
1

Scheduling: Making Software Share the CPU

2

Cyclic Executive: Infinite Loop in Main Thread

MCU
CPU Core

A, B, C, if x>5

then D else E,

Then F, G, then

A again, then C,

then H, I, J.

Repeat.

▪ What code does CPU run?
▪ Main thread starts when system comes out of reset

▪ Infinite loop in main thread

▪ Put everything in the loop
▪ Easy! (at first)

▪ Modularity scales up badly
▪ No separation between different parts of the program…

▪ …unless you do it explicitly (separate subroutines, source files, etc.)

▪ Often need to design system to meet response time
requirements

3

Cyclic Executive: Infinite Loop in Main Thread

▪ Important timing questions
▪ How long does it take for code A to run?

▪ How often does code B get to run?

▪ Affects input-to-output response time

▪ Depends on how long it takes all other code
to run

▪ Timing variability
▪ Time taken to run code A may depend on

input data, current state information

▪ Some code may run only if needed (D vs. E)

▪ Timing scales up badly
▪ Hard to manage timing as more code is added

▪ Example: Had to insert 2nd calls to A and C in
loop to reduce response time

A B C D F G A C H I J

A B C E F G A C H I J

Time

4

CPU Scheduling Foundation: Interrupt System

MCU
CPU Core

ISRs &

Exception

Handlers

Int. Ctlr.

A, B, C, if x>5 then D else E, Then F, G,

then A again, then C, then H, I, J. Repeat.

Higher Priority

Lower Priority
▪ What code does CPU run?

▪ Interrupt controller decides code to
run next.

▪ Checks interrupt/exception requests
before starting each instruction

▪ Interrupt/exception requested and
handler not completed?

▪ Yes: Force CPU to run its handler

▪ No: keep running main thread (started
when system came out of reset)

▪ Foreground/Background scheduler
▪ Foreground: interrupt/exception handlers

▪ Background: main thread

5

Task Schedulers: Helping Software Share the CPU Better

MCU
CPU Core

ISRs &

Exception Handlers

Int. Ctlr.

Tasks

A B C D E F

Higher Priority

Lower Priority

If no ISR or Exc. Handler active,

Task Scheduler selects task to run

▪ What code does CPU run?
▪ Interrupt controller decides code to run next.

▪ If no interrupt/exception processing pending,
task scheduler runs and decides which
task/thread to run next

▪ Enforces a more modular program
structure
▪ Separate tasks/threads and ISRs, each

running (mostly) independently

▪ Easier to develop, maintain, debug

while (1) {
 if (EvA>0) A();
 if (EvB>0) B();
 …
 if (EvF>0) F();
}

Task

Scheduler

6

Example of Execution Sequence

▪ Scheduler loop behavior:

▪ EvA happened? Run A until done.

▪ EvB happened? Run B until done.

▪ …

▪ EvF happened? Run F until done.

▪ Terms: No task preemption, round-robin task
ordering (each task gets a turn to run)

▪ Assume scheduler is much faster than a task
▪ For example: 0.2 μs for scheduler to check an event, vs.

tens of μs for a task to do its work

▪ Implications
▪ Usually scheduler’s time can be ignored: 0.2 μs << 10 μs

▪ If no tasks are ready to run, scheduler time matters:

▪ 0.2 μs * check each of 6 tasks (none ready)* 100,000
checks = 120,000 μs = 0.12 seconds

Event EvA

EvA?
EvB?

Event EvE Event EvEEvent EvB

EvC?
EvD?
EvE?

EvF?
EvA?

EvB?
EvC?
EvD?
EvE?

Event EvB

EvA?
EvB?
EvC?
EvD?
EvE?
EvF?

EvA?
EvB?
EvC?
EvD?
EvE?
EvF?

EvA?
EvB?
EvC?
EvD?
EvE?
EvF?EvF?

EvA?
EvB?
EvC?
EvD?
EvE?
EvF?

EvA?
EvB?
EvC?
EvD?
EvE?
EvF?

EvA?
EvB?

F B E A E B

Pattern continues

until an event occurs

7

Examining Responsiveness

▪ How long from event EvA until task A finishes servicing it?
▪ Best case: EvA happens just before scheduler checks it

▪ Worst case: EvA happens just after scheduler checks it

▪ Every other event (EvB – EvF) happens, scheduler checks EvA
(hasn’t happened yet), and then EvA happens

MCU
CPU Core

ISRs &

Exception

Handlers

Int. Ctlr.

Tasks

Higher

Priority

Lower

Priority

A B C D E F

Event EvA

F A B C D E F

Best Case

Worst Case

F B C D E F A

EvB, EvF, EvE,
EvD, EvC

EvA? Not yet
EvB? Yes!

EvB, EvF, EvE,
EvD, EvC

Event EvA

EvA? Yes!

8

Improvement for Responsiveness: Prioritized Tasks

MCU
CPU Core

ISRs &

Exception

Handlers

Int. Ctlr.

Tasks

A
B

C
D

E

F

Higher

Priority

Lower Priority

▪ Change scheduler to prioritize A > B > C etc.

▪ New behavior:
▪ If EvA happened, run A until done.

▪ Else if EvB happened, run B until done.

▪ Et cetera

▪ Best case: Same as before

▪ Worst case: Delayed only by longest other task (F)

while (1) {
 if (EvA>0)
 A();
 else if (EvB>0)
 B();
 …
 else if (EvF>0)
 F();
}

9

Example of Execution Sequence

▪ Scheduler loop behavior:

▪ Always test events starting with highest-priority task

▪ Terms: No task preemption, Prioritized task
ordering

Event EvA

EvA?
EvB?

Event EvE Event EvEEvent EvB Event EvB

F B E A E B

Pattern continues

until an event occurs

EvA?
EvB?
EvC?
EvD?
EvE?

EvA?
EvB?
EvC?
EvD?
EvE?
EvF?

EvA? EvA?
EvB?
EvC?
EvD?
EvE?

EvA?
EvB?
EvC?
EvD?
EvE?
EvF?

EvA?
EvB?
EvC?
EvD?
EvE?
EvF?

EvA?
EvB?
EvC?
EvD?
EvE?
EvF?

EvA?
EvB?

10

Examining Responsiveness: Prioritized Tasks

MCU
CPU Core

ISRs &

Exception

Handlers

Int. Ctlr.

Tasks

A
B

C
D

E

F

Higher

Priority

Lower Priority

▪ How long from event EvA until task A finishes servicing it?

▪ Best case: EvA happens just before scheduler checks it (same)

▪ Worst case: Delayed only by longest other task (e.g. D)

Event EvA

F A

Best Case

Worst CaseEvD

EvA? Not yet
EvB? Not yet
EvC? Not yet
EvD? Yes!

EvB, EvF, EvE,
EvD, EvC

Event EvA

EvA? Yes!

? D A

EvA? Yes!

11

Next Improvement: Preemptive, Prioritized Tasks

▪ Improvements

▪ Tell scheduler about scheduling-related events ASAP

▪ Interrupt handlers (e.g. button press, timer tick)

▪ OS operations in other tasks

▪ Have scheduler preempt lower-priority task to run
higher-priority task which is now ready

▪ Delay from EvA -> A completion doesn’t* depend on
other tasks now, just A**
▪ * only if A is not dependent on other tasks

▪ ** and ignores scheduler time

▪ Delay from any event to the completion of its task or
handler depends only* ** on how long and how often
higher priority tasks run
▪ * assumes task not dependent on any other tasks

▪ ** and ignores scheduler time

Event EvA

D A B C D E F

Best Case

Worst Case

A

MCU
CPU Core

ISRs &

Exception Handlers

Int. Ctlr.

Tasks

A
B

C
D

E
F

Higher

Priority

Lower Priority

Any*
lower-priority

task

Something happened.
EvA? Yes!

12

Now Add Linux (is an OS, not RTOS)

MPU

CPU Core
Int. Ctlr.

Higher

Priority

▪ Lots of great features!

▪ And the CPU is going at over 2
GHz!
▪ Running the CPU at that speed

makes us add deep CPU pipelines,
branch predictors, caches and
virtual memory…

▪ These features make timing much
more variable and unpredictable

▪ Timing matters for responsiveness

▪ Ok, but what about multicore?
▪ Do you get the core to yourself, or

do you have to share it?

Tasks

Lower Priority

Your code

CPU Core CPU Core

ISRs &

Exception Handlers

13

Receiver

Thread

Information

Provided

Can Accumulate

Multiple Pending

Events?

Handshake?

Event Flag Any thread “The event has

occurred”

No No

Thread Flag Specified

thread

“The event has

occurred”

No No

Semaphore Any thread “The event has

occurred”

Yes (counting semaphore),

No (binary semaphore)

Yes

Message

Queue

Any thread “An event described by

this message has

occurred”

Yes, up to number of

available queue elements

Yes

Mutex Lock Any thread “This object is

available”

No Yes

OS Synchronization and Communication Primitives

14

RTOS: What and Why

▪ Real-Time Operating System:
▪ An OS designed to operate with

deterministic (repeatable) timing

▪ Typically uses a preemptive scheduler

▪ Timing: Deterministic, predictable, bounded

▪ Why use one? RTOS vs. OS

▪ Easier to build a system with deterministic
timing

▪ Developer can more easily manage the
response times of urgent processing through
prioritization

▪ Don’t need to restructure code repeatedly or
re-invent the wheel (hopefully correctly)

▪ Cutting response time reduces processor &
memory speed requirements (and HW $$)

▪ Why else? RTOS or OS vs. bare-metal
▪ Improve software modularity

▪ Improve software reliability by isolating
threads

▪ Simplify maintenance and upgrades

▪ Leverage built-in OS/RTOS services

▪ Interprocess communication and
synchronization (safe data sharing)

▪ Time management

▪ I/O abstractions

▪ Memory management

▪ File system

▪ GUI

▪ Networking support

RTOS
Scheduler Threads Synchronization

&

CommunicationTime Mgt. Memory Mgt.

…

…

… … … …

15

Summary

16

Summary: Responsiveness is Key

▪ Software is “funneled” to the CPU by the interrupt system and scheduler (if any)

▪ The more software in the system, the more can get in the way, increasing response time

▪ Scheduler can help by providing task prioritization and task preemption

	Implementation Options
	Slide 1: Scheduling: Making Software Share the CPU
	Slide 2: Cyclic Executive: Infinite Loop in Main Thread
	Slide 3: Cyclic Executive: Infinite Loop in Main Thread
	Slide 4: CPU Scheduling Foundation: Interrupt System
	Slide 5: Task Schedulers: Helping Software Share the CPU Better
	Slide 6: Example of Execution Sequence
	Slide 7: Examining Responsiveness
	Slide 8: Improvement for Responsiveness: Prioritized Tasks
	Slide 9: Example of Execution Sequence
	Slide 10: Examining Responsiveness: Prioritized Tasks
	Slide 11: Next Improvement: Preemptive, Prioritized Tasks
	Slide 12: Now Add Linux (is an OS, not RTOS)
	Slide 13: OS Synchronization and Communication Primitives
	Slide 14: RTOS: What and Why

	Summary
	Slide 15: Summary
	Slide 16: Summary: Responsiveness is Key

