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Class 02 Overview — Process Basics, HW and SW, Processes and
Synchronization in Example Systems

Review of how ES computers are different from
GP, and why

= Often demanding, complex I/O timing requirements drive
different design choices

Process relationships
= Concurrent vs. sequential execution
= HW vs. SW on single-core CPU vs. SW on multi-core
* Free-running vs. synchronized
Application example: Oscilloscope
= Scope triggering: one kind of synchronization
= How to implement with as little hardware as
possible: busy-wait loop

Hardware or software?
= Software timing: hard to predict required time to
execute (and its variability)
= System response time for chain of processing steps
= Application timing requirements vs. HW and SW
capabilities

= Example applications

= Scope
= Key timing requirements:
= Responsiveness to changing input signal. Detect
trigger condition quickly.
= Stable periodic timing for sampling input value.
= Improving timing by moving key processing steps from
software to hardware using peripherals, interrupts,
direct memory access controller
= ECE 306 line-following car
= Inputs, processes, outputs
= Motor position sensing and control
= Input timing requirements for shaft position encoder.
Missing deadline may give wrong direction or even miss
pulses.
= Qutput timing requirements for variable speed (pulse-
width modulated) motor drive. Missing deadline affects
motor speed proportionally
= Waveform Generator
= Stabilize output updates to regular periodic times with
low jitter for accurate signal generation.



Computers for Embedded Systems vs. General-Purpose Systems ISRILUSUIISINIR]

“How slow can your CPU go and still be on time?” Embedded Systems have concurrent compute processes with diverse I/O operations. Often the I/O for a process has challenging timing
requirements, so we decouple it from compute software (bad timing characteristics) by splitting it into two or more processes to make input or output operations asynchronous to the compute
operations. These processes need to synchronize and communicate (data buffering). We may even move some processing to hardware.We use interrupts, HW peripherals and DMA to make a low-

cost and feasible solution with a low-frequency CPU.

Embedded (Computer) System enhances larger system: e.g. improves Wide range of input and output signals. Digital,
performance, adds safety protections, simplifies maintenance & diagnostics. analog, differential, bit-dominance (wired-or), etc.
Must monitor inputs and control outputs. "
Some 1/0 operations step through a sequence of 1/0 sub-operations triggered by
[ Range of processing activities needed to handle inputs, ] events or time delays, creating new linked timing requirements. UART RX operation,
determine control ac:ons, update outputs. PWM, synchronous control of motor/SMPS, network with bit dominance, etc.
— Inherent behavior of algorithms

(control flow variations)

Inherently concurrent system. Often is most practical to implement - — - 2 —
with multiple concurrent processes (some SW, some HW). Wide range of timing requirements (absolute time, update rate & phase, synchronization
(among signals, with clock, with system substate), response time, timing stability vs. jitter

...) for input signals, output signals, and between them (I->1, I->0, O->0). : Disconnect between source code and object code

timing: compilation, ISA features, optimizations

[ System with concurrent processes requires sync & comm }

>4 i Sources of software timing obscurity: N
Synchronous software 1/0 is bad fit for time-critical 1/0 requirements. SW timing P : : o _y CPU performance variations: data-dependent
. o7 o ] o o i inherent behavior of algorithm, arbitrary input event instruction timing, superscalar/dynamic
obscurity/ambiguity/non-determinism clash with 1/0 needs (req’ts for timing precision sequences. program compilation. berformance Instruction timing, sup y I
& stability) and SW<->1/0 rate mismatches (especially for burst activities) ‘ Pree y P execution, pipelines, predictors, prefetching
y P Y i variation/non-determinism (CPU, memory system),
i task scheduling

Memory system

Mainstream computing just uses a subset of the
(caches, VM, interference in multicore, ...)

Async I/0 design space. Targets gen-purpose Use Async I/0 to bridge/tolerate timing mismatches
computers with a few 1/0 devices (user . (between 1/0 and SW) at low cost
interface, storage, network) and their use cases.

Sync for initial triggering (event generators/detectors)j Arbitrary input event sequences possible

complicating system timing behavior

g"‘Supporting splits: Communication (esp. data buffering\

) Interrupts/exceptions for timer tick, 05 Implementing Async I/O requires deciding where to split
interface, faults, I/0 events (Rx or Tx complete, . . H . .
; ) ) process, how those parts will sync and communicate. 4 w/timing requirements), more sync to support comm % - )
error). DMA discussed if you dig deep enough P ) i Interrupts and Scheduling to share CPU core(s). j
into system design. 2 . (notifications, handshaking, overruns ...) ;
Can implement process functionality, sync and comm in SW, HW or both. P - : . . :
Should select based on strengths and weaknesses of SW, HW for given need. e, Efficiently crossing between HW and SW to implement | Sharing CPU: Interrupts, Scheduling, Real-Time
= procs, sync and comm. Interrupts, DMA vs. prog |/0. System Concepts

When you have only a hammer,
everything looks like a nail.
CS education doesn’t do digital

—

[ Use HW for some or all of func, sync, comm: less SW )

Programmable

Throw in . . .
design (other than CPU, maybe Coprocessors: needed (if any), easier SW'deadllnes (fewer, looser).
memory system, Al accelerators, = DMA
) IR TIPRU (prc.)g. Must understand some digital design to effectively | I-o-"> .
e/ o real-time unit), ... . . . .
- recognize and assess HW implementation options L
- — s [H
A P < = e
General Design Pattern: functionality, Implementations & Mechanisms
sync, comm (esp. buffering) (outside of CPU ISA)

HW Perlpherals for Programmable logic with

Sync/Comm Support custom FSM. CLB, FPGA. Pico
Prog. 1/0 blocks (FSMs)

Event/Sync
Interconnect for
Peripherals

General HW
Peripherals
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Extending the Topic M
Processes and Concurrency
for Embedded Systems
Processes and
Concurrency
Process Dependences
Implementation between Processes
251 - FEC T L Synchronization
Software Processes

Embedded Systems
Design Space(s)

Requirements Cost of

& Constraints Precise Timing
Software
Processes

Application
Characteristics
Hardware
Processes

Direct or

Split

Sched: Notification/
) .
Share CPU Slér;c'(;_og;/ :,is' Or"derlr.mg/ E)IZ/ICLI]::izloIn Igauta“I;::isoi( Flow Ctl./ Buffering Receiver Indirect
: Triggering P Handshaking Process? Comm.?

Time

Dedic. HW | | DMA
Interconn. Ctlr

N
PIY” Cpde Implemeggfations

Shared i ligi Rea/Ack ) i
e ) (i) (o, () (G| e
buffer
v__ OS Mechanisms
lMutex Lock | _M ilb Message
ailbox Oueue

+Interrupts
: Fore/Back
ground

Infinite | ;
loop in |
main

i [+ Coop. )i[ +Task
Sched. Tasks) |Priorities

FSMs for RIS [iHies v
Responsiveness Csorl?P;eTion Event Flag)
cheduler
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Take Multiple Passes, Getting More Details As Needed

Level |: Overviews How ES are Different

Process
Basics

Basic
Behavior
(Control)

Complex I/O. Dig,
Ana, Basic Timing
Reqts

Concurrency, Sync and
Comm for SW and HW
Procs

{mmion to Example Applications; I/O| Processing, Timing, Sync and Com/_\_j

SW Processes. Flex
funct, sloppy timing,

HW Processes:
Lim funct, precise
timing, dedicated

Development Problem-
Processes Solving

share/sched

CPU Sharing: intrpts,
sched. Roadmap:
Preemption++ (4)

—Timing Beqts.
in Detail =~

Process Sync & Comm Timing Behavior
) & Analysis
 (See LN L2) -~ |
v e (Awerw) TRw-sw{swesw ) N '/,

before
Coding

\
\

- P - \\ -
Peripheral DMA Prog'd || Interrupt || Shared ||Sched-IPC - \\\ e Cyclic Digital & Analog Stabilizing Output —
Interconnect ) | System 110 System J| Variables |{ Support | ~~3/ Exec. \ Interfacing, Task Timing Synchronizing

\ Timing Reqts, Processes (events
Interf. and Sched. and mutex),
\ Stabilizing Input
Need & Timing, Data

Concepts

Buffering
Cyclic Exec.
& Intrpts
Coop. Sched.
& Intrpts

AlO Coop.
Apply Coop Sched Apply Coop Sched Apply Coop Sched
Services: TBD Services: TBD Services: TBD Services: TBD
Preemptive Sched.
& Intrpts (RTOS)

Level 3: Detailed Design with HWV Peripherals,
Cyclic Exec & Interrupts

AlO with
DMA and
Interrupts

Level X: Re-Implement with Coop Sched (RTCS)

Level Y: Re-Implement with Preemp. Sched (RTOS RTXS5) Apply RTOS

Services: TBD APP_IY RTOS Apply RTOS
Services: TBD Services: TBD Apply RTOS
Services: TBD
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Process Relationships: Concurrency and Synchronization



Process Relationships

= Sequential: Finish current process before starting another

= Finish red before starting any other process

= Concurrent: Process execution may overlap in time

= Can start green, yellow before finishing red m_F

= Execution of concurrent processes

= Hardware: Dedicated circuit per process, _—‘
so able to run at the same time

= Software: depends on # of CPU cores
= Each core works on one process at a specific point in time

1 Core [ ]

2 Cores m

3 Cores m_‘

NC STATE UNIVERSITY




Synchronized or Free-Running Process Execution!?

NC STATE UNIVERSITY

= Example: Five processes (A-E), each flashing an LED

= How to make LEDs flash in a scanning sequence?
= Simple independent starter process doesn’t do this

= LEDs flash independently of each other. Changing one
process doesn’t affect the others

= No synchronization between processes, are free-running
= Hardware process runs non-stop
= Software process runs whenever it can (CPU available)

= Processes need to synchronize with each other

= After turning off its LED, process sends a synchronization
signal to the next process.

= A process doesn’t turn on its LED until after it gets a
signal from the previous process

= Special case for start-up: Process A doesn’t wait for signal
on its first execution

/|

(0 Qa4 0




Synchronized Process Execution

= Don’t let Process B start to execute section B2 until
Process A has completed section Al
= Includes case where each thread has only one section

= Multiple cases possible based on initial process
execution order and priority (if sharing a CPU)

Bl B2

NC STATE UNIVERSITY

P, > Py P, <Pg
E Ready Ready
(= .
= 52 musc wa
©
-
<| e ey [ B2 B oo

Ready

B2 must wait

“ Blocked Ready B2

B ran first

Ready

Ready

B2 must wait
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Synchronization: Simple Oscilloscope Example

| ] |

= Start with simple one-bit digital signal (do analog later)

* Input signal

= Pulses have irregular start times, changing pulse widths

>

Signal Value
(e.g. voltage)
1

= Displaying the signal

= Oscilloscope (“scope”) plots signal value (e.g. voltage) vertically vs.
time horizontally

= Horizontal time base determines amount of time (T,,;,) .
represented on scope display Time

= Display stability depends timing relationship between when
scope starts displaying the signal, and when the signal changes

= “Infinite persistence” accumulates all acquired traces on display until
erase button is pressed



Simple Method: Display Signal Continuously

1

H

= Sequence

Display signal from 0 to T

Horiz

Display signal from T,,_,;, to 2*T,_.,
Horiz t© 3*T
Horiz t© 4T

to 5*T
to 6*T

to 7*T

Horiz

Display signal from 2*T

Horiz

Display signal from 3*T

Horiz

Display signal from 4*T,,_., Horiz

Display signal from 5*T,_,;, Horiz

Display signal from 6*T,,_., Horiz

etc.

- = What is range of pulse widths? Can’t see.

= Resulting display is unstable, jumps around
over time.

NC STATE UNIVERSITY
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Stabilize Display with Triggering

“ I_I H = Scope does nothing until triggered

= Event from input signal (e.g. 0 to | edge)
triggers scope to start displaying signal

“ = Triggering synchronizes the scope’s start of
data display to input signal event

]

—

u = Resulting display is much more stable

= Range of pulse widths is easy to see.

= Rising edge of signal is stable
= Except for last acquisition, where time

between rising edges <T, ..

= Falling edge unstable since pulse width varies
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Simple Busy-Wait Loop

Process A
()
s
5 -
e, I"
wn
8 i L,
£ V= -> // No Scheduler
:rELv // No Dispatcher

// Handler process

X = 0;

for (n=0; n<NS; n++) {
r = ADC->Result;
y = scale(r);
LCD_Plot(x++,y);

}

= Synchronization built into SW process A

= Simple, but doesn’t scale up well with multiple software
processes
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System Timing Performance:
Software and Hardware



Use Software or Hardware? Flexibility vs. Timing Stability

= Software
= Program gives very flexible functionality

= Interrupt system (e.g. NVIC) and scheduler
(if any) determines what software runs on
CPU and when

= Software very vulnerable to timing
interference. Need synchronization. Use
interrupts, scheduler to improve timing

stability
MA = Hardware
= Very stable timing (when independent of
software)
= Functionality limited to what is built into

hardware (and your creativity)
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“Sloppy” Software Timing Behavior

= Time to execute code is...

= Hard to predict accurately: Timing = Unstable (“fragile”): Depends on paths
behavior depends on machine taken through conditionals, loop
language instructions generated from repeat counts, etc. Paths may depend
source code by compiler, CPU used, on input data, execution history, etc.

data-dependent instruction timing,
system speed....

if (x>0)
J +=r;
else
X++;
x = x/8;  |Compile,assemble ????
if (3>3) e e
X -= 17;
else
r *= 7;

ABCLE



Software

Hardware
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System Responsiveness Depends on Processes

CPU Sharing Overhead:
Scheduling, Context Switching/Dispatching

Process 1 iT— —ﬁw
i[“ N /‘
Int. Handler ! iL '
Vi, | Event
Vou ; Response

= Responsiveness depends on’seqguence of activities
between input event and system’s response
= Diagram

= Process 1 samples V., looks

for event (0 to 1 transition)
= Hardware process timing:
fast, very stable, predictable
= Typically faster than time for
CPU to execute an instruction

n

| |
| |
CPU CPU CPU
Instruction Instruction Instruction

= Uses hardware circuits which are

dedicated (not shared)
= Exceptions later: shared buses, etc.

= Software process timing: much slower, unstable,

hard to predict precisely
= Time to execute a software process is hard to
predict, varies based on input data, history ...
= Sharing CPU among multiple software processes

delays a process
= Inherent delays and processing overhead (may be in
program, interrupt system, OS/executive) for:

: : deciding if process may run (is ready) or must
wait for event/condition
Scheduling: deciding which ready software process to run next
Context Switching and/or Dispatching: saving and restoring
process contexts, starting next process running
= Timing interference (preemption, blocking) from other

software processes (threads, interrupt handlers)
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Timing Requirements vs. Response Time Capabilities for

Different Design Approaches

Ty Mld o e Tore Bt ey

Lots of time W_(\ il
\?eaz}?@ Uty s \/\5{@} 5 | 5
Py LED Divalyy / e Po RTC
Moay Sensiragt-Cortro | SRR CY
Mbﬁ/ ﬁ s Pt P(\\O \\\TX
AUA‘O Zemp’ ) /)%/mvﬁru%\m bt S
Au&\o AKIA\LK" MM GWC@’}(WL@" ‘ TR

f M%@fc )’Lzé Qde
) He’"a/fm\?c Wel 4\[ e +GL) 1 "J’Brr
S M?; Sevs, t C’H | ’-”:’”‘T'_\ _F,,W,T«-\J

Deheited HY
e ,,

Very little time
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Design Examples

Oscilloscope
= Synchronize to input signal rising across trigger voltage level, then capture data samples at precise, frequent times

ECE 306 line-following car
= Multiple processes

Motor position sensing and control

= Monitor motor position using quadrature shaft encoder

Waveform generator
= Generate analog waveform with consistent, precise timing for output updates



Scope: Stabilize Disp

ay with T

|

riggering

1

20

!

|

Software

Hardware

NC STATE UNIVERSITY

= Version 1: Simple Busy-Wait Loop

= Software detects trigger event using small loop
which blocks progress through process/thread

Process A
// Detector/Synchronizer
while (ADC->Result < V_Threshold)
// No Scheduler
// No Dispatcher
// Handler process
Loop for all columns in screen
Get input data sample,
Scale it,
Plot it on LCD



SW

NC STATE UNIVERSITY

Improve Timing by Moving Activities from Software to Hardware

Trigger Detection by Software

Trigger Detection by Hardware

% VIn

Hardware Trigger Detection and
DMA (Direct Memory Access) +

| Int. Sys.

Timer for Data Acquisition

Port

Sync: Loop until rising
edge event detected

Thread: Sample

Sync: Loop until rising edge event

input, plot on LCD detected

CPU available for
other SW processes
Port

CPU available for other SW
processes

Sync: Data
Ready to Plot?

CPU available for
other SW process

BE

CPU available for Vireaiek [Flot

buffered
other SW processes serirelles @ LD

CPU available for
other SW
processes

-
-
-
P

|
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Direct Memory Access Controller

Allows Hardware->Hardware communication without using CPU

> CPU
= DMA features
Address
Data = DMAC can transfer (copy) N data items within
i Al ! | memory space from SrcAdx to DstAdx
. !; . = SrcAdx, DstAdx: fixed or increment per item copied
g—% <Z( % = Allows direct copy, but also accessing sequential items
§ § Memory Peripheral Peripheral a 'g’ in memory array (“Save the next N ADC data values in
=0 O memory starting at this address”)

Transfer can be triggered by:

= Hardware (DMA Request from peripheral device)

b

--------------------------------------------

Interrupt Requests (IRQs) : DMA Requests (DRQs) i
............................................ - Software (CPU writing to DMA request control register)
= Configurable bus sharing with CPU: can be greedy
= How to access memory and peripherals? (burst of all transfers), round-robin, etc.
= CPU uses memory bus (address, data, control) to = DMAC can generate interrupt when done
access memory and peripheral devices = DMAC has multiple channels, each with individual

= Memory bus can also be controlled by DMA trigger source, Adx pointers and behaviors, item
Controller (DMAC) peripheral count, interrupt behavior

22
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ECE 306 Car: Inputs, Processes and Outputs
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ECE 306 Car: Add Hardware Peripherals for Interfacing

24



Motor Position Sensing and Control
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Waveform Generator Subsystem: One Process

W1. WaveGen, base design .l
= |Compute/Update _n
M
(
O

(]

= Dig. to Ana.
T

Conv. Amplifier gg Speaker

= Part of a larger system with other processes (e.g. user interface) R

= Want to update DAC output every 50 us for a 20 kHz update rate

= DAC signal amplified to drive speaker ' /_P @g/ () {-ﬁ[rpz;\;,_gi,\ .
{“(Q/M
Input Input Processing Output Output Timing Requirements
Device Perlpheral Peripherals Devices

W: Waveform Calculate new output value, Digital-to-analog Amplifier & Every 50 us, +/- 5 us (?)
Generator wait fixed time, converter Speaker
write output value to DAC

26
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