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▪ Review of how ES computers are different from 
GP, and why
▪ Often demanding, complex I/O timing requirements drive 

different design choices

▪ Process relationships
▪ Concurrent vs. sequential execution
▪ HW vs. SW on single-core CPU vs. SW on multi-core
▪ Free-running vs. synchronized

▪ Application example: Oscilloscope
▪ Scope triggering: one kind of synchronization
▪ How to implement with as little hardware as 

possible: busy-wait loop

▪ Hardware or software?
▪ Software timing: hard to predict required time to 

execute (and its variability)
▪ System response time for chain of processing steps
▪ Application timing requirements vs. HW and SW 

capabilities

▪ Example applications 
▪ Scope 

▪ Key timing requirements: 
▪ Responsiveness to changing input signal. Detect 

trigger condition quickly.
▪ Stable periodic timing for sampling input value.

▪ Improving timing by moving key processing steps from 
software to hardware using peripherals, interrupts, 
direct memory access controller

▪ ECE 306 line-following car
▪ Inputs, processes, outputs

▪ Motor position sensing and control
▪ Input timing requirements for shaft position encoder. 

Missing deadline may give wrong direction or even miss 
pulses.

▪ Output timing requirements for variable speed (pulse-
width modulated) motor drive. Missing deadline affects 
motor speed proportionally

▪ Waveform Generator
▪ Stabilize output updates to regular periodic times with 

low jitter for accurate signal generation.

Class 02 Overview – Process Basics, HW and SW, Processes and 
Synchronization in Example Systems
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Computers for Embedded Systems vs. General-Purpose Systems

Range of processing activities needed to handle inputs, 
determine control actions, update outputs.

System with concurrent processes requires sync & comm

Synchronous software I/O is bad fit for time-critical I/O requirements. SW timing 
obscurity/ambiguity/non-determinism clash with I/O needs (req’ts for timing precision 

& stability) and SW<->I/O rate mismatches (especially for burst activities)

Use Async I/O to bridge/tolerate timing mismatches 
(between I/O and SW) at low cost

Implementing Async I/O requires deciding where to split 
process, how those parts will sync and communicate.

Can implement process functionality, sync and comm in SW, HW or both. 
Should select based on strengths and weaknesses of SW, HW for given need.

Implementations & Mechanisms 
(outside of CPU ISA)

General HW 
Peripherals

DMA

Sharing CPU: Interrupts, Scheduling, Real-Time 
System Concepts

Programmable logic with 
custom FSM. CLB, FPGA. Pico 

Prog. I/O blocks (FSMs)

Sources of software timing obscurity: 
inherent behavior of algorithm, arbitrary input event 

sequences, program compilation, performance 
variation/non-determinism (CPU, memory system), 

task scheduling

Disconnect between source code and object code 
timing: compilation, ISA features, optimizations

CPU performance variations: data-dependent 
instruction timing, superscalar/dynamic 

execution, pipelines, predictors, prefetching

Memory system 
(caches, VM, interference in multicore, …)

Arbitrary input event sequences possible, 
complicating system timing behavior

Interrupts and Scheduling to share CPU core(s). 

Inherent behavior of algorithms 
(control flow variations)

Efficiently crossing between HW and SW to implement 
procs, sync and comm. Interrupts, DMA vs. prog I/O.

Mainstream computing just uses a subset of the 
Async I/O design space. Targets gen-purpose 

computers with a few I/O devices (user 
interface, storage, network) and their use cases. 

Interrupts/exceptions for timer tick, OS 
interface, faults, I/O events (Rx or Tx complete, 
error). DMA discussed if you dig deep enough 

into system design.

When you have only a hammer, 
everything looks like a nail. 

CS education doesn’t do digital 
design (other than CPU, maybe 

memory system, AI accelerators, 
…). 

Sync for initial triggering (event generators/detectors)

Supporting splits: Communication (esp. data buffering 
w/timing requirements), more sync to support comm 

(notifications, handshaking, overruns …)

General Design Pattern: functionality, 
sync, comm (esp. buffering)

Use HW for some or all of func, sync, comm: less SW 
needed (if any), easier SW deadlines (fewer, looser). 

Programmable 
Coprocessors: 
TI PRU (prog. 

real-time unit), …

Out LCD

SW
H

W

VIn

InErase
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Buffer

Timer DMA

H

Port

S H

S S
DMA

H H

Int. Sys.Int. Sys.

HW Peripherals for 
Sync/Comm Support

Throw in 
another core
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Event/Sync 
Interconnect for 

Peripherals

Must understand some digital design to effectively 
recognize and assess HW implementation options

Embedded (Computer) System enhances larger system: e.g. improves 
performance, adds safety protections, simplifies maintenance & diagnostics.  

Must monitor inputs and control outputs.

Inherently concurrent system. Often is most practical to implement 
with multiple concurrent processes (some SW, some HW). Wide range of timing requirements (absolute time, update rate & phase, synchronization 

(among signals, with clock, with system substate), response time, timing stability vs. jitter 
…) for input signals, output signals, and between them (I->I, I->O, O->O).

Wide range of input and output signals. Digital, 
analog, differential, bit-dominance (wired-or), etc. 

“How slow can your CPU go and still be on time?”  Embedded Systems have concurrent compute processes with diverse I/O operations. Often the I/O for a process has challenging timing 

requirements, so we decouple it from compute software (bad timing characteristics) by splitting it into two or more processes to make input or output operations asynchronous to the compute 

operations. These processes need to synchronize and communicate (data buffering). We may even move some processing to hardware. We use interrupts, HW peripherals and DMA to make a low-

cost and feasible solution with a low-frequency CPU. 

Some I/O operations step through a sequence of I/O sub-operations triggered by 
events or time delays, creating new linked timing requirements.  UART RX operation, 

PWM, synchronous control of motor/SMPS, network with bit dominance, etc. 

mailto:agdean@ncsu.edu
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Extending the Topic Map

Process 

Implementation

Dependences 

between Processes

Hardware 

Processes

Software 

Processes

Sched: 

Share CPU 

Time

Communication

Mutual 

Exclusion

Both Hardware and 

Software Processes

Mem-

Mapped 

Periph. 

Access

Embedded Systems 

Design Space(s)

DMA 

Ctlr

Sync. to What?

Do or Don’t?
How?

Intrpt 

System

Notification/ 

Flow Ctl./ 

Handshaking

Data Loss & 

Duplication
Buffering

Split 

Receiver 

Process?

Split urgent/ 

deferrable work

Direct or 

Indirect 

Comm.?

SW?

Why 

use…?

HW?

+ Coop. 

Sched. Tasks

Infinite 

loop in 

main

+ Task 

Priorities

+ Task 

Preemption

RTCS Run-to-

Completion 

Scheduler

RTXv5 

RTOS

FSMs for 

Responsiveness

How?

“DIY” Code Implementations

Shared 

Variables

How?

OS Mechanisms

Event Flag Semaphore

Shared 

Variables

Mutex Lock

Concepts How?

In 

Order?

Cost of Precise 

Timing

Buffering 

Concepts
Why?

Message 

Queue

How?

Double 

Buffer

Circular 

Buffer

Req/Ack 

Flags

DMA-

managed 

buffer

Mailbox

How?

Cost of 

Precise Timing

CPU 

per 

Process

Application 

Characteristics

Requirements 

& Constraints

Processes and Concurrency 

for Embedded Systems

Processes and 

Concurrency

Peri-

pherals

Dedic. HW 

Interconn.

DMA 

Ctlr

Ordering/

Triggering

Concepts

Synchronization

Polling 

(Prog’d 

I/O)

+Interrupts

: Fore/Back 

ground
Serializing 

Server
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Take Multiple Passes, Getting More Details As Needed
How ES are Different

Introduction to Example Applications: I/O, Processing, Timing, Sync and Comm

Timing Behavior 

& Analysis
Peripherals

Peripheral 

Interconnect

DMA 

System

Interrupt 

System

Blinky WaveGen Scope DevSys 

(Shield & 

FRDM)

Level 1: Overviews

Level 3: Detailed Design with HW Peripherals, 

Cyclic Exec & Interrupts

Level 2: Foundations. Basic Concepts and Architectures

Cyclic 

Exec.

Cyclic Exec. 

& Intrpts

Coop. Sched. 

& Intrpts

Process 

Basics
Complex I/O. Dig, 

Ana, Basic Timing 

Reqts

HW Processes: 

Lim funct, precise 

timing, dedicated

Concurrency, Sync and 

Comm for SW and HW 

Procs

Sync. vs. Async. 

I/O

Basic 

Behavior 

(Control)

Dimensions

Sched. IPC 

Support
Digital & Analog 

Interfacing, Task 

Timing Reqts, 

Interf. and Sched.

Stabilizing Output 

Timing
Synchronizing 

Processes (events 

and mutex), 

Stabilizing Input 

Timing, Data 

Buffering

TBD

Preemptive Sched. 

& Intrpts (RTOS)

Level Y: Re-Implement with Preemp. Sched (RTOS RTX5) Apply RTOS 

Services: TBD Apply RTOS 

Services: TBD
Apply RTOS 

Services: TBD Apply RTOS 

Services: TBD

Apply Coop Sched 

Services: TBD
Apply Coop Sched 

Services: TBD
Apply Coop Sched 

Services: TBD

Apply Coop Sched 

Services: TBD

SW Processes. Flex 

funct, sloppy timing, 

share/sched

Digital

Timing Reqts. 

in Detail

(See LN L2)
Analog

CPU Sharing: intrpts, 

sched. Roadmap: 

Preemption++ (4)

Async. I/O

Need & 

Concepts
AIO Imps

AIO with 

Interrupts

AIO Coop. 

Sched. & Intrpts

AIO with 

DMA and 

Interrupts

HW-HW SW-SWHW-SW

Prog’d 

I/O

Shared 

Variables

Process Sync & Comm

Level X: Re-Implement with Coop Sched (RTCS)

Development 

Processes

DebuggingDesign 

before 

Coding

Problem-

Solving
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Process Relationships: Concurrency and Synchronization
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Process Relationships

▪ Sequential: Finish current process before starting another

▪ Finish red before starting any other process

▪ Concurrent: Process execution may overlap in time

▪ Can start green, yellow before finishing red

▪ Execution of concurrent processes

▪ Hardware: Dedicated circuit per process, 

so able to run at the same time

▪ Software: depends on # of CPU cores

▪ Each core works on one process at a specific point in time

Start                               End Start                                   End Start                                   End

SStart EndS E E

S

Start End

S E

E

Start                               End

Start                               End

S ES E

Start                               End

1 Core

2 Cores

3 Cores
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▪ Example: Five processes (A-E), each flashing an LED

▪ How to make LEDs flash in a scanning sequence?
▪ Simple independent starter process doesn’t do this

▪ LEDs flash independently of each other. Changing one 
process doesn’t affect the others

▪ No synchronization between processes, are free-running
▪ Hardware process runs non-stop

▪ Software process runs whenever it can (CPU available)

▪ Processes need to synchronize with each other 
▪ After turning off its LED, process sends a synchronization 

signal to the next process.

▪ A process doesn’t turn on its LED until after it gets a 
signal from the previous process

▪ Special case for start-up: Process A doesn’t wait for signal 
on its first execution

Synchronized or Free-Running Process Execution?

Process A LED

Process B LED

Process C LED

Process D LED

Process E LED
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▪ Don’t let Process B start to execute section B2 until 
Process A has completed section A1
▪ Includes case where each thread has only one section

▪ Multiple cases possible based on initial process 
execution order and priority (if sharing a CPU)

Synchronized Process Execution
A

 r
a
n

 f
ir

s
t

B
 r

a
n

 f
ir

s
t

Process B

Process A A1 A2

B1 B2

A1 A2

B1 B2

B2 can runB2 must wait

Blocked Ready

A1 A2

B1 B2

B2 can runB2 must wait

Ready

Blocked Ready
Blocked

A1 A2

B1 B2

B2 can runB2 must wait

Ready Ready

A1 A2

B1 B2

B2 can runB2 must wait

Blocked

ReadyReady

PA > PB PA < PB
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▪ Input signal

▪ Start with simple one-bit digital signal (do analog later)

▪ Pulses have irregular start times, changing pulse widths

▪ Displaying the signal

▪ Oscilloscope (“scope”) plots signal value (e.g. voltage) vertically vs. 

time horizontally 

▪ Horizontal time base determines amount of time (THoriz) 

represented on scope display

▪ Display stability depends timing relationship between when 

scope starts displaying the signal, and when the signal changes

▪ “Infinite persistence” accumulates all acquired traces on display until 

erase button is pressed

Synchronization: Simple Oscilloscope Example

Time
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▪ Sequence

▪ Display signal from 0 to THoriz

▪ Display signal from THoriz to 2*THoriz

▪ Display signal from 2*THoriz to 3*THoriz

▪ Display signal from 3*THoriz to 4*THoriz

▪ Display signal from 4*THoriz to 5*THoriz

▪ Display signal from 5*THoriz to 6*THoriz

▪ Display signal from 6*THoriz to 7*THoriz

▪ etc.

▪ What is range of pulse widths? Can’t see.

▪ Resulting display is unstable, jumps around 

over time. 

Simple Method: Display Signal Continuously
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▪ Scope does nothing until triggered 

▪ Event from input signal (e.g. 0 to 1 edge) 

triggers scope to start displaying signal

▪ Triggering synchronizes the scope’s start of 

data display to input signal event

▪ Resulting display is much more stable

▪ Range of pulse widths is easy to see.

▪ Rising edge of signal is stable

▪ Except for last acquisition, where time 

between rising edges < Thoriz

▪ Falling edge unstable since pulse width varies

Stabilize Display with Triggering
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▪ Synchronization built into SW process A

▪ Simple, but doesn’t scale up well with multiple software 

processes

Simple Busy-Wait Loop
Process A

…

// Detector/Synchronizer

while (ADC->Result < V_Threshold)

 ;

// No Scheduler

// No Dispatcher

// Handler process

x = 0;

for (n=0; n<NS; n++) {

 r = ADC->Result;

 y = scale(r);

 LCD_Plot(x++,y);

}

GPIO GPIO LCD

So
ft

w
ar

e
H

ar
d
w

ar
e

VIn
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System Timing Performance: 
Software and Hardware
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▪ Software
▪ Program gives very flexible functionality

▪ Interrupt system (e.g. NVIC) and scheduler 
(if any) determines what software runs on 
CPU and when

▪ Software very vulnerable to timing 
interference. Need synchronization. Use 
interrupts, scheduler to improve timing 
stability

▪ Hardware
▪ Very stable timing (when independent of 

software)

▪ Functionality limited to what is built into 
hardware (and your creativity)

Use Software or Hardware? Flexibility vs. Timing Stability
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▪ Time to execute code is… 
▪ Hard to predict accurately: Timing 

behavior depends on machine 
language instructions generated from 
source code by compiler, CPU used, 
data-dependent instruction timing, 
system speed….

▪ Unstable (“fragile”): Depends on paths 
taken through conditionals, loop 
repeat counts, etc. Paths may depend 
on input data, execution history, etc. 

“Sloppy” Software Timing Behavior

if (x>0)

 j += r;

else

 x++;

x = x/8;

if (j>3)

 x -= 17;

else

 r *= 7;

Compile, assemble 

and link

???? 
(machine code 
instructions)
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▪ Responsiveness depends on sequence of activities 
between input event and system’s response

▪ Diagram
▪ Process 1 samples Vin, looks 

for event (0 to 1 transition)

▪ Hardware process timing:
fast, very stable, predictable
▪ Typically faster than time for 

CPU to execute an instruction 

▪ Uses hardware circuits which are 
dedicated (not shared) 
▪ Exceptions later: shared buses, etc.

▪ Software process timing: much slower, unstable, 
hard to predict precisely
▪ Time to execute a software process is hard to 

predict, varies based on input data, history …
▪ Sharing CPU among multiple software processes 

delays a process
▪ Inherent delays and processing overhead (may be in 

program, interrupt system, OS/executive) for:
▪ Synchronization: deciding if process may run (is ready) or must 

wait for event/condition
▪ Scheduling: deciding which ready software process to run next
▪ Context Switching and/or Dispatching: saving and restoring 

process contexts, starting next process running

▪ Timing interference (preemption, blocking) from other 
software processes (threads, interrupt handlers)

System Responsiveness Depends on Processes

VIn

Timing Close-Up
(nanoseconds)

So
ft

w
ar

e
H

ar
d
w

ar
e OutIn

Time (microseconds)

CPU 

Instruction

CPU 

Instruction

CPU 

Instruction

VIn
VOut

Event
Response

CPU Sharing Overhead: 
Synchronization, Scheduling, Context Switching/Dispatching

Int. Handler

Process 0

Process 1

Process 2
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Timing Requirements vs. Response Time Capabilities for 
Different Design Approaches

Lots of time

Very little time
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▪ Oscilloscope
▪ Synchronize to input signal rising across trigger voltage level, then capture data samples at precise, frequent times

▪ ECE 306 line-following car
▪ Multiple processes

▪ Motor position sensing and control
▪ Monitor motor position using quadrature shaft encoder

▪ Waveform generator
▪ Generate analog waveform with consistent, precise timing for output updates 

Design Examples
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▪ Version 1: Simple Busy-Wait Loop
▪ Software detects trigger event using small loop 

which blocks progress through process/thread

Scope: Stabilize Display with Triggering

Process A

// Detector/Synchronizer

while (ADC->Result < V_Threshold)

 ;

// No Scheduler

// No Dispatcher

// Handler process

Loop for all columns in screen

 Get input data sample, 

 Scale it, 

 Plot it on LCD

GPIO GPIO LCD

So
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w
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e
H
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d
w

ar
e

VIn
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Improve Timing by Moving Activities from Software to Hardware

Out LCD

SW
H

W

VIn

Trigger Detection by Hardware

In
Int. Sys.

Port

H

Out LCD

SW
H

W

VIn

Hardware Trigger Detection and 
DMA (Direct Memory Access) + 
Timer for Data Acquisition

In

Buffer
Timer DMA

H

Port
S S

DMA

H H

Int. Sys.Int. Sys.

In Out LCD

SW
H

W VIn

Trigger Detection by Software

S
H

Sync: Loop until rising 
edge event detected

Thread: Sample 
input, plot on LCD

Sync: Loop until rising edge event 
detected

Port Interrupt 
Handler: Sample 

input, plot on LCD

CPU available for  
other SW processes

CPU available for other SW 
processes

DMA Interrupt 
Handler: Tell thread 
to plot buffer data

Port Interrupt 
Handler: Enable 
Timer and DMA

CPU available for  
other SW processes

CPU available for 
other SW processes

Thread: Plot 
buffered 

samples on LCD

CPU available for 
other SW 
processes

Sync: Data 
Ready to Plot?
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▪ How to access memory and peripherals?

▪ CPU uses memory bus (address, data, control) to 
access memory and peripheral devices

▪ Memory bus can also be controlled by DMA 
Controller (DMAC) peripheral 

▪ DMA features

▪ DMAC can transfer (copy) N data items within 
memory space from SrcAdx to DstAdx

▪ SrcAdx, DstAdx: fixed or increment per item copied

▪ Allows direct copy, but also accessing sequential items 
in memory array (“Save the next N ADC data values in 
memory starting at this address”)

▪ Transfer can be triggered by: 

▪ Hardware (DMA Request from peripheral device) 

▪ Software (CPU writing to DMA request control register)

▪ Configurable bus sharing with CPU: can be greedy 
(burst of all transfers), round-robin, etc.

▪ DMAC can generate interrupt when done

▪ DMAC has multiple channels, each with individual 
trigger source, Adx pointers and behaviors, item 
count, interrupt behavior

Direct Memory Access Controller
Allows Hardware->Hardware communication without using CPU

CPU

D
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A

C
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n
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Control Signals

(Read,Write)

Address

Data

Memory Peripheral Peripheral
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Interrupt Requests (IRQs) DMA Requests (DRQs)
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ECE 306 Car: Inputs, Processes and Outputs
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ECE 306 Car: Add Hardware Peripherals for Interfacing
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Motor Position Sensing and Control
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Waveform Generator Subsystem: One Process

▪ Part of a larger system with other processes (e.g. user interface)

▪ Want to update DAC output every 50 us for a 20 kHz update rate 

▪ DAC signal amplified to drive speaker

W1. WaveGen, base design

Amplifier
Dig. to Ana. 

Conv.

SW
H

W

Compute/Update

Speaker

Process Input 
Device

Input 
Peripheral

Processing Output 
Peripherals

Output 
Devices

Timing Requirements

W: Waveform 
Generator

n/a n/a Calculate new output value, 
wait fixed time, 
write output value to DAC

Digital-to-analog 
converter

Amplifier & 
Speaker

Every 50 us, +/- 5 us (?)
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