
1

ECE 460/560: Class 02
A High-Level Look at Processes, HW and SW,

Synchronization and Example Systems

A.G. Dean
agdean@ncsu.edu

https://sites.google.com/ncsu.edu/agdean/teaching

v2 9/2/2025

mailto:agdean@ncsu.edu
https://sites.google.com/ncsu.edu/agdean/teaching

2

▪ Review of how ES computers are different from
GP, and why
▪ Often demanding, complex I/O timing requirements drive

different design choices

▪ Process relationships
▪ Concurrent vs. sequential execution
▪ HW vs. SW on single-core CPU vs. SW on multi-core
▪ Free-running vs. synchronized

▪ Application example: Oscilloscope
▪ Scope triggering: one kind of synchronization
▪ How to implement with as little hardware as

possible: busy-wait loop

▪ Hardware or software?
▪ Software timing: hard to predict required time to

execute (and its variability)
▪ System response time for chain of processing steps
▪ Application timing requirements vs. HW and SW

capabilities

▪ Example applications
▪ Scope

▪ Key timing requirements:
▪ Responsiveness to changing input signal. Detect

trigger condition quickly.
▪ Stable periodic timing for sampling input value.

▪ Improving timing by moving key processing steps from
software to hardware using peripherals, interrupts,
direct memory access controller

▪ ECE 306 line-following car
▪ Inputs, processes, outputs

▪ Motor position sensing and control
▪ Input timing requirements for shaft position encoder.

Missing deadline may give wrong direction or even miss
pulses.

▪ Output timing requirements for variable speed (pulse-
width modulated) motor drive. Missing deadline affects
motor speed proportionally

▪ Waveform Generator
▪ Stabilize output updates to regular periodic times with

low jitter for accurate signal generation.

Class 02 Overview – Process Basics, HW and SW, Processes and
Synchronization in Example Systems

3

Computers for Embedded Systems vs. General-Purpose Systems

Range of processing activities needed to handle inputs,
determine control actions, update outputs.

System with concurrent processes requires sync & comm

Synchronous software I/O is bad fit for time-critical I/O requirements. SW timing
obscurity/ambiguity/non-determinism clash with I/O needs (req’ts for timing precision

& stability) and SW<->I/O rate mismatches (especially for burst activities)

Use Async I/O to bridge/tolerate timing mismatches
(between I/O and SW) at low cost

Implementing Async I/O requires deciding where to split
process, how those parts will sync and communicate.

Can implement process functionality, sync and comm in SW, HW or both.
Should select based on strengths and weaknesses of SW, HW for given need.

Implementations & Mechanisms
(outside of CPU ISA)

General HW
Peripherals

DMA

Sharing CPU: Interrupts, Scheduling, Real-Time
System Concepts

Programmable logic with
custom FSM. CLB, FPGA. Pico

Prog. I/O blocks (FSMs)

Sources of software timing obscurity:
inherent behavior of algorithm, arbitrary input event

sequences, program compilation, performance
variation/non-determinism (CPU, memory system),

task scheduling

Disconnect between source code and object code
timing: compilation, ISA features, optimizations

CPU performance variations: data-dependent
instruction timing, superscalar/dynamic

execution, pipelines, predictors, prefetching

Memory system
(caches, VM, interference in multicore, …)

Arbitrary input event sequences possible,
complicating system timing behavior

Interrupts and Scheduling to share CPU core(s).

Inherent behavior of algorithms
(control flow variations)

Efficiently crossing between HW and SW to implement
procs, sync and comm. Interrupts, DMA vs. prog I/O.

Mainstream computing just uses a subset of the
Async I/O design space. Targets gen-purpose

computers with a few I/O devices (user
interface, storage, network) and their use cases.

Interrupts/exceptions for timer tick, OS
interface, faults, I/O events (Rx or Tx complete,
error). DMA discussed if you dig deep enough

into system design.

When you have only a hammer,
everything looks like a nail.

CS education doesn’t do digital
design (other than CPU, maybe

memory system, AI accelerators,
…).

Sync for initial triggering (event generators/detectors)

Supporting splits: Communication (esp. data buffering
w/timing requirements), more sync to support comm

(notifications, handshaking, overruns …)

General Design Pattern: functionality,
sync, comm (esp. buffering)

Use HW for some or all of func, sync, comm: less SW
needed (if any), easier SW deadlines (fewer, looser).

Programmable
Coprocessors:
TI PRU (prog.

real-time unit), …

Out LCD

SW
H

W

VIn

InErase

In

Buffer

Timer DMA

H

Port

S H

S S
DMA

H H

Int. Sys.Int. Sys.

HW Peripherals for
Sync/Comm Support

Throw in
another core

agdean@ncsu.edu August 18, 2025

Event/Sync
Interconnect for

Peripherals

Must understand some digital design to effectively
recognize and assess HW implementation options

Embedded (Computer) System enhances larger system: e.g. improves
performance, adds safety protections, simplifies maintenance & diagnostics.

Must monitor inputs and control outputs.

Inherently concurrent system. Often is most practical to implement
with multiple concurrent processes (some SW, some HW). Wide range of timing requirements (absolute time, update rate & phase, synchronization

(among signals, with clock, with system substate), response time, timing stability vs. jitter
…) for input signals, output signals, and between them (I->I, I->O, O->O).

Wide range of input and output signals. Digital,
analog, differential, bit-dominance (wired-or), etc.

“How slow can your CPU go and still be on time?” Embedded Systems have concurrent compute processes with diverse I/O operations. Often the I/O for a process has challenging timing

requirements, so we decouple it from compute software (bad timing characteristics) by splitting it into two or more processes to make input or output operations asynchronous to the compute

operations. These processes need to synchronize and communicate (data buffering). We may even move some processing to hardware. We use interrupts, HW peripherals and DMA to make a low-

cost and feasible solution with a low-frequency CPU.

Some I/O operations step through a sequence of I/O sub-operations triggered by
events or time delays, creating new linked timing requirements. UART RX operation,

PWM, synchronous control of motor/SMPS, network with bit dominance, etc.

mailto:agdean@ncsu.edu

4

Extending the Topic Map

Process

Implementation

Dependences

between Processes

Hardware

Processes

Software

Processes

Sched:

Share CPU

Time

Communication

Mutual

Exclusion

Both Hardware and

Software Processes

Mem-

Mapped

Periph.

Access

Embedded Systems

Design Space(s)

DMA

Ctlr

Sync. to What?

Do or Don’t?
How?

Intrpt

System

Notification/

Flow Ctl./

Handshaking

Data Loss &

Duplication
Buffering

Split

Receiver

Process?

Split urgent/

deferrable work

Direct or

Indirect

Comm.?

SW?

Why

use…?

HW?

+ Coop.

Sched. Tasks

Infinite

loop in

main

+ Task

Priorities

+ Task

Preemption

RTCS Run-to-

Completion

Scheduler

RTXv5

RTOS

FSMs for

Responsiveness

How?

“DIY” Code Implementations

Shared

Variables

How?

OS Mechanisms

Event Flag Semaphore

Shared

Variables

Mutex Lock

Concepts How?

In

Order?

Cost of Precise

Timing

Buffering

Concepts
Why?

Message

Queue

How?

Double

Buffer

Circular

Buffer

Req/Ack

Flags

DMA-

managed

buffer

Mailbox

How?

Cost of

Precise Timing

CPU

per

Process

Application

Characteristics

Requirements

& Constraints

Processes and Concurrency

for Embedded Systems

Processes and

Concurrency

Peri-

pherals

Dedic. HW

Interconn.

DMA

Ctlr

Ordering/

Triggering

Concepts

Synchronization

Polling

(Prog’d

I/O)

+Interrupts

: Fore/Back

ground
Serializing

Server

5

Take Multiple Passes, Getting More Details As Needed
How ES are Different

Introduction to Example Applications: I/O, Processing, Timing, Sync and Comm

Timing Behavior

& Analysis
Peripherals

Peripheral

Interconnect

DMA

System

Interrupt

System

Blinky WaveGen Scope DevSys

(Shield &

FRDM)

Level 1: Overviews

Level 3: Detailed Design with HW Peripherals,

Cyclic Exec & Interrupts

Level 2: Foundations. Basic Concepts and Architectures

Cyclic

Exec.

Cyclic Exec.

& Intrpts

Coop. Sched.

& Intrpts

Process

Basics
Complex I/O. Dig,

Ana, Basic Timing

Reqts

HW Processes:

Lim funct, precise

timing, dedicated

Concurrency, Sync and

Comm for SW and HW

Procs

Sync. vs. Async.

I/O

Basic

Behavior

(Control)

Dimensions

Sched. IPC

Support
Digital & Analog

Interfacing, Task

Timing Reqts,

Interf. and Sched.

Stabilizing Output

Timing
Synchronizing

Processes (events

and mutex),

Stabilizing Input

Timing, Data

Buffering

TBD

Preemptive Sched.

& Intrpts (RTOS)

Level Y: Re-Implement with Preemp. Sched (RTOS RTX5) Apply RTOS

Services: TBD Apply RTOS

Services: TBD
Apply RTOS

Services: TBD Apply RTOS

Services: TBD

Apply Coop Sched

Services: TBD
Apply Coop Sched

Services: TBD
Apply Coop Sched

Services: TBD

Apply Coop Sched

Services: TBD

SW Processes. Flex

funct, sloppy timing,

share/sched

Digital

Timing Reqts.

in Detail

(See LN L2)
Analog

CPU Sharing: intrpts,

sched. Roadmap:

Preemption++ (4)

Async. I/O

Need &

Concepts
AIO Imps

AIO with

Interrupts

AIO Coop.

Sched. & Intrpts

AIO with

DMA and

Interrupts

HW-HW SW-SWHW-SW

Prog’d

I/O

Shared

Variables

Process Sync & Comm

Level X: Re-Implement with Coop Sched (RTCS)

Development

Processes

DebuggingDesign

before

Coding

Problem-

Solving

6

Process Relationships: Concurrency and Synchronization

7

Process Relationships

▪ Sequential: Finish current process before starting another

▪ Finish red before starting any other process

▪ Concurrent: Process execution may overlap in time

▪ Can start green, yellow before finishing red

▪ Execution of concurrent processes

▪ Hardware: Dedicated circuit per process,

so able to run at the same time

▪ Software: depends on # of CPU cores

▪ Each core works on one process at a specific point in time

Start End Start End Start End

SStart EndS E E

S

Start End

S E

E

Start End

Start End

S ES E

Start End

1 Core

2 Cores

3 Cores

8

▪ Example: Five processes (A-E), each flashing an LED

▪ How to make LEDs flash in a scanning sequence?
▪ Simple independent starter process doesn’t do this

▪ LEDs flash independently of each other. Changing one
process doesn’t affect the others

▪ No synchronization between processes, are free-running
▪ Hardware process runs non-stop

▪ Software process runs whenever it can (CPU available)

▪ Processes need to synchronize with each other
▪ After turning off its LED, process sends a synchronization

signal to the next process.

▪ A process doesn’t turn on its LED until after it gets a
signal from the previous process

▪ Special case for start-up: Process A doesn’t wait for signal
on its first execution

Synchronized or Free-Running Process Execution?

Process A LED

Process B LED

Process C LED

Process D LED

Process E LED

9

▪ Don’t let Process B start to execute section B2 until
Process A has completed section A1
▪ Includes case where each thread has only one section

▪ Multiple cases possible based on initial process
execution order and priority (if sharing a CPU)

Synchronized Process Execution
A

 r
a
n

 f
ir

s
t

B
 r

a
n

 f
ir

s
t

Process B

Process A A1 A2

B1 B2

A1 A2

B1 B2

B2 can runB2 must wait

Blocked Ready

A1 A2

B1 B2

B2 can runB2 must wait

Ready

Blocked Ready
Blocked

A1 A2

B1 B2

B2 can runB2 must wait

Ready Ready

A1 A2

B1 B2

B2 can runB2 must wait

Blocked

ReadyReady

PA > PB PA < PB

10

▪ Input signal

▪ Start with simple one-bit digital signal (do analog later)

▪ Pulses have irregular start times, changing pulse widths

▪ Displaying the signal

▪ Oscilloscope (“scope”) plots signal value (e.g. voltage) vertically vs.

time horizontally

▪ Horizontal time base determines amount of time (THoriz)

represented on scope display

▪ Display stability depends timing relationship between when

scope starts displaying the signal, and when the signal changes

▪ “Infinite persistence” accumulates all acquired traces on display until

erase button is pressed

Synchronization: Simple Oscilloscope Example

Time

Si
gn

al
 V

al
u

e
(e

.g
. v

o
lt

ag
e)

THorizontal

11

▪ Sequence

▪ Display signal from 0 to THoriz

▪ Display signal from THoriz to 2*THoriz

▪ Display signal from 2*THoriz to 3*THoriz

▪ Display signal from 3*THoriz to 4*THoriz

▪ Display signal from 4*THoriz to 5*THoriz

▪ Display signal from 5*THoriz to 6*THoriz

▪ Display signal from 6*THoriz to 7*THoriz

▪ etc.

▪ What is range of pulse widths? Can’t see.

▪ Resulting display is unstable, jumps around

over time.

Simple Method: Display Signal Continuously

12

▪ Scope does nothing until triggered

▪ Event from input signal (e.g. 0 to 1 edge)

triggers scope to start displaying signal

▪ Triggering synchronizes the scope’s start of

data display to input signal event

▪ Resulting display is much more stable

▪ Range of pulse widths is easy to see.

▪ Rising edge of signal is stable

▪ Except for last acquisition, where time

between rising edges < Thoriz

▪ Falling edge unstable since pulse width varies

Stabilize Display with Triggering

13

▪ Synchronization built into SW process A

▪ Simple, but doesn’t scale up well with multiple software

processes

Simple Busy-Wait Loop
Process A

…

// Detector/Synchronizer

while (ADC->Result < V_Threshold)

 ;

// No Scheduler

// No Dispatcher

// Handler process

x = 0;

for (n=0; n<NS; n++) {

 r = ADC->Result;

 y = scale(r);

 LCD_Plot(x++,y);

}

GPIO GPIO LCD

So
ft

w
ar

e
H

ar
d
w

ar
e

VIn

14

System Timing Performance:
Software and Hardware

15

▪ Software
▪ Program gives very flexible functionality

▪ Interrupt system (e.g. NVIC) and scheduler
(if any) determines what software runs on
CPU and when

▪ Software very vulnerable to timing
interference. Need synchronization. Use
interrupts, scheduler to improve timing
stability

▪ Hardware
▪ Very stable timing (when independent of

software)

▪ Functionality limited to what is built into
hardware (and your creativity)

Use Software or Hardware? Flexibility vs. Timing Stability

16

▪ Time to execute code is…
▪ Hard to predict accurately: Timing

behavior depends on machine
language instructions generated from
source code by compiler, CPU used,
data-dependent instruction timing,
system speed….

▪ Unstable (“fragile”): Depends on paths
taken through conditionals, loop
repeat counts, etc. Paths may depend
on input data, execution history, etc.

“Sloppy” Software Timing Behavior

if (x>0)

 j += r;

else

 x++;

x = x/8;

if (j>3)

 x -= 17;

else

 r *= 7;

Compile, assemble

and link

????
(machine code
instructions)

17

▪ Responsiveness depends on sequence of activities
between input event and system’s response

▪ Diagram
▪ Process 1 samples Vin, looks

for event (0 to 1 transition)

▪ Hardware process timing:
fast, very stable, predictable
▪ Typically faster than time for

CPU to execute an instruction

▪ Uses hardware circuits which are
dedicated (not shared)
▪ Exceptions later: shared buses, etc.

▪ Software process timing: much slower, unstable,
hard to predict precisely
▪ Time to execute a software process is hard to

predict, varies based on input data, history …
▪ Sharing CPU among multiple software processes

delays a process
▪ Inherent delays and processing overhead (may be in

program, interrupt system, OS/executive) for:
▪ Synchronization: deciding if process may run (is ready) or must

wait for event/condition
▪ Scheduling: deciding which ready software process to run next
▪ Context Switching and/or Dispatching: saving and restoring

process contexts, starting next process running

▪ Timing interference (preemption, blocking) from other
software processes (threads, interrupt handlers)

System Responsiveness Depends on Processes

VIn

Timing Close-Up
(nanoseconds)

So
ft

w
ar

e
H

ar
d
w

ar
e OutIn

Time (microseconds)

CPU

Instruction

CPU

Instruction

CPU

Instruction

VIn
VOut

Event
Response

CPU Sharing Overhead:
Synchronization, Scheduling, Context Switching/Dispatching

Int. Handler

Process 0

Process 1

Process 2

18

Timing Requirements vs. Response Time Capabilities for
Different Design Approaches

Lots of time

Very little time

19

▪ Oscilloscope
▪ Synchronize to input signal rising across trigger voltage level, then capture data samples at precise, frequent times

▪ ECE 306 line-following car
▪ Multiple processes

▪ Motor position sensing and control
▪ Monitor motor position using quadrature shaft encoder

▪ Waveform generator
▪ Generate analog waveform with consistent, precise timing for output updates

Design Examples

20

▪ Version 1: Simple Busy-Wait Loop
▪ Software detects trigger event using small loop

which blocks progress through process/thread

Scope: Stabilize Display with Triggering

Process A

// Detector/Synchronizer

while (ADC->Result < V_Threshold)

 ;

// No Scheduler

// No Dispatcher

// Handler process

Loop for all columns in screen

 Get input data sample,

 Scale it,

 Plot it on LCD

GPIO GPIO LCD

So
ft

w
ar

e
H

ar
d
w

ar
e

VIn

21

Improve Timing by Moving Activities from Software to Hardware

Out LCD

SW
H

W

VIn

Trigger Detection by Hardware

In
Int. Sys.

Port

H

Out LCD

SW
H

W

VIn

Hardware Trigger Detection and
DMA (Direct Memory Access) +
Timer for Data Acquisition

In

Buffer
Timer DMA

H

Port
S S

DMA

H H

Int. Sys.Int. Sys.

In Out LCD

SW
H

W VIn

Trigger Detection by Software

S
H

Sync: Loop until rising
edge event detected

Thread: Sample
input, plot on LCD

Sync: Loop until rising edge event
detected

Port Interrupt
Handler: Sample

input, plot on LCD

CPU available for
other SW processes

CPU available for other SW
processes

DMA Interrupt
Handler: Tell thread
to plot buffer data

Port Interrupt
Handler: Enable
Timer and DMA

CPU available for
other SW processes

CPU available for
other SW processes

Thread: Plot
buffered

samples on LCD

CPU available for
other SW
processes

Sync: Data
Ready to Plot?

22

▪ How to access memory and peripherals?

▪ CPU uses memory bus (address, data, control) to
access memory and peripheral devices

▪ Memory bus can also be controlled by DMA
Controller (DMAC) peripheral

▪ DMA features

▪ DMAC can transfer (copy) N data items within
memory space from SrcAdx to DstAdx

▪ SrcAdx, DstAdx: fixed or increment per item copied

▪ Allows direct copy, but also accessing sequential items
in memory array (“Save the next N ADC data values in
memory starting at this address”)

▪ Transfer can be triggered by:

▪ Hardware (DMA Request from peripheral device)

▪ Software (CPU writing to DMA request control register)

▪ Configurable bus sharing with CPU: can be greedy
(burst of all transfers), round-robin, etc.

▪ DMAC can generate interrupt when done

▪ DMAC has multiple channels, each with individual
trigger source, Adx pointers and behaviors, item
count, interrupt behavior

Direct Memory Access Controller
Allows Hardware->Hardware communication without using CPU

CPU

D
M

A

C
o

n
tr

o
lle

r

Control Signals

(Read,Write)

Address

Data

Memory Peripheral Peripheral

In
te

rr
u
p
t

C
o

n
tr

o
lle

r

Interrupt Requests (IRQs) DMA Requests (DRQs)

23

ECE 306 Car: Inputs, Processes and Outputs

24

ECE 306 Car: Add Hardware Peripherals for Interfacing

25

Motor Position Sensing and Control

26

Waveform Generator Subsystem: One Process

▪ Part of a larger system with other processes (e.g. user interface)

▪ Want to update DAC output every 50 us for a 20 kHz update rate

▪ DAC signal amplified to drive speaker

W1. WaveGen, base design

Amplifier
Dig. to Ana.

Conv.

SW
H

W

Compute/Update

Speaker

Process Input
Device

Input
Peripheral

Processing Output
Peripherals

Output
Devices

Timing Requirements

W: Waveform
Generator

n/a n/a Calculate new output value,
wait fixed time,
write output value to DAC

Digital-to-analog
converter

Amplifier &
Speaker

Every 50 us, +/- 5 us (?)

	Roadmap
	Slide 1: ECE 460/560: Class 02 A High-Level Look at Processes, HW and SW, Synchronization and Example Systems

	Class 02
	Slide 2: Class 02 Overview – Process Basics, HW and SW, Processes and Synchronization in Example Systems
	Slide 3: Computers for Embedded Systems vs. General-Purpose Systems
	Slide 4: Extending the Topic Map
	Slide 5: Take Multiple Passes, Getting More Details As Needed

	Process Concurrency and Synchronization
	Slide 6: Process Relationships: Concurrency and Synchronization
	Slide 7: Process Relationships
	Slide 8: Synchronized or Free-Running Process Execution?
	Slide 9: Synchronized Process Execution
	Slide 10: Synchronization: Simple Oscilloscope Example
	Slide 11: Simple Method: Display Signal Continuously
	Slide 12: Stabilize Display with Triggering
	Slide 13: Simple Busy-Wait Loop

	System Timing Issues from Software
	Slide 14: System Timing Performance: Software and Hardware
	Slide 15: Use Software or Hardware? Flexibility vs. Timing Stability
	Slide 16: “Sloppy” Software Timing Behavior
	Slide 17: System Responsiveness Depends on Processes
	Slide 18: Timing Requirements vs. Response Time Capabilities for Different Design Approaches

	Processes in Design Examples
	Slide 19: Design Examples
	Slide 20: Scope: Stabilize Display with Triggering
	Slide 21: Improve Timing by Moving Activities from Software to Hardware
	Slide 22: Direct Memory Access Controller
	Slide 23: ECE 306 Car: Inputs, Processes and Outputs
	Slide 24: ECE 306 Car: Add Hardware Peripherals for Interfacing
	Slide 25: Motor Position Sensing and Control
	Slide 26: Waveform Generator Subsystem: One Process

