory

}

volatile int32_t counter=3;



8

▪ Machine code is vulnerable to generating wrong 
result for counter increment if instructions are 
overlapped in certain ways

▪ Counter starts at 3
▪ Incrementing counter twice should end with 

counter at 5
▪ Some execution sequences trigger race 

condition in code (type of concurrency bug)
▪ One Example: T1.I1, T1.I2, T2.I1, T2.I2, T2.I3, T1.I3
▪ Incrementing 3 twice results in 4, not 5

Concurrency Bug: Race Condition

Thread_1{

 counter = counter + 1;

 // T1.I1 load r0 from memory

 // T1.I2 add 1 to r0

 // T1.I3 store r0 to memory

}

Thread_2{

 counter = counter + 1;

 // T2.I1 load r3 from memory

 // T2.I2 add 1 to r3

 // T2.I3 store r3 to memory

}

volatile int32_t counter=3;

Instruction counter (in memory) T1 r0 T2 r3



9

▪ Vulnerable if T2.I1,2,3 execute after T1.I1 starts 
but before T1.I3 finishes. 
▪ Called “race condition”
▪ Other execution sequences cause race conditions

▪ Problem 
▪ Code in T1 and T2 to modify counter is sequence of 

instructions which may be overlapped in execution
▪ This creates critical sections in T1 and T2 for counter 

from each load instruction to the corresponding store 
instruction (inclusive)

▪ Observations
▪ Each shared variable is accessed by its critical sections 

of code in different threads.
▪ A variable’s critical sections must be executed without 

overlapping: no critical section accessing that 
variable starts if another has started but not yet 
finished. 

Analysis of Race Condition

Thread_1{

 counter = counter + 1;

 // T1.I1 load r0 from memory

 // T1.I2 add 1 to r0

 // T1.I3 store r0 to memory

}

Thread_2{

 counter = counter + 1;

 // T2.I1 load r3 from memory

 // T2.I2 add 1 to r3

 // T2.I3 store r3 to memory

}

volatile int32_t counter=3;



10

▪ Race condition 
▪ An ordering of instructions in multiple threads (or ISRs) on one or more cores which causes code to 

behave anomalously. 

▪ Is there a way to jump back and forth between two threads and get the wrong answer?

▪ Critical section
▪ A section of code which creates a possible race condition. 

▪ Any access to a shared object in a system with preemption is a critical section of code

▪ Only one critical section per shared object can be executed at a time. 

▪ OK to execute multiple critical sections concurrently if they access different shared objects.

▪ Some synchronization mechanism is required at the entry and exit of each critical section to ensure 
exclusive use. 

Definitions



11

▪ Shared variable is example of a shared resource. Peripherals, other items may be shared 
as well.
▪ LCD Controller accepts series of bytes: Command, data, data, data, ….. 

▪ Threads sharing resources are vulnerable to race conditions
▪ How to protect the critical sections? We’ll see later.

▪ Shared resource accesses must be executed atomically without overlapping.

▪ For code compiled for a load-store arch. (e.g. Arm), even single-word variables are 
vulnerable.
▪ Turns some operations into non-atomic instruction sequences.

▪ May take a deeper look later
▪ Do any instructions give atomic memory access, and how are they used?
▪ What about multi-core CPUs? 
▪ What about an increment-in-memory instruction?
▪ What about a multi-core CPUs with an increment-in-memory instruction?

Generalizations



12

All memory 
data object 

updates are 
critical sections

Preemption and Data/Operation Corruption

Overlapped Critical sections: 
memory object updates, 
access to shared peripheralVulnerability

Fault Trigger

Preemption: 

Overlapping critical 

sections from 

different threads 

for same object

Solution
Use protection algorithm in code, 

or prevent preemption of critical 

sections (interrupt/scheduler 

locking, mutex, …)

Load/Store 

Architecture: makes 

updates of all 

memory objects into 

critical sections


	Default Section
	Slide 1: More Synchronization: Synchronization, Communication  and Mutual Exclusion
	Slide 2: Extending the Topic Map
	Slide 3: Blocking vs. Non-Blocking Tests
	Slide 4: Waveform Generator: ISR to Refill Buffer

	Data Corruption from Preemption
	Slide 5: Sync and Don’t: Mutual Exclusion
	Slide 6: Data Race Corruption and Mutual Exclusion
	Slide 7: Different Threads Accessing Same Variable, Peripheral, …
	Slide 8: Concurrency Bug: Race Condition
	Slide 9: Analysis of Race Condition
	Slide 10: Definitions
	Slide 11: Generalizations
	Slide 12: Preemption and Data/Operation Corruption


