NC STATE UNIVERSITY

Scheduling: Making Software Share the CPU

NC STATE UNIVERSITY

Cyclic Executive: Infinite Loop in Main Thread

What code does CPU run?
= Main thread starts when system comes out of reset
= Infinite loop in main thread

Put everything in the loop
= Easy! (at first)

= Modularity scales up badly

= No separation between different parts of the program...

MCU = ...unless you do it explicitly (separate subroutines, source files, etc.)

CPU Core = Often need to design system to meet response time
requirements

NC STATE UNIVERSITY

Cyclic Executive: Infinite Loop in Main Thread

D
E
Time g
* |mportant timing questions = Timing scales up badly

= How long does it take for code A to run? = Hard to manage timing as more code is added
= How often does code B get to run? = Example: Had to insert 2" calls to Aand Ciin

= Affects input-to-output response time loop to reduce response time

= Depends on how long it takes all other code

to run
= Timing variability

= Time taken to run code A may depend on
input data, current state information

= Some code may run only if needed (D vs. E)

NC STATE UNIVERSITY

CPU Scheduling Foundation: Interrupt System

Lower Priorit
= What code does CPU run? /

= Interrupt controller decides code to < \/>

run next.
= Checks interrupt/exception requests ISRs &
before starting each instruction Exception
= Interrupt/exception requested and Handlers
handler not completed?
= Yes: Force CPU to run its handler } Higher|Priority
= No: keep running main thread (started >
when system came out of reset) MCU v
CPU Core [+ Int. Ctlr.
= Foreground/Background scheduler

= Foreground: interrupt/exception handlers
= Background: main thread

= What code does CPU run?
= Interrupt controller decides code to run next.

= |f no interrupt/exception processing pending,
task scheduler runs and decides which
task/thread to run next

NC STATE UNIVERSITY

Task Schedulers: Helping Software Share the CPU Better

Lower Priority

hil 1
while (1) { If no ISR or Exc. Handler active,

if (EvA>0) A();

if (EvB>0) B(); Task Scheduler selects task to run

if (EVF>0) F();
}
= Enforces a more modular program

structure

= Separate tasks/threads and ISRs, each
running (mostly) independently

= Easier to develop, maintain, debug

Task
Scheduler

ISRs &

Exception Handlers

Higher Priority

MCU

CPU Core |+

Int. Ctlr.

NC STATE UNIVERSITY

Example of Execution Sequence

Event EvB Event EvE Event EvVA Event EVE Event EvB
4|;I_‘ :I_|
EYEVEvA? EEEVA?
EYEV EyB? EE EVB?
EvB? EYEvC EEEVC?
EvC? EvC? E\EvDF: E ElEVvD?
EVA? EvD? EVF?| [EVD? E\ BE EVE?
EvB? EVE? EVA?| IEVE? EVF 3 E ElE EVF?
‘ ‘ ‘ W Pattern continues

until an event occurs

= Scheduler loop behavior: = Assume scheduler is much faster than a task

= EvA happened? Run A until done. = For example: 0.2 us for scheduler to check an event, vs.

= EvB happened? Run B until done. tens of us for a task to do its work

. = Implications

= EvF happened? Run F until done. = Usually scheduler’s time can be ignored: 0.2 ps << 10 us

)) = |f no tasks are ready to run, scheduler time matters:
= Terms: No task preemption, round-robin task
= 0.2 us * check each of 6 tasks (none ready)* 100,000

ordering (each task gets a turn to run) checks = 120,000 s = 0.12 seconds

NC STATE UNIVERSITY

Examining Responsiveness

Lower
: .. L. Priorit
= How long from event EVA until task A finishes servicing it? 4
= Best case: EVA happens just before scheduler checks it
Event EVA
EvB, EvF, EVE, .
EvD, EvC
Iy Best Case
_ ISRs &
EVA? Yes! Exception
= Worst case: EVA happens just after scheduler checks it Handlers
= Every other event (EvB — EvF) happens, scheduler checks EVA Higher
(hasn’t happened yet), and then EvVA happens o
Priority
Event EVA
EvB, EvF, EVE, A\ Y4
EvD, EvC MCU
Worst Case CPU Core [+ Int. Ctlr.

t

EVA? Not yet
EvB? Yes!

NC STATE UNIVERSITY

Improvement for Responsiveness: Prioritized Tasks o
Lower Priority ()

while (1) {
if (EVA>0)

AQ);
else if (EvB>9)

B();
else if (EVF>0) ‘
F();

}
ISRs &

o Exception
= New behavior: Handlers

= |f EVA happened, run A until done. Higher
Priority

= Change scheduler to prioritize A > B > C etc.

= Else if EvB happened, run B until done.
= Et cetera

Best case: Same as before MCU v
CPU Core [+ Int. Ctlr.

= Worst case: Delayed only by longest other task (F)

Example of Execution Sequence

Event EvB Event EvE Event EvVA Event EvE
EVA? EVA? EVA? EVA?
EVB? EvB? EvB?
EvC? EvC?
EvD? EvD?
EVE? EVE?
| |

Event EvB

EVA?
EvB?
EvC?
EvD?
EVE?
EVF?

EVA:
EvB:

EvA?
EvB?

NC STATE UNIVERSITY

EvC?
EvD?
EVE?
EVF?

EVA? EVA?
EvB? EvB?
EvC?AEVC?
EvD? EvD?
EVE? EVE?
EVF? EVF?

l / Pattern continues

until an event occurs

I I | |
= Scheduler loop behavior:
= Always test events starting with highest-priority task

= Terms: No task preemption, Prioritized task
ordering

NC STATE UNIVERSITY

Examining Responsiveness: Prioritized Tasks
Lower Priority ()

= How long from event EVA until task A finishes servicing it?

= Best case: EVA happens just before scheduler checks it (same)
Event EvA

EvB, EVF, EVE,

EvD, EvC
Best Case

EVA? Yes!

ISRs &
= Worst case: Delayed only by longest other task (e.g. D) Exception

Event EVA Handlers

EvD [\Worst Case Higher

Priority

EVA? Not yet| [EVA? Yes! MCU — 74

EvB? Not yet CPU Core
EvC? Not yet

EvD? Yes!

A

Int. Ctlr.

NC STATE UNIVERSITY

Lower Priority

Next Improvement: Preemptive, Prioritized Tasks

Event EvA
Best Case
Worst Case
Exception Handleis

Something happened. —

EVA? Yes! Higher
= Improvements <|> Priority
= Tell scheduler about scheduling-related events ASAP .
= Interrupt handlers (e.g. button press, timer tick) MCU _V_':
= OS operations in other tasks CPU Core = Int. Ctlr.
= Have scheduler preempt lower-priority task to run
higher-priority task which is now ready = Delay from any event to the completion of its task or
= Delay from EvA -> A completion doesn’t* depend on handler depends only* ** on how long and how often
other tasks now, just A** higher priority tasks run

= *only if Ais not dependent on other tasks = *assumes task not dependent on any other tasks

. . .
| * **andignores scheduler time : and ignores scheduler time

NC STATE UNIVERSITY
Now Add Linux (is an OS, not RTOS) -

Lower Priority

@ S

C CPCH
= Lots of great features! ﬁauﬁ.,ii’)"_é%,"
= And the CPU is going at over 2 ‘!aﬁ“%’i‘.ﬁ‘.ﬁvl‘!
GHz! 8153 "D .
= Running the CPU at that speed ‘./“ !E!'!) l|' I l|.‘."~ii."
i F Sehib i HHEmE 4 1 ¢
T .’|n¢!=l-l.‘ d W7 '||..I
makes us add deep CPU pipelines, .“r‘(fi;;:f =Sk = =
branch predictors, caches and II_I!!!E:‘ - : - J“
virtual memory... T T T IRD |

PR A 4 AAOA

= These features make timing much

more variable and unpredictable ISRs & o
Exception Handlers

= Timing matters for responsiveness

= Ok, but what about multicore? <|>

= Do you get the core to yourself, or

do you have to share it? =
MPU —3— '
J J - J Int. Ctlr.
CPU Core #| CPU Core |¢¥ | CPU Core

Higher
Priority

| =

N 7\
"
s
.

-,

OS Synchronization and Communication Primitives

Receiver
Thread

Event Flag Any thread

ALIREGCR A ET- 3 Specified
thread

ST B I=A Any thread

Message
Queue

Any thread

Mutex Lock WXy A Ig=xTe

Information
Provided

“The event has
occurred”

“The event has
occurred”

“The event has
occurred”

“An event described by
this message has
occurred”

“This object is
available”

Can Accumulate

Multiple Pending

Events?

No No
No No

Yes (counting semaphore), Yes
No (binary semaphore)

Yes, up to number of Yes
available queue elements

No Yes

NC STATE UNIVERSITY

Handshake?

NC STATE UNIVERSITY

RTOS: What and Why

Scheduler Threads Synchronization
= Real-Time Operating System: fime Mgt Memory Mgt Commliication
= An OS designed to operate with
deterministic (repeatable) timing = Improve software modularity
= Typically uses a preemptive scheduler = Improve software reliability by isolating
= Timing: Deterministic, predictable, bounded threads
= Why use one? RTOS vs. OS = Simplify maintenance and upgrades
= Easier to build a system with deterministic = Leverage built-in OS/RTOS services
timing -
= Developer can more easily manage the
response times of urgent processing through = Time management
prioritization = 1/0 abstractions
= Don’t need to restructure code repeatedly or = Memory management
re-invent the wheel (hopefully correctly) = File system
= Cutting response time reduces processor & = GUI

memory speed requirements (and HW SS) = Networking support

NC STATE UNIVERSITY

Summary

NC STATE UNIVERSITY

Summary: Responsiveness is Key

= Software is “funneled” to the CPU by the interrupt system and scheduler (if any)
= The more software in the system, the more can get in the way, increasing response time

= Scheduler can help by providing task prioritization and task preemption

	Implementation Options
	Slide 1: Scheduling: Making Software Share the CPU
	Slide 2: Cyclic Executive: Infinite Loop in Main Thread
	Slide 3: Cyclic Executive: Infinite Loop in Main Thread
	Slide 4: CPU Scheduling Foundation: Interrupt System
	Slide 5: Task Schedulers: Helping Software Share the CPU Better
	Slide 6: Example of Execution Sequence
	Slide 7: Examining Responsiveness
	Slide 8: Improvement for Responsiveness: Prioritized Tasks
	Slide 9: Example of Execution Sequence
	Slide 10: Examining Responsiveness: Prioritized Tasks
	Slide 11: Next Improvement: Preemptive, Prioritized Tasks
	Slide 12: Now Add Linux (is an OS, not RTOS)
	Slide 13: OS Synchronization and Communication Primitives
	Slide 14: RTOS: What and Why

	Summary
	Slide 15: Summary
	Slide 16: Summary: Responsiveness is Key

