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Extending the Topic Map
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Blocking vs. Non-Blocking Tests

prev_A = read signal A from port

while (1) {

 // Quad Decoder - Blocking

 do {

  cur_A = read signal A from port

  detected = (prev_A==0) && (cur_A==1);

  prev_A = cur_A;

 } while (!detected);

 cur_B = read signal B from port

 if (cur_B==0)

  pos++;

 else

  pos--;

 // Other work X

 …

 // More other work Y

 …

}

prev_A = read signal A from port

while (1) {

 // Quad Decoder – Non-blocking

 cur_A = read signal A from port

 detected = (prev_A==0) && (cur_A==1);

 prev_A = cur_A;

 if (detected) {

  cur_B = read signal B from port

  if (cur_B==0)

   pos++;

  else

   pos--;

 }

 // Other work X

 …

 // More other work Y

 …

}
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▪ Key Processes
▪ Software: DMA ISR calculates new 

waveform samples, stores them in buffer

▪ Hardware: DMA transfers 

▪ DMA transfers a sample from memory 
buffer

Waveform Generator: ISR to Refill Buffer
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Sync and Don’t: Mutual Exclusion
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All memory 
data object 

updates are 
critical sections

Data Race Corruption and Mutual Exclusion

Overlapped Critical sections: 
memory object updates, 
access to shared peripheralVulnerability

Fault Trigger

Preemption: 

Overlapping critical 

sections from 

different threads 

for same object

Solution
Ensure mutually exclusive execution of a 

resource’s critical sections by using 

protection algorithm in code, or prevent 

preemption of critical sections 

(interrupt/scheduler locking, mutex, …)

Load/Store 

Architecture: makes 
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critical sections
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▪ Example: two threads increment shared variable counter
▪ “Threads” includes software processes, interrupt handlers, 

etc.

▪ Compiler translates C (source code) to Arm machine 
language instructions (object code) 

▪ Arm architecture is a Load/Store architecture
▪ Variables must be in CPU registers for instr. to process
▪ Arm architecture CPU core has 13 32-bit registers for this 

processing: r0 through r12
▪ Need to transfer data between memory and register

▪ For Arm code, any modification of a memory-resident 
variable uses at least 3 instructions
▪ Read: load memory value into register

▪ Modify value in register
▪ Write: store register value into memory 

▪ Compiler tries to eliminate extra work
▪ In a function, eliminates reads and writes that they don’t 

seem to do anything
▪ Volatile: tells compiler the variable may be changed by 

something else (software thread, hardware), so keep all of 
its reads and writes.

▪ For the increment operation, the compiler generates a 
series of machine language instructions: 
▪ T1.I1, T1.I2, T1.I3
▪ T2.I1, T2.I2, T2.I3

Different Threads Accessing Same Variable, Peripheral, …

Thread_1{

 counter = counter + 1;

 // T1.I1 load r0 from memory

 // T1.I2 add 1 to r0

 // T1.I3 store r0 to memory

}

Thread_2{

 counter = counter + 1;

 // T2.I1 load r3 from memory

 // T2.I2 add 1 to r3

 // T2.I3 store r3 to memory

}

volatile int32_t counter=3;
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▪ Machine code is vulnerable to generating wrong 
result for counter increment if instructions are 
overlapped in certain ways

▪ Counter starts at 3
▪ Incrementing counter twice should end with 

counter at 5
▪ Some execution sequences trigger race 

condition in code (type of concurrency bug)
▪ One Example: T1.I1, T1.I2, T2.I1, T2.I2, T2.I3, T1.I3
▪ Incrementing 3 twice results in 4, not 5

Concurrency Bug: Race Condition

Thread_1{

 counter = counter + 1;

 // T1.I1 load r0 from memory

 // T1.I2 add 1 to r0

 // T1.I3 store r0 to memory

}

Thread_2{

 counter = counter + 1;

 // T2.I1 load r3 from memory

 // T2.I2 add 1 to r3

 // T2.I3 store r3 to memory

}

volatile int32_t counter=3;

Instruction counter (in memory) T1 r0 T2 r3
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▪ Vulnerable if T2.I1,2,3 execute after T1.I1 starts 
but before T1.I3 finishes. 
▪ Called “race condition”
▪ Other execution sequences cause race conditions

▪ Problem 
▪ Code in T1 and T2 to modify counter is sequence of 

instructions which may be overlapped in execution
▪ This creates critical sections in T1 and T2 for counter 

from each load instruction to the corresponding store 
instruction (inclusive)

▪ Observations
▪ Each shared variable is accessed by its critical sections 

of code in different threads.
▪ A variable’s critical sections must be executed without 

overlapping: no critical section accessing that 
variable starts if another has started but not yet 
finished. 

Analysis of Race Condition

Thread_1{

 counter = counter + 1;

 // T1.I1 load r0 from memory

 // T1.I2 add 1 to r0

 // T1.I3 store r0 to memory

}

Thread_2{

 counter = counter + 1;

 // T2.I1 load r3 from memory

 // T2.I2 add 1 to r3

 // T2.I3 store r3 to memory

}

volatile int32_t counter=3;
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▪ Race condition 
▪ An ordering of instructions in multiple threads (or ISRs) on one or more cores which causes code to 

behave anomalously. 

▪ Is there a way to jump back and forth between two threads and get the wrong answer?

▪ Critical section
▪ A section of code which creates a possible race condition. 

▪ Any access to a shared object in a system with preemption is a critical section of code

▪ Only one critical section per shared object can be executed at a time. 

▪ OK to execute multiple critical sections concurrently if they access different shared objects.

▪ Some synchronization mechanism is required at the entry and exit of each critical section to ensure 
exclusive use. 

Definitions
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▪ Shared variable is example of a shared resource. Peripherals, other items may be shared 
as well.
▪ LCD Controller accepts series of bytes: Command, data, data, data, ….. 

▪ Threads sharing resources are vulnerable to race conditions
▪ How to protect the critical sections? We’ll see later.

▪ Shared resource accesses must be executed atomically without overlapping.

▪ For code compiled for a load-store arch. (e.g. Arm), even single-word variables are 
vulnerable.
▪ Turns some operations into non-atomic instruction sequences.

▪ May take a deeper look later
▪ Do any instructions give atomic memory access, and how are they used?
▪ What about multi-core CPUs? 
▪ What about an increment-in-memory instruction?
▪ What about a multi-core CPUs with an increment-in-memory instruction?

Generalizations
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All memory 
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