NC STATE UNIVERSITY

More Synchronization:
Synchronization, Communication

and Mutual Exclusion
v.49/2/25

NC STATE UNIVERSITY

Extending the Topic Map

Processes and Concurrency
for Embedded Systems

Processes and Class 04 (Today)
Concurrency

Embedded Systems
Design Space(s)

Requirements Cost of
& Constraints Precise Timing

Dependences
between Processes

Application Process
Characteristics Implementation

Both Hardware and
Software Processes

Communication

Synchronization

Direct or
Indirect
Comm.?

Split
Receiver
Process?

Notification/
Flow Ctl./
Handshaking

Sched:
Share CPU
Time

Buffering

Mutual Data Loss &
Exclusion Duplication

Polling
(Prog'd
I/O)

\

DIY” Clode Implemeggations
+Interrupts ﬁ\
: Fore/Back [Shared Serializing Req/Ack Double Circular -
Variables Server Flags Buffer Buffer m;m;ge
uffer

ground

Infinite | ;
loop in [
main

RTCS Run-to-

FSMs for v v__ OS Mechanisms
Responsiveness Cs°:‘Pc||e’l5i°n Event Flag) (Mutex Lock] PZI)essage
cheduler ueue

NC STATE UNIVERSITY

Blocking vs. Non-Blocking Tests

prev_A = read signal A from port prev_A = read signal A from port
while (1) { while (1) {
// Quad Decoder - Blocking // Quad Decoder - Non-blocking
do { cur_A = read signal A from port
cur_A = read signal A from port detected = (prev_A==0) && (cur_A==1);
detected = (prev_A==0) && (cur_A==1); prev_A = cur_A;
prev_A = cur_A; if (detected) {
} while (!detected); cur_B = read signal B from port
cur_B = read signal B from port if (cur_B==0)
if (cur_B==0) pOS++;
poS++; else
else pos--;
pos--; }
// Other work X // Other work X
// More other work Y // More other work Y

Waveform Generator: ISR to Refill Buffer

NC STATE UNIVERSITY

= Key Processes W 15
= Software: DMA ISR calculates new utter E
waveform samples, stores them in buffer [I -)—riTrT:me%mp.e g =
= Hardware: DMA transfers
= DMA transfers a sample from memory
buffer
W9

ISR: Start to
Refill Buffer

P
| M Transfer One Sample

».
>

- m

NC STATE UNIVERSITY

Sync and Don’t: Mutual Exclusion

NC STATE UNIVERSITY

Data Race Corruption and Mutual Exclusion

All memory
data object
updates are
critical sections

Overlapped Critical sections:
memory object updates,
Vulnerability access to shared peripheral

Load/Store
Architecture: makes
Fault Trigger updates of all
99 memory objects into
critical sections
: Ensure mutually exclusive execution of a
Solution

resource’s critical sections by using
protection algorithm in code, or prevent
preemption of critical sections
(interrupt/scheduler locking, mutex, ...)

Different Threads Accessing Same Variable, Peripheral, ...

volatile 1nt32 t counter=3;

Thread 1{ Thread 2{
counter = counter + 1; counter = counter + 1;
// T1.I1 load rO0 from memory // T2.I1 load r3 from memory
// T1.I2 add 1 to rO0 // T2.I2 add 1 to r3
// T1.I3 store r0 to memory // T2.I1I3 store r3 to memory
} }
= Example: two threads increment shared variable counter = Modify value in register
= “Threads” includes software processes, interrupt handlers, = Write: store register value into memory
etc. = Compiler tries to eliminate extra work
= Compiler translates C (source code) to Arm machine = |n a function, eliminates reads and writes that they don’t
language instructions (object code) seem to do anything

= Volatile: tells compiler the variable may be changed by

= Arm architecture is a Load/Store architecture _
something else (software thread, hardware), so keep all of

= Variables must be in CPU registers for instr. to process

= Arm architecture CPU core has 13 32-bit registers for this its re-ads and writes. _ _
orocessing: r0 through r12 = For the increment operation, the compiler generates a

= Need to transfer data between memory and register series of machine language instructions:
= For Arm code, any modification of a memory-resident = TLI1,7T1.12,T1.13

variable uses at least 3 instructions T2.11,72.12,72.13
= Read: load memory value into register

Concurrency Bug: Race Condition

volatile 1nt32 t counter=3;

Thread 1{
counter = counter + 1;
// T1.I1 load r0O from memory
// T1.I2 add 1 to rO0
// T1.I3 store r0 to memory

}

= Machine code is vulnerable to generating wrong
result for counter increment if instructions are
overlapped in certain ways

= Counter starts at 3

= Incrementing counter twice should end with
counterat 5

= Some execution sequences trigger race

condition in code (type of concurrency bug)
= One Example: T1.11, T1.12, T2.11, T2.12, T2.13, T1.I13
= Incrementing 3 twice resultsin 4, not 5

NC STATE UNIVERSITY

Thread 2{
counter = counter + 1;

// T2.I1 load r3 from memory

// T2.I2 add 1 to r3

// T2.I3 store r3 to memory

Instruction | counter (in memory) | TI r0 T2r3
M A TR R
g I
1Tz g e
a1 s
a2 e ks,
I3 a e
TLI3 0

Analysis of Race Condition

NC STATE UNIVERSITY

volatile 1nt32 t counter=3;

Thread 1{
counter = counter + 1;
// T1l.I1 load r0 from memory
// T1.I2 add 1 to r0
// T1.I3 store r0 to memory

= Vulnerable if T2.11,2,3 execute after T1.11 starts
but before T1.I3 finishes.

= Called “race condition”
= QOther execution sequences cause race conditions

= Problem
= Code in T1 and T2 to modify counter is sequence of
instructions which may be overlapped in execution
= This creates critical sections in T1 and T2 for counter
from each load instruction to the corresponding store
instruction (inclusive)

Thread 2{
counter = counter + 1;
// T2.I1 load r3 from memory
// T2.I2 add 1 to r3
// T2.I3 store r3 to memory

= QObservations

Each shared variable is accessed by its critical sections
of code in different threads.

A variable’s critical sections must be executed without
overlapping: no critical section accessing that
variable starts if another has started but not yet

finished.

NC STATE UNIVERSITY

Definitions

= Race condition

= An ordering of instructions in multiple threads (or ISRs) on one or more cores which causes code to
behave anomalously.

= |s there a way to jump back and forth between two threads and get the wrong answer?

= Critical section

10

= A section of code which creates a possible race condition.
= Any access to a shared object in a system with preemption is a critical section of code
= Only one critical section per shared object can be executed at a time.
= OK to execute multiple critical sections concurrently if they access different shared objects.

= Some synchronization mechanism is required at the entry and exit of each critical section to ensure
exclusive use.

NC STATE UNIVERSITY

Generalizations

= Shared variable is example of a shared resource. Peripherals, other items may be shared
as well.
= LCD Controller accepts series of bytes: Command, data, data, data,
= Threads sharing resources are vulnerable to race conditions
= How to protect the critical sections? We’'ll see later.
= Shared resource accesses must be executed atomically without overlapping.
= For code compiled for a load-store arch. (e.g. Arm), even single-word variables are
vulnerable.
= Turns some operations into non-atomic instruction sequences.

= May take a deeper look later

= Do any instructions give atomic memory access, and how are they used?
= What about multi-core CPUs?

= What about an increment-in-memory instruction?

= What about a multi-core CPUs with an increment-in-memory instruction?

11

NC STATE UNIVERSITY

Preemption and Data/Operation Corruption

12

Vulnerability

Fault Trigger

Solution

All memory
data object
updates are
critical sections

Overlapped Critical sections:
memory object updates,
access to shared peripheral

[oad/Store
Architecture: makes
updates of all
memory objects into
critical sections

Use protection algorithm in code,
or prevent preemption of critical
sections (interrupt/scheduler
locking, mutex, ...)

	Default Section
	Slide 1: More Synchronization: Synchronization, Communication and Mutual Exclusion
	Slide 2: Extending the Topic Map
	Slide 3: Blocking vs. Non-Blocking Tests
	Slide 4: Waveform Generator: ISR to Refill Buffer

	Data Corruption from Preemption
	Slide 5: Sync and Don’t: Mutual Exclusion
	Slide 6: Data Race Corruption and Mutual Exclusion
	Slide 7: Different Threads Accessing Same Variable, Peripheral, …
	Slide 8: Concurrency Bug: Race Condition
	Slide 9: Analysis of Race Condition
	Slide 10: Definitions
	Slide 11: Generalizations
	Slide 12: Preemption and Data/Operation Corruption

