
1

ECE 460/560
Embedded Systems Architectures:

Introduction

A.G. Dean
agdean@ncsu.edu

https://sites.google.com/ncsu.edu/agdean/teaching

8/19/2025

2

Embedded Systems Topics (and Dependencies)

3

 Embedded Computer Systems frequently target control applications
 Get input (read signal, detect event), Compute new output value, Update output
 Microcontroller = Microprocessor + memory + hardware peripherals to support

control
 Embedded Systems have processes, different implementation options

 Software can do almost anything (eventually). Timing is slow, very sloppy.
 Hardware is very fast and energy-efficient, uses dedicated circuits. Stable timing.

Limited functionality available.
 Typically have multiple concurrent processes due to application requirements
 These processes often have diverse I/O operations

 Digital signals, analog signals (must be converted to digital)
 Bursts of events (e.g. PWM, serialized data, etc.),
 Sample input periodically vs. receive event notification,
 Range of I/O operation frequencies

Embedded Systems High-Level View (1)

4

 The I/O for a process often has challenging timing requirements
 Periodic events, events synched to other/previous events on this/other signals

 Decouple the I/O from compute software (bad timing characteristics) by
splitting it into two or more processes to make input or output operations
asynchronous to the compute operations.
 We may move some processing to hardware peripheral circuits.

 These processes need to synchronize and communicate (data buffering).
 We use interrupts, HW peripherals and DMA to make a low-cost and

feasible solution with a low-frequency CPU.

Embedded Systems High-Level View (2)

5

High-Level Topic Map

Process
Implementation

Dependences
between Processes

How:
Hardware
Processes

How:
Software
Processes

Scheduler:
Share CPU

Time

Communication

Mutual
Exclusion

Mem-
Mapped
Periph.
Access

Embedded Systems
Design Spaces

DMA
Ctlr

Sync. to What?
Why?

Intrpt
System

Notification/
Flow Ctl./

Handshaking

Data
Buffering

Split Process?
(e.g. Async I/O)

Direct or
Indirect
Comm.?

What & Why?
HW, SW, Both?

Why?
How?

Timing

CPU
per

Process

Application
Characteristics

Requirements
& Constraints

Concurrent
Processes

Ordering/
Triggering

Synchronization:
Do? Don’t?

Polling
(Prog’d

I/O)

Why?
Concepts

How?
Methods

HW Shared Vars
& DIY SW

Support from
OS, Language

Why?
How?

Why?
How?

Why?
How?

Why?
How?

Example
Applications

Periphs,
Prog. Logic,

DMA

How: Both Hardware
and Software

Processes

Development Processes:
Embedded System

Engineering

Functional
Reqts.

Non-Funct.
Reqts.

Design Development
& Debugging

Testing Dependable
Systems

HW Shared Vars
& DIY SW

Support from
OS, Language

6

Yet Another Course Map
How ES are Different

Introduction to Example Applications: I/O, Processing, Timing, Sync and Comm

Timing Behavior
& Analysis

Peripherals

Peripheral
Interconnect

DMA
System

Interrupt
System

Blinky WaveGen Scope DevSys
(Shield &
FRDM)

Level 1: Overviews

Level 3: Detailed Design with HW Peripherals,
Cyclic Exec & Interrupts

Level 2: Foundations. Basic Concepts and Architectures

Cyclic
Exec.

Cyclic Exec.
& Intrpts

Coop. Sched.
& Intrpts

Process
Basics

Complex I/O. Dig,
Ana, Basic Timing

Reqts

HW Processes:
Lim funct, precise
timing, dedicated

Concurrency, Sync and
Comm for SW and HW

Procs

Sync. vs. Async.
I/O

Basic
Behavior
(Control)

Dimensions

Sched. IPC
Support

Digital & Analog
Interfacing, Task
Timing Reqts,

Interf. and Sched.

Stabilizing Output
Timing Synchronizing

Processes (events
and mutex),

Stabilizing Input
Timing, Data

Buffering

TBD

Preemptive Sched.
& Intrpts (RTOS)

Level Y: Re-Implement with Preemp. Sched (RTOS RTX5) Apply RTOS
Services: TBD Apply RTOS

Services: TBD
Apply RTOS

Services: TBD Apply RTOS
Services: TBD

Apply Coop Sched
Services: TBD

Apply Coop Sched
Services: TBD

Apply Coop Sched
Services: TBD

Apply Coop Sched
Services: TBD

SW Processes. Flex
funct, sloppy timing,

share/sched

Digital

Timing Reqts.
in Detail

(See LN L2)
Analog

CPU Sharing: intrpts,
sched. Roadmap:
Preemption++ (4)

Async. I/O

Need &
Concepts

AIO Imps

AIO with
Interrupts

AIO Coop.
Sched. & Intrpts

AIO with
DMA and
Interrupts

HW-HW SW-SWHW-SW

Prog’d
I/O

Shared
Variables

Process Sync & Comm

Level X: Re-Implement with Coop Sched (RTCS)

Development
Processes

DebuggingDesign
before
Coding

Problem-
Solving

7

Extending the Topic Map

Process
Implementation

Dependences
between Processes

Hardware
Processes

Software
Processes

Sched:
Share CPU

Time

Communication

Mutual
Exclusion

Both Hardware and
Software Processes

Mem-
Mapped
Periph.
Access

Embedded Systems
Design Space(s)

DMA
Ctlr

Sync. to What?
Do or Don’t?

How?

Intrpt
System

Notification/
Flow Ctl./

Handshaking

Data Loss &
Duplication

Buffering
Split

Receiver
Process?

Split urgent/
deferrable work

Direct or
Indirect
Comm.?

SW?

Why
use…?

HW?

+ Coop.
Sched. Tasks

Infinite
loop in
main

+ Task
Priorities

+ Task
Preemption

RTCS Run-to-
Completion
Scheduler

RTXv5
RTOS

FSMs for
Responsiveness

How?

“DIY” Code Implementations
Shared

Variables

How?

OS Mechanisms
Event Flag Semaphore

Shared
Variables

Mutex Lock

Concepts How?

In
Order?

Cost of Precise
Timing

Buffering
Concepts

Why?

Message
Queue

How?

Double
Buffer

Circular
Buffer

Req/Ack
Flags

DMA-
managed

buffer

Mailbox

How?

Cost of
Precise Timing

CPU
per

Process

Application
Characteristics

Requirements
& Constraints

Processes and Concurrency
for Embedded Systems

Processes and
Concurrency

Peri-
pherals

Dedic. HW
Interconn.

DMA
Ctlr

Ordering/
Triggering

Concepts

Synchronization

Polling
(Prog’d

I/O)

+Interrupts
: Fore/Back

ground
Serializing

Server

8

ExamplesProblem-SolvingConcepts and Methods
ShieldFRDM

O
sc

ill
os

co
pe

W
av

ef
or

m
 G

en
er

at
or

Bl
in

ky
 L

ig
ht

s

T
hr

ou
gh

pu
t

C
om

pu
te

 E
ffi

ci
en

cy

R
es

po
ns

iv
en

es
s

T
im

in
g

St
ab

ili
ty

C
or

re
ct

 F
un

ct
io

na
lit

y

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

an
d

C
om

m
un

ic
at

io
n

Pr
oc

es
s

Sc
he

du
lin

g

Pr
oc

es
s

Im
pl

em
en

ta
tio

n

D
ev

el
op

m
en

t
Pr

oc
es

se
sApplication

Requirements

μS
D

 v
ia

 S
PI

SM
PS

 C
on

tr
ol

le
r

To
uc

hs
cr

ee
n

LC
D

 C
on

tr
ol

le
r

I2 C
 C

om
m

.

Se
ri

al
 C

om
m

.

T
im

in
g,

ot
he

r
N

on
-F

un
ct

io
na

l

In
pu

ts
, O

ut
pu

ts
,

Fu
nc

tio
na

lit
y

HW->SWSW->HWSWHWSWHWSWHW

Apply to Examples

9

Problem-SolvingConcepts and Methods

T
hr

ou
gh

pu
t

C
om

pu
te

 E
ffi

ci
en

cy

R
es

po
ns

iv
en

es
s

T
im

in
g

St
ab

ili
ty

C
or

re
ct

 F
un

ct
io

na
lit

y

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

an
d

C
om

m
un

ic
at

io
n

Pr
oc

es
s

Sc
he

du
lin

g

Pr
oc

es
s

Im
pl

em
en

ta
tio

n

D
ev

el
op

m
en

t
Pr

oc
es

se
sApplication

Requirements

T
im

in
g,

ot
he

r
N

on
-F

un
ct

io
na

l

In
pu

ts
, O

ut
pu

ts
,

Fu
nc

tio
na

lit
y

HW->SWSW->HWSWHWSWHWSWHW

Overhead,
batch
processing,
SW ->HW

Overhead,
batch
processing,
SW->HW

SW process
Timing
Analysis ,
System
Response
time
analysis,
Prioritizatio
n, blocking,
preemption,
Real-Time

Timing
analysis,
Time
synchronizat
ion, Timer
peripheral,
sched/OS
timer,
preemption
& blocking

Concurrency
bugs, Testing,
Debugging,
Dependable
system
architecture

Sync Input,
Interrupts,
Async Input,
Data buffering

Sync. Output,
Async. Output,
Data buffering

Shared
variables with
algorithms,
OS/Language
support

Peripheral
interconn.,
DMA

Events vs.
polling, While 1
loop, Interrupt
system,
Cooperative
tasks,
Preemptive
Tasks. Priorities,
preemption

Peripheral
interconn.,
DMA

Source
code,
build
toolchain,
object
code

Peripherals,
DMA
controller
Prog. logic,

Defining
requirements,
Design before
coding, Estimation,
Design for X,
Testing, Dev.
Processes for
dependable and
safety-critical
systems

I/O event timing,
internal timing,
power and energy
consumption,
code size

User interface,
Control
Systems, Media
DSP, Data
logging, Sensor
data processing
& fusion, etc. …

Many Interconnected Methods

10

 Review of how ES computers are different from GP,
and why
 Diagram with factors and decisions
 Scope example

 Uses common hardware peripherals to offload
work from software, improve performance

 Scope triggering is one kind of synchronization
 Low cost hardware

 Timing
 Timing variability of software
 System response time

 Example application overview and types of timing
requirements
 ECE 306 line-following car

 Motor speed and position control
 Input timing requirements for shaft position

encoder. In -> Compute. Response activities,
response time limits shaft speed, missing deadline
may give wrong direction.

 Output timing requirements for variable speed
(pulse-width modulated) motor drive. Out -> Out.
Missing deadline (early or late) affects motor
speed, but less critical (inertia limits impact of
error).

 Waveform Generator
 Stabilize output update time

 Comparing timing requirements with system timing
capabilities and behaviors of hardware and
software

Class 02 Overview

11

Computers for Embedded Systems vs. General-Purpose Systems

Range of processing activities needed to handle inputs,
determine control actions, update outputs.

System with concurrent processes requires sync & comm

Synchronous software I/O is bad fit for time-critical I/O requirements. SW timing
obscurity/ambiguity/non-determinism clash with I/O needs (req’ts for timing precision

& stability) and SW<->I/O rate mismatches (especially for burst activities)

Use Async I/O to bridge/tolerate timing mismatches
(between I/O and SW) at low cost

Implementing Async I/O requires deciding where to split
process, how those parts will sync and communicate.

Can implement process functionality, sync and comm in SW, HW or both.
Should select based on strengths and weaknesses of SW, HW for given need.

Implementations & Mechanisms
(outside of CPU ISA)

General HW
Peripherals

DMA

Sharing CPU: Interrupts, Scheduling, Real-Time
System Concepts

Programmable logic with
custom FSM. CLB, FPGA. Pico

Prog. I/O blocks (FSMs)

Sources of software timing obscurity:
inherent behavior of algorithm, arbitrary input event

sequences, program compilation, performance
variation/non-determinism (CPU, memory system),

task scheduling

Disconnect between source code and object code
timing: compilation, ISA features, optimizations

CPU performance variations: data-dependent
instruction timing, superscalar/dynamic

execution, pipelines, predictors, prefetching

Memory system
(caches, VM, interference in multicore, …)

Arbitrary input event sequences possible,
complicating system timing behavior

Interrupts and Scheduling to share CPU core(s).

Inherent behavior of algorithms
(control flow variations)

Efficiently crossing between HW and SW to implement
procs, sync and comm. Interrupts, DMA vs. prog I/O.

Mainstream computing just uses a subset of the
Async I/O design space. Targets gen-purpose

computers with a few I/O devices (user
interface, storage, network) and their use cases.

Interrupts/exceptions for timer tick, OS
interface, faults, I/O events (Rx or Tx complete,
error). DMA discussed if you dig deep enough

into system design.

When you have only a hammer,
everything looks like a nail.
CS education typically omits

digital design (other than CPU,
maybe memory system, AI

accelerators, …).

Sync for initial triggering (event generators/detectors)

Supporting splits: Communication (esp. data buffering
w/timing requirements), more sync to support comm

(notifications, handshaking, overruns …)

General Design Pattern: functionality,
sync, comm (esp. buffering)

Use HW for some or all of func, sync, comm: less SW
needed (if any), easier SW deadlines (fewer, looser). Programmable

Coprocessors:
TI PRU (prog.

real-time unit), …

HW Peripherals for
Sync/Comm Support

Throw in
another core

agdean@ncsu.edu August 18, 2025

Event/Sync
Interconnect for

Peripherals

Must understand some digital design to effectively
recognize and assess HW implementation options

Embedded (Computer) System enhances larger system: e.g. improves
performance, adds safety protections, simplifies maintenance & diagnostics.

Must monitor inputs and control outputs.

Inherently concurrent system. Often is most practical to implement
with multiple concurrent processes (some SW, some HW). Wide range of timing requirements (absolute time, update rate & phase, synchronization

(among signals, with clock, with system substate), response time, timing stability vs. jitter
…) for input signals, output signals, and between them (I->I, I->O, O->O).

Wide range of input and output signals. Digital,
analog, differential, bit-dominance (wired-or), etc.

“How slow can your CPU go and still be on time?” Embedded Systems have concurrent compute processes with diverse I/O operations. Often the I/O for a process has challenging timing
requirements, so we decouple it from compute software (bad timing characteristics) by splitting it into two or more processes to make input or output operations asynchronous to the compute
operations.These processes need to synchronize and communicate (data buffering). We may even move some processing to hardware. We use interrupts, HW peripherals and DMA to make a low-
cost and feasible solution with a low-frequency CPU.

Some I/O operations step through a sequence of I/O sub-operations triggered by
events or time delays, creating new linked timing requirements. UART RX operation,

PWM, synchronous control of motor/SMPS, network with bit dominance, etc.

12

Process Relationships

 Sequential: Finish current process before starting another
 Finish red before starting any other process

 Concurrent: Process execution may overlap in time
 Can start green, yellow before finishing red

 Execution of concurrent processes
 Hardware: Dedicated circuit per process,

so able to run at the same time

 Software: depends on # of CPU cores
 Each core works on one process at a specific point in time

Start End Start End Start End

SStart EndS E E

S

Start End
S E

E

Start End

Start End
S ES E

Start End

1 Core

2 Cores

3 Cores

13

 (A thread is a type of a software process)
 Don’t let Thread B start to execute section B2 until Thread

A has completed section A1
 Includes case where each thread has only one section

 Four possible cases based on thread priority, initial thread
execution order

May Need to Synchronize Process Execution

A
 r

a
n

 f
ir

s
t

B
 r

a
n

 f
ir

s
t

Thread B

Thread A A1 A2

B1 B2

A1 A2

B1 B2

B2 can runB2 must wait

Blocked Ready

A1 A2

B1 B2

B2 can runB2 must wait

Ready

Blocked Ready Blocked

A1 A2

B1 B2

B2 can runB2 must wait

Ready Ready

A1 A2

B1 B2

B2 can runB2 must wait

Blocked

ReadyReady

PA > PB PA < PB

14

 Input signal
 Start with simple one-bit digital signal (do analog later)
 Pulses have irregular start times, changing pulse widths

 Displaying the signal
 Oscilloscope (“scope”) plots signal value (e.g. voltage) vertically vs.

time horizontally
 Horizontal time base determines amount of time (THoriz)

represented on scope display
 Display stability depends timing relationship between when

scope starts displaying the signal, and when the signal changes
 “Infinite persistence” accumulates all acquired traces on display until

erase button is pressed

Synchronization: Simple Oscilloscope Example

Time

Si
gn

al
 V

al
ue

(e

.g
.v

ol
ta

ge
)

THorizontal

15

 Sequence
 Display signal from 0 to THoriz

 Display signal from THoriz to 2*THoriz

 Display signal from 2*THoriz to 3*THoriz

 Display signal from 3*THoriz to 4*THoriz

 Display signal from 4*THoriz to 5*THoriz

 Display signal from 5*THoriz to 6*THoriz

 Display signal from 6*THoriz to 7*THoriz

 etc.

 Resulting display is unstable, jumps around
over time.

Simple Method: Display Signal Continuously

16

 Scope does nothing until triggered
 Event from input signal (e.g. 0 to 1 edge)

triggers scope to start displaying signal
 Triggering synchronizes the scope’s start of

data display to input signal event

 Resulting display is much more stable
 Rising edge of signal is stable
 Except for last acquisition, where time

between rising edges < Thoriz

 Falling edge is not stable, because pulse width
varies

Stabilize Display with Triggering

17

 Synchronize: In Process A

 Schedule: Implicit

 Dispatch: Implicit

Simple Busy-Wait Loop
Process A
…
// Detector/Synchronizer
while (ADC->Result < V_Threshold)

;
// No Scheduler
// No Dispatcher
// Handler process
x = 0;
for (n=0; n<NS; n++) {

r = ADC->Result;
y = scale(r);
LCD_Plot(x++,y);

}

GPIO GPIO LCD

So
ft

w
ar

e
H

ar
dw

ar
e VIn

18

 Software
 Program gives very flexible functionality
 Interrupt system (e.g. NVIC) and scheduler

(if any) determines what software runs on
CPU and when

 Software very vulnerable to timing
interference. Need synchronization. Use
interrupts, scheduler to improve timing
stability

 Hardware
 Very stable timing (when independent of

software)
 Functionality limited to what is built into

hardware (and your creativity)

Use Software or Hardware? Flexibility vs. Timing Stability

19

Software Timing Analysis

20

 Responsiveness depends on sequence of activities
between input event and system’s response

 Hardware process timing:
fast, very stable, predictable
 Typically faster than time for

CPU to execute an instruction
 Uses hardware circuits which are

dedicated (not shared)
 Exceptions later: shared buses, etc.

 Software process timing: much slower, unstable,
hard to predict precisely
 Time to execute a software process is hard to tell

from source code. Often varies when input data
triggers different behavior (conditionals, loops, etc.)

 Sharing CPU among multiple software processes
delays a process
 Inherent delays and processing overhead (may be in

program, interrupt system, OS/executive) for:
 Synchronization: deciding if process may run (is ready) or must

wait for event/condition
 Scheduling: deciding which ready software process to run next
 Context Switching and/or Dispatching: saving and restoring

process contexts, starting next process running
 Timing interference (preemption, blocking) from other

software processes (threads, interrupt handlers)

System Responsiveness Depends on Processes

VIn

Timing Close-Up
(nanoseconds)

So
ft

w
ar

e
H

ar
dw

ar
e OutIn

Time (microseconds)

CPU
Instruction

CPU
Instruction

CPU
Instruction

VIn
VOut

Event
Response

CPU Sharing Overhead:
Synchronization, Scheduling, Context Switching/Dispatching

Int. Handler

Process 0

Process 1

Process 2

21

Improve Timing by Moving from Software to Hardware

Out LCD

SW
H

W VIn

Trigger Detection by Hardware

InErase

S

In
Int. Sys.

H

Port

H

Out LCD

SW
H

W VIn

Use DMA and Timer for Data Acquisition

InErase

In

Buffer

Timer DMA

H
Port

S H

S S
DMA

H H

Int. Sys.Int. Sys.

In Out LCD
SW

H
W VIn

Trigger Detection by Software
S H

22

 Development costs
 Hardware costs

 Slower MCU

 Maintenance costs

Goals – Low Costs

23

DESIGN EXAMPLES: LEVEL 1

24

Scope (Oscilloscope): One Process

Timing RequirementsOutput
Devices

Output
Peripherals

ProcessingInput
Peripheral

Input
Device

Process

25

ECE 306 Truck/Car

26

Alt 306 Truck Diagram

27

Processes in ECE 306 Truck

Timing RequirementsOutput
Devices

Output
Peripherals

ProcessingInput
Peripheral

Input
Device

Process

28

Timing RequirementsOutput
Devices

Output
Peripherals

ProcessingInput
Peripheral

Input
Device

Process

Motor Speed and Position Control

29

Waveform Generator Subsystem: One Process

 Part of a larger system with other processes (e.g. user interface)
 Want to update DAC output every 50 us for a 20 kHz update rate

 DAC signal amplified to drive speaker

W1. WaveGen, base design

AmplifierDig. to Ana.
Conv.

SW
H

W

Compute/Update

Speaker

Timing RequirementsOutput
Devices

Output
Peripherals

ProcessingInput
Peripheral

Input
Device

Process

Every 50 us, +/- 5 us (?)Amplifier &
Speaker

Digital-to-analog
converter

Calculate new output value,
wait fixed time,
write output value to DAC

n/an/aW: Waveform
Generator

30

Blinky Control Panel: Four Concurrent Processes

DIn DOut LED

SW
H

W

Switch

R/C/U
B-A1. On/Off LED

B-B1. Nightlight LED

Analog
Comp. DOut LED

Light
Sensor

SW
H

W

R/C/U

B-C1. Analog-Dimmable LED

Ana. to
Dig. Conv. LEDKnob

(Pot.)
Dig. to Ana.

Conv.

SW
H

W

R/C/U

B-D1. Flashing LED

LEDDout

SW
H

W DInSwitch

R/C/U

Timing
Req’d.

Output
Device

Output
Peripheral

ProcessingInput
Peripheral

Input
Device

Process

Within 100
ms

LEDDigital output portRead port, mask off switch input bit, shift it to LED’s bit
position in output port and write it.

Digital input portSwitchA: Switched
LED

Within 500
ms

LEDDigital output portRead port, mask off comparator’s output bit, shift it to
LED’s bit position in output port.

Analog comparatorPhotosensorB: Night-Light
LED

Within 100
ms

LEDDigital-to-analog
converter (DAC)

Convert analog voltage to digital value, process reading
(negate and scale), convert digital value to analog
voltage

Analog-to-digital
converter (ADC)

Potentiometer
voltage divider

C: Dimmable
LED

Within 100
ms

LEDDigital output portRead port, mask off switch input bit, shift it to LED’s bit
position in output port and write it.

Digital input portSwitchD: Switched
Flashing LED

31

FRDM: Serial Communications Subsystem

Timing RequirementsOutput
Devices

Output
Peripherals

ProcessingInput
Peripheral

Input
Device

Process

32

FRDM: Accelerometer (& I2C) Subsystem

Timing RequirementsOutput
Devices

Output
Peripherals

ProcessingInput
Peripheral

Input
Device

Process

33

Shield: SMPS Controller Subsystem

Timing RequirementsOutput
Devices

Output
Peripherals

ProcessingInput
Peripheral

Input
Device

Process

34

Shield LCD Interface:

Timing RequirementsOutput
Devices

Output
Peripherals

ProcessingInput
Peripheral

Input
Device

Process

35

Shield: Touchscreen Interface

Timing RequirementsOutput
Devices

Output
Peripherals

ProcessingInput
Peripheral

Input
Device

Process

36

Timing Requirements

37

Timing Requirements vs. Capabilities

38

Timing Characteristics of Software

39

Waveform Generator Design Evolution with Software and
Hardware Components: Want Output Updates with Stable
TimingW1

DAC

SW

HW VOut

W2

DAC
VOutTimer

Done?

W3

DAC
VOutTimer

ISR: Next
Sample

NVIC

W4

DAC
VOutTimer

ISR: Next
Sample

NVIC

W5

DAC
VOutTimer

ISR: Next
Sample

NVIC

W6

DAC
VOutTimer

ISR: Refill
Buffer

NVIC

W7

DAC
VOut

Timer

ISR:
Refill

Buffer

NVIC
DMA Transfer One Sample

W8

DAC
VOut

Timer

ISR: Switch
Buffers,

Refill Other

NVIC
DMA Transfer One Sample

W9

DAC
VOut

Timer

ISR: Start to
Refill Buffer

NVIC
DMA Transfer One Sample

Run
later

40

Waveform Generator Design Evolution with Software and Hardware
Components: Want Output Updates with Stable Timing

W1

DAC

SW

HW VOut

W2

DAC
VOutTimer

Done?

W3

DAC
VOutTimer

ISR: Next
Sample

NVIC

W4

DAC
VOutTimer

ISR: Next
Sample

NVIC

W5

DAC
VOutTimer

ISR: Next
Sample

NVIC

W6

DAC
VOutTimer

ISR: Refill
Buffer

NVIC

W7

DAC
VOut

Timer

ISR:
Refill

Buffer

NVIC
DMA Transfer One Sample

W8

DAC
VOut

Timer

ISR: Switch
Buffers,

Refill Other

NVIC
DMA Transfer One Sample

W9

DAC
VOut

Timer

ISR: Start to
Refill Buffer

NVIC
DMA Transfer One Sample

Run
later

41

Port

H

S

Scope Design Evolution with Software and Hardware Components

In Out LCD

SW
H

W VIn

H

1. Basic

Out LCD

SW
H

W VIn

4,5. Interrupt Trigger

InErase

S

In
Int. Sys.

H

Out LCD

SW
H

W VIn

6. Defer LCD Updates

InErase

In
Int. Sys.

H

Buffer

S

In Out LCD

SW
H

W VIn

2. Polling Trigger
S H

In Out LCD

SW
H

W VIn

3. Erase Button

InErase

S H

HS

S

Port

H

H

42

Scope Design Evolution with Software and Hardware Components

Out LCD

SW
H

W VIn

7. Use Timer

InErase

In Timer

H
Port

S H
Buffer

S
Timer

H H
S

Int. Sys.Int. Sys.

Out LCD

SW
H

W VIn

8. Use DMA and Timer

InErase

In

Buffer

Timer DMA

H
Port

S H

S S
DMA

H H

Int. Sys.Int. Sys.

43

Sync. and Comm. Paths for HW and SW Processes

So
ft

w
ar

e
H

ar
dw

ar
e

HW
Process

HW
Process

Interrupt
Controller

SW
Process

SW
Process

Interrupt
Handler

Dedicated Interconnect

Direct Memory Access

Variables shared with correct algorithms

OS Synch & Comm primitives: Sem, etc.

Producer:
Event/Data Source

Consumer:
Event/Data User

44

 How to access memory and peripherals?
 CPU uses memory bus (address, data, control) to

access memory and peripheral devices
 Memory bus can also be controlled by DMA

Controller (DMAC) peripheral

 DMA features
 DMAC can transfer (copy) N data items within

memory space from SrcAdx to DstAdx
 SrcAdx, DstAdx: fixed or increment per item copied
 Allows direct copy, but also accessing sequential items

in memory array (“Save the next N ADC data values in
memory starting at this address”)

 Transfer can be triggered by:
 Hardware (DMA Request from peripheral device)
 Software (CPU writing to DMA request control register)

 Configurable bus sharing with CPU: can be greedy
(burst of all transfers), round-robin, etc.

 DMAC can generate interrupt when done
 DMAC has multiple channels, each with individual

trigger source, Adx pointers and behaviors, item
count, interrupt behavior

Direct Memory Access Controller
Allows Hardware->Hardware communication without using CPU

CPU

D
M

A
C

on
tr

ol
le

r

Control Signals
(Read,Write)

Address
Data

Memory Peripheral Peripheral

In
te

rr
up

t
C

on
tr

ol
le

r

Interrupt Requests (IRQs) DMA Requests (DRQs)

45

Big Picture 2: Synchronization, Communication and Scheduling
All three are interconnected. Different goals -> diff. design points -> diff. implementations

Process
Implementation

Dependences
between Processes

Hardware
Processes

Software
Processes

Sched:
Share CPU

Time

Communication

Mutual
Exclusion

Both Hardware and
Software Processes

Generic

Mem-
Mapped
Periph.
Access

Embedded Systems
Design Space(s)

DMA
Ctlr

Sync. to What?
Do or Don’t?

How?

Intrpt
System

Example: 101st

Input -> Output

Notification/
Flow Ctl./

Handshaking

Data Loss &
Duplication

Buffering
Split

Receiver
Process?

Split urgent/
deferrable work

Direct or
Indirect
Comm.?

SW?

Why
use…?

HW?

+ Coop.
Sched. Tasks

Infinite
loop in
main

+ Task
Priorities

+ Task
Preemption

RTCS Run-to-
Completion
Scheduler

RTXv5
RTOS

FSMs for
Responsiveness

How?

Scope
Example

“DIY” Code Implementations
Shared

Variables

How?

OS Mechanisms
Event Flag Semaphore

Shared
Variables

Mutex Lock

Concepts

Elevator
Example

How?

Generic
In

Order?

Cost of Precise
Timing

Buffering
Concepts

HW Periph.
Examples

Why?

Message
Queue

How?

Double
Buffer

Circular
Buffer

Req/Ack
Flags

DMA-
managed

buffer

Mailbox

How?

Cost of
Precise Timing

CPU
per

Process

Application
Characteristics

Requirements
& Constraints

Processes and Concurrency
for Embedded Systems

Processes and
Concurrency

Peri-
pherals

Dedic. HW
Interconn.

DMA
Ctlr

Ordering/
Triggering

Concepts

Synchronization

Polling
(Prog’d

I/O)

+Interrupts
: Fore/Back

ground

Multicore
processors

46

 Teach through problem solving for design
challenges. How to …
 Read inputs, write outputs. Simple digital, analog
 Stabilize timing for reading inputs, writing outputs
 Support multiple processes
 Synchronize processes
 Let processes within system communicate
 Let different systems communicate (protocols: SPI,

serial/UART, I2C, etc.)
 Analyze and improve system responsiveness
 Tolerate timing mismatches/variability
 Improve dependability and robustness
 Improve efficiency

 Iterative, demand-driven design process. Pull
methods and approaches from “toolboxes”

 HW peripherals: port, timers/counter, ADC, DAC,
comparator, SPI, UART

 CPU Sharing:
 Scheduling concurrent software processes (interrupts,

non-preemptive & preemptive threads)
 HW and SW process sync. and comm.

 SW->SW, SW->HW, HW->SW, HW->HW
 In design examples, iterative refinement may move

sched/sync/comm components between hardware,
thread SW, OS SW

 Response time analysis for SW & HW. Concepts,
modeling, experimental measurement

 Data buffering
 Homework assignments

 Theory: Concepts, what-ifs
 Practical: Hands-on development of systems and

code, debugging, analysis with test equipment

General Approach

47

 Processes
 Single vs. multiple processes. Sequential vs. concurrent processes
 Implementing processes in software (universal functionality, poor

timing) or hardware (limited functionality, fast stable timing)
 Running multiple software processes to share CPU core(s) requires

scheduling those processes (big topic)
 Process Interactions

 Which processes interact?
 From an input signal/event to a process (e.g. async. input)
 From a process to another process
 From a process to an output signal/event

 What interactions are possible?
 Synchronization, communication, both

 Processes aren’t just SW, but HW too. Domains and sync/comm
methods:
 SW->SW: user SW, OS mechanisms
 SW->HW: programmed I/O
 HW->SW: interrupts, programmed I/O
 HW->HW: peripheral features, periph. interconnect, DMA transfers

 Implementation of sched., sync. and comm.
 Components may be in SW and/or HW.

 Some are tightly coupled, affecting design choice viability
 CPU’s Interrupt System is built-in scheduler which syncs ISRs to requests (from

HW peripherals, system exceptions…)
 SW components may be in application thread(s), OS or both.
 Many possible solutions. Must balance efficiency, responsiveness,

complexity, maintainability, etc. based on requirements and constraints.

 Understanding System Timing Requirements
 What to do?

 Sample inputs, update outputs at given times
 Respond to input events/changes within a given relative time

 What is reference for timing requirements?
 Elapsed time, absolute time (wall-clock). Periodic input every 10 us, etc.
 Input event, phase of input signal, subsystem state. 0->1 transition, AC

power zero-crossing.
 Strictness of timing requirements

 Are early/late responses useful? -> Value vs. timing error -> Timing window
width, hard vs. soft deadline

 Designing to Meet Timing Requirements
 What is system’s actual timing behavior (distribution, bounds,

statistics)?
 Derive periodic task model (execution times, periodicity, deadlines)
 Define process interactions
 Select suitable Sched/Sync/Comm approaches
 Model system timing behavior based on HW, task model and

sched/sync/comm approaches used
 Add data buffers between processes

 Tolerate timing mismatches. Set buffer size based on timing of producer activity
bursts, and delayed consumer service.

 Improve efficiency with batch processing, reducing overhead
 Does it meet requirements? Iterate as needed

Concurrent Process View of an Embedded System
A Time-Sensitive System of Concurrent HW and SW Processes Interacting with the Environment and Each Other

48

 How fast does the CPU have to be to
get the work done on time?
 Slower is usually cheaper (and uses

less power or energy)

 Depends on
 Timing requirements
 Design decisions

 What parts should go into
software? What should go into
hardware?

 How should those parts interact
with each other?

 Some design approaches need fewer
CPU cycles than others

Drivers and Constraints
Processing activities (including

evaluating inputs, updating output)

I/O timing requirements – some
loose (easy), some tight (hard)

Input and output signals

Real-Time Systems
Analysis and Design

Identify processing activities, determine synchronization and
communication patterns among them and I/O signals

Hardware Processes

OS Support:
Comm and Sync

Multicore

Support in OS and Language
for Sync. and Comm in

Concurrent Systems

Prog/Lang/OS: Ad
Hoc, Co-routines,

Threads, Scheduling

Dedicated Core
per SW Process

Implementing Concurrent
Programs

If multiple software activities
share same CPU core, need to

schedule activities

Cost
Constraints

System Requirements

Detailed Design/Implementation Decisions

Architectural Design Decisions

SW Processes
share core(s)

Partition activities, allocate to
hardware and software

Software Processes

Synchronization and Communication

Peripherals &
Interconnect DMA

CPU Support:
Interrupts & ISRs

Scheduling

CPU Support: Sync
Instructions

HW Support: Sync &
Comm in Peripherals

System Response Time
and Utilization Analysis

How fast of a CPU do we need to
get the work done on time?

49

Concurrency Goals and Background
 Introduce students to features needed to support

concurrent HW and SW processes
 Synchronization: is the process ready to run? or must not

run yet?
 Scheduling (essential if more software processes than CPU

cores): pick which ready process to run
 Dispatching/Context Switching: save previous process’s state

if needed, then start/resume running the scheduled code
 Communication: sharing information between processes,

often includes synchronization for correctness/hand-
shaking/flow control

 Use multiple examples, iteratively refine them
 Waveform Generator with stable output timing (and more!)
 Scope (Oscilloscope) with responsive input edge detection

(triggering), stable input sample timing (and more!)
 Range of approaches used across embedded systems

 main while (1) -> ? -> (Arduino) -> ? -> ? -> RTOS -> ? -> ROS
-> ? -> Linux

 Approaches may use both software and hardware to
provide features for
sync/sched/dispatching/CS/communication

 Software features may be implemented in one or more
places: user thread code, ISR, OS/RTOS.

 Key points in scheduler (etc.) design space
 Start with cyclic executive loop in main thread
 Add interrupt system and peripherals

 Peripherals synchronize SW to HW: detect events, request
interrupt service

 Interrupt controller (& CPU)
 Save partial context (HW register stacking)
 Schedule highest-priority interrupt request
 Dispatch handler
 CPU executes handler, returns from interrupt
 Restore partial context (HW register unstacking)
 CPU resumes previous execution

 Add cooperative scheduling
 Non-preemptive scheduling of prioritized tasks
 Dispatch via subroutine calls, so tasks must be run-to-completion
 Basic synchronization (timer tick, periodic task releases, etc.)
 Improve responsiveness by converting long tasks into SW FSMs

 Replace coop. sched. of RTC tasks with preemptive
scheduling of run-forever threads. Build on interrupt/
exception system:
 Access OS through exception instructions (software interrupts,

supervisor/service calls, etc.)
 Build context switches on existing partial context save/restore

performed in hardware for interrupt/exception processing
 Leverage PendSVC exception for user ISR to trigger RTOS activities

(Arm Cortex-M)

50

1. Concurrency in an embedded system starts long before reaching multithreaded software and/or multicore
hardware. It starts with the hardware peripherals in MCUs, which provide concurrent execution of various
common activities, simplifying the software and lowering the bar for CPU performance.

2. For concurrent processes to interact, they need synchronization and communication. They need scheduling to get
time on a CPU according to the sync/comm relationships. Even the most basic MCU provides a foundation for
these needs with its peripheral interconnect, interrupt system, and DMA system. Designers must solve
sched/sync/comm problems here to make the system work correctly, and they may cross between software and
hardware.

3. The design space changes when you scale up to multithreaded programming and/or multicore systems, but the
same problems occur. The available solutions may change (mechanisms in OS/RTOS, hardware peripherals,
instructions, memory system support for coherence and consistency) as will their costs. So it is good to learn these
concepts now.

The Basic Concurrency Story

51

Big Picture 1: Building Up a System with Concurrent HW and SW Processes

Concepts of Process Synchronization and Communication

Concepts for Single Process

HW Implemementation
of Process

SW Implementation
of Process on CPU

What: Add more processes (independent and concurrent)

What: Implement single process

HW Implem.
of each Process

Multiple Dedicated
CPU Cores

Design hardware

Add more HW

Design software

Add CPU Core per
SW process Share CPU

At least one
shared CPU

What: Provide synchronization and communication between processes

Scheduling concepts
(big field, with
interconnected

topics)

HW→HW SW→HW HW→SW SW→SW

Dedicated
Interconnect

Direct
Memory
Access

Programmed I/O:
SW writes to
peripherals

Programmed I/O:
SW reads/polls

peripherals

Interrupt System:
HW event triggers

SW Handler

Variables shared
using correct
algorithms

OS Synch. & Comm.
mechanisms: Sem,

mutex, queue, socket,
etc.

Start simple, then examine options as you build up the system

Peripheral!

Peripherals!

Multicore
processors

Multicore
comm.
HW

52

ORPHANS

53

Top Level Course Map

Ti
m

in
g

St
ab

ilit
y

Re
sp

on
siv

en
es

s

O
S/

RT
O

S

Thread Preemption
and Context Switching

Interrupts

Interrupts

Hardware
Peripherals

Peripherals

Peripherals

Processes

Communication

Hardware Interconnect

Coop/NP Thread
Scheduling

OS support for sync. & comm.

Peripherals for
Comm

Instructions for
Sync

main thread

DMA

Synchronization

Peripherals for
Sync

Bare M
etal &

Interrupts

Cooperative
Scheduler &

Interrupts

Preem
ptive

Scheduler &

Interrupts

RTOS thread support

Peripheral Data
Buffers

In-Memory
Data Buffers

Sync & Comm with Shared Variables

Main
Thread

ISRs Multi-
threading

Scheduling

Coop/NP Thread
Scheduling

Design Examples

Waveform Generator:
Synchronization for Output

Timing Stability

Scope: Synchronization
& Communication for
Input Responsiveness

& Timing Stability

Blinky Control Panel:
Digital I/O, Analog I/O,

PWM

Peripherals main thread

main thread

Hardware Software

Si
m

pl
e

I/O

Interrupt System

While 1 loop Programmed I/O
(Polling)

54

Main Design Examples Used: Waveform Generator & Scope
Concurrent HW & SW process scheduling, synchronization and communication: Why and How

Ti
m

in
g

St
ab

ilit
y

Re
sp

on
siv

en
es

s

Build with Bare Metal
& Interrupts

Build with Cooperative
Scheduler & Interrupts

Build with RTOS:
Preemptive Scheduler

& Interrupts
Waveform Generator v1.

Programmed I/O, while 1
loop scheduler, HW timer,

timer overflow interrupt, ISR-
>main thread data buffer,
DMA, sync. with shared

variable

Scope v1.
+ Port edge interrupt,

Interrupt masking for mutual
exclusion, more sync. with

shared variable
(handshaking), deferring

work to main thread

Wave Gen. v2.
Scheduler task creation
& management, basic

sync.

Scope v2.
+ More scheduler task

sync & comm

Wave Gen. v3.
RTOS thread

creation/mgt., event
flag, semaphore, ISR

Scope v3.
+ RTOS mutex, event

flag, semaphore,
message queue

Sync. (& scheduling)
for Output Timing

Stability (& Correctness)

Sync. & Comm.
(& scheduling) for

Input Responsiveness &
Timing Stability &

Correctness
Scope: Synchronization &
Communication for Input
Responsiveness (& Timing
Stability & Correctness)

Processes Interactions
Hardware
Peripherals

Synchronization

SW Process:
main thread

ISRs

Scheduling

Communication

Waveform Generator:
Synchronization for Output

Timing Stability (& Correctness)

Processes Interactions
Hardware
Peripherals

Synchronization

SW Process:
main thread

ISRs

Scheduling

Communication

55

Getting HW Signals To and From SW: Dimensions

 Software Refresher
 Runs on digital hardware (CPU, memory, etc.)
 Uses instructions (read, write, in, out) to read digital value

from input hardware, write digital value to output hardware

 Digital vs. Analog
 Digital: signal has 2 possible levels
 Analog: signal has >2 (many, infinite) possible levels

 Signal Direction: Input vs. Output
 Input: HW -> SW
 Output: SW -> HW

 Timing relationship between SW and HW
 Synchronous timing couples SW and HW activities

 SW instruction execution causes HW signal to be read or
written immediately (or with tiny fixed delay)

 Asynchronous timing decouples SW and HW activities
 Output: SW write instruction executes, eventually HW

output event happens
 Input: HW input event happens, eventually SW read

executes, getting that saved data
 Eventually? Depends on processing and other events.
 Very useful for a system with concurrent processes

where timing matters

56

SW/HW timing relationship: Synchronous vs. Asynchronous

 What’s decoupled?
 Control (SW execution): HW input event causes SW

instruction(s) to eventually execute. Example: input
interrupts triggers interrupt service routine

 Data decoupling: SW gets input HW value saved previously at
event

 Both: Input event triggers timer capture and requests
interrupt. ISR reads buffered timer value.

 Synchronous: SW instruction (read in, write out)
determines activity timing

 Input: SW reads input’s present value. SW determines the
timing.

 Output: SW write to output immediately changes output. SW
determines the timing.

 Asynchronous: HW event determines activity timing
 Input: HW signal event (e.g. rising edge) triggers software

activity (ISR), captures timer counter value, etc.
 Output: HW signal event (e.g. periodic timer event) triggers

output update from buffered value

OutputInput

SW write instruction updates output signal immediately.SW read instruction gets current value of input signal.Synchronous

SW write instruction updates buffer. HW is later triggered
by an event to update output signal from buffer.
Output Update: SW writes new output data to buffer,
which HW uses when triggered by a timing reference

HW signal event happens before software executes, is
saved/buffered until used by SW.
Port Input Interrupt: input event triggers later SW
(ISR) execution. Buffered data: Which interrupt
happened?
Input Time Capture: input event triggers capture of
time stamp (from timer’s counter) to be read later by
SW. Buffered data: time stamp, capture has happened.

Asynchronous

57

More Async Digital Signals

 PWM signal
 What PWM is, why it is useful
 Is async from software – want output to

change at fixed time, loosening SW timing
requirements

 Absolute timing is critical, hard to do in SW, so
offload time tracking, output generation to
HW

 Approach: sync to hardware timer, which
tracks absolute time. Buffered count value, so
output is updated in next HW timer period

 Some overlap with WaveGen example

 Communication protocols, e.g. UART, SPI,
I2C, USB, modulated analog signals, …

 UART vs. SPI

Blinky Control Panel:
Digital I/O, Analog I/O,

PWM

58

DESIGN EXAMPLE 1:
BLINKY CONTROL PANEL

59

 Basic concurrent system concepts
 Processes: Software thread(s) on CPU core + memory, Hardware

(state machines, digital and analog, etc.)
 Concurrency: Possible to overlap/interleave start/execution/stop

of different processes
 Scheduling: Sharing resources (CPU core) to make process execute
 Synchronization: At correct times/under right conditions, allow

process (or part) to run, or prevent it from running
 Communication: Sharing information between processes

 Simple control concepts
 Motivating Examples with LEDs: on/off, nightlight, dimmer (I/V

curve dependence on PVT), flasher
 Use Feedback? Open vs. closed loop
 When to Control: Event-driven, periodic, or both?
 Control activities: Read/detect input, compute new output value,

update output
 Stability: concept, dependence on timing of input, output

 Basic interfacing with external devices
 Simple signal types: Digital, analog, PWM
 Use synchronous I/O. Specific SW instructions:

 Trigger input read/sampling
 Trigger output change (maybe with small, fixed delay)

 Simple digital peripherals:
 Inputs and outputs: Port/GPIO

 Simple analog peripherals
 Sampling and quantization concepts
 Inputs: Comparator, ADC
 Outpus: DAC

 Timer Peripheral for PWM signal generation
 Sharing CPU among independent SW processes (scheduling)

 Simple software scheduling
 Merge conceptual processes into single SW process
 Implicit sequential code vs. cyclic executive loop

 Simple timing analysis
 Source vs. object code, instruction set
 System clock speed, instruction execution timing

 Sources of timing variability
 Dependence on data, control flow
 Timing interference from SW processes sharing CPU

 Could allocate CPU time better with better scheduler:
 Multirate tasks
 Better responsiveness from task prioritization and preemption

 Off-loading work from software to hardware
 Synchronizing software to timer peripheral overflow

 Polling, event detection, (scheduling/dispatching)
 Stabilizes timing somewhat

 Asynchronous Output
 Timer peripheral handles entire cycle, eliminates SW synchronization
 Stabilizing timing further (to design’s PWM period)

Blinky Control Panel Design Example Learning Objectives

60

Blinky Control Panel Design Evolution
A

B
C1

D1

C2

D2

C3

Or DC motor driver, or power supply
dropping voltage (voltage averaging ->

buck converter)

61

Design Evolution with Software and Hardware Components

DIn DOut LED

SW
H

W

Switch

H

A. On/Off LED

B. Nightlight LED

Analog
Comp. DOut LEDLight

Sensor

HSW
H

W

C1. Analog-Dimmable LED

Ana. to
Dig. Conv. LEDKnob

(Pot.)

H

Dig. to
Ana. Conv.

SW
H

W

C2. SW PWM-Dimmable LED

Ana. to
Dig. Conv.

LEDPotentio-
meter

H

Dout

SW
H

W

D1. Flashing LED

LED

H

Dout

SW
H

W DInSwitch

D2. HW-Assisted Flashing LED

LED

H

Dout

SW
H

W DInSwitch Timer

C3. HW PWM-Dimmable LED

Ana. to
Dig. Conv.

LEDKnob
(Pot.)

H

Dout
SW

H
W Timer

62

Design Evolution with Software and Hardware Components

OnOffOnOffSwitch

PollingPollingPollingPollingCode

OnOffOnOffLED

DIn DOut LED

SW
H

W

Switch

H

A. On/Off LED B. Nightlight LED

Analog
Comp. DOut LED

Light
Sensor

HSW
H

W

C1. Analog-Dimmable LED

Ana. to
Dig. Conv. LEDKnob

(Pot.)

H

Dig. to
Ana. Conv.

SW
H

W

C2. SW PWM-Dimmable LED

Ana. to
Dig. Conv. LEDPotentio-

meter

H

Dout

SW
H

W

D1. Flashing LED

LED

H

Dout

SW
H

W

DInSwitch

D2. HW-Assisted Flashing LED

LED

H

Dout

SW
H

W

DInSwitch Timer

C3. HW PWM-Dimmable LED

Ana. to
Dig. Conv. LEDKnob

(Pot.)

H

Dout

SW
H

W

Timer

63

DESIGN EXAMPLE 2:
WAVEFORM GENERATOR

64

 Motivating Example:
 Change DAC output signal periodically at specific times to generate

accurate signal despite timing interference of other system software

 Stabilize output timing
 Compensate or avoid timing interference from other processes
 Poll HW timer to synchronize output
 Convert to asynchronous output using hardware support
 Improving timing stability

 Handle events in better software or else hardware
 Reduce number of events to handle in software
 Progression: thread code per sample, interrupt code per sample,

hardware event per sample & interrupt code per buffer refill

 Other benefits
 Ease timing requirements for software to refill buffer
 Reduce CPU overhead per sample

 Concurrent system concepts
 Scheduling: Using interrupts to schedule SW (ISRs) on CPU
 Synchronization: Move from Sync. output to Async. output, leveraging

HW sync. signals (IRQ, DRQ, event)
 Revisit SW sync to timer overflow with polling, then convert to interrupt
 SW to HW: Must trigger code to

 update DAC output,
 refill periph. HW buffer (single, FIFO)
 refill correct double buffer in memory
 refill correct buffer in memory: ISR for urgent buffer, thread code for non-

urgent buffer
 HW to HW:

 timer triggers DAC & buffer updates
 timer triggers DMA transfer

 Communication:
 SW storing output data in DAC or buffer (peripheral or memory)
 Select which double buffer to refill, which to reload from

 Off-loading work from software to hardware
 Asynchronous Output

 HW+SW: Timer peripheral generates interrupt request, interrupt handler/ISR
updates output

 HW+HW: Timer peripheral triggers data transfer from HW buffer/FIFO to
DAC. Buffer may generate interrupt requesting refill.

 HW+HW: Timer peripheral triggers DMA to transfer data from memory
buffer to DAC. DMA triggers interrupt when done with set of transfers.

Waveform Generation Design Example Learning Objectives

65

Waveform Generator: Update Output Signal at Correct Times
 Some output signals may need to be updated at

specific times
 Audio signal reconstruction needs periodic updates:

change output every TSample

 Controlling a switch-mode power converter or motor
driver needs updates synchronized to system phase

 How does an early or late update affect the system
performance?
 Absolute, hard deadlines: updating output without meeting

timing requirements is useless
 Deadline: do it before TDeadline

 Window: do it before TWOpen and before TWClose

 Soft deadlines: ok to be earlier or late, or miss a deadline
occasionally. Impact depends on timing error.

 Do all valid update times give the same performance,
or are some better than others? Value function
indicates impact of timing error. Flat top vs sloping.

 As window gets narrower, becomes harder create
system which meets timing requirements

 Where are the sweet spots for timing windows?
 Depends on: instruction execution time, code to do the

work, interrupts (response latency, higher-priority, masking,
blocking), scheduler (cooperative/preemptive, context
switching latency, higher-priority, scheduler locking,
blocking),

 Timing controllability and determinism depend on
system implementation and interference by other
parts of system
 Hardware:
 Software: how concurrency is handled.

Synchronization, event detection, scheduling approach
(if sharing CPU), event handling (may include more
synchronization and communication)

 Hard to stabilize timing for software processes
 Translation (compilation) obscures timing of source

code.
 Source code is translated to executable machine code

 Can measure and observe machine code, not source code

 Sharing CPU with other processes and handlers
(scheduling) can delay or preempt code generating
output signals

 Use hardware (and software) to help stabilize output
timing of DAC (Digital to Analog Converter)

66

Waveform Generator Design Details

 Want to update DAC output every 50 us for a 20 kHz update rate
 DAC signal amplified to drive speaker

 Timing analysis approach - Vulnerabilities?
 What kinds of events and over what time periods can affect the

output update time?
 Events

 Unbuffered solutions: each sample
 Buffered solutions: each buffer refill

 Solutions
 Use hardware to help (or even replace) software doing

synchronization, scheduling, or work.
 Synchronization: determining when to update output
 Scheduling: selecting code to run
 Work: updating output

 Buffer data to loosen (simplify) software timing requirements

67

W1. Thread loop calculates new output sample,
busy-waits for fixed number of instructions,

writes sample to DAC,
DAC updates output immediately

W7. Timer triggers each
buffer->DAC DMA transfer,

DMA ISR runs after last transfer
to switch buffers and reload old

buffer with new data

Use double buffering, split into two buffers (each
N/2 entries) to ease first sample’s deadline and cut

ISR duration in half.
W8. Timer triggers each

buffer->DAC DMA transfer,
DMA ISR writes urgent data (U

samples) to buffer and releases
task to write rest of data to buffer

Output timing bad: very unstable and hard to predict (non-deterministic).
Timing is always vulnerable to variations in time to calculate next sample,
interference from other software (in main loop, other processes, ISRs).
Timing errors accumulate.
Greedy, doesn’t share CPU.

Add 1-deep DAC input buffer
D. Use Single-Entry DAC Input Buffer
Timer advances buffer data to DAC,

Timer ISR calculates next sample, writes it to buffer

Interrupt overhead for each sample wastes CPU time

WG Timing Stability Overview 1: What and Why Process Scheduling,
Synchronization &
Communication
Highlights

Version. Task/Thread,
ISR, HW

Changes to solve
problem(s).

Performance, behavior.
Problem(s).

E2. Timer advances buffer data to DAC.
Buffer low ISR writes next batch of data to buffer

Add N-deep DAC input buffer with low warning ISR
(W samples left)

Completely stable output update timing (no interference from main code
(just int. masking). Batch processing to refill buffer cuts overhead.
Deadline to refill first buffer entry extended to TSample*(W+1).
Must manage buffer access: what if refill catches up to timer-driven reads?

Stable output update timing (no interference from main
code (just int. masking). Batch processing to refill buffer
cuts overhead.
Deadline to refill first buffer entry extended to
TSample*(N/2+1).
DMA ISR updates buffer with N/2 samples, delays other
processing.

Stable output update timing (no interference from main
code (just int. masking). Batch processing to refill buffer
cuts overhead.
Deadline to refill first buffer entry extended to
TSample*(N/2+1).
DMA ISR shorter, only updates U samples.
Task must start to update buffer (write sample U+1) within
TSample*(U+1).

Main thread loop has no synchronization,
just schedules output updates based on
fixed number of instructions.

Main loop synchronizes to
hardware target time
(counter value) before
updating output.

Timer & Interrupt system
sync output update to
hardware target time.
All of Main loop time
available to do other
application work.

Timer & DAC sync output update.
Timer & Int. Sys.sync calc./save
next sample to when buffer is free.
All of Main loop time available to
do other application work.

Timer & DAC sync output update.
Timer & Int. Sys. sync start of refilling buffer to when buffer is nearly empty.
All of Main loop time available to do other application work.
Synchronization issue with buffer: Could ISR possibly overwrite unused samples in
buffer? Depends on timing relationships between sample rate, refill rate, delays from other software
processes. If so, how to handle it? (see deferring urgent work design point.)

Split buffer refill work. Do urgent work
(U samples) in ISR, move non-urgent

work (last N-U samples) to task

W6. Timer triggers each buffer->DAC DMA transfer,
DMA ISR runs after last transfer to reload buffer with new data

Stable output update timing. No interference from main code (just int.
sys. & masking).
Refilling buffer with batch processing cuts overhead.
1.Tight Deadline: ISR must write first new sample to buffer within TSample
or else old data will be reused.
2. DMA ISR updates buffer with N samples, delays other processing

Add HW timer, DMA with ISR, sample buffer in memory

B. Thread polls Hardware Timer
Thread loop calculates new output sample,

polls timer and blocks until reaching target time,
then writes to DAC, calculates next target time,

DAC updates output immediately

Output timing better: Tolerates more calculation variability and interference
(up to slack time between samples), and errors don’t accumulate.
Greedy, doesn’t share CPU. Timing is still somewhat vulnerable to other
software once per sample (between exiting sync loop and updating DAC).

Add HW timer (tracks time much better than SW)

C. Hardware Timer triggers ISR
Timer ISR writes sample data to DAC, calculates next sample,

DAC updates output immediately

Output timing: Even better.
Still vulnerable to other ISRs and interrupt locking once per
sample (between timer IRQ and updating DAC).

Add HW timer ISR

Timer & DMA sync output update.
DMA & Int. Sys. sync start of buffer
refill after last transfer (buffer empty).

Timer & DMA sync output update.
DMA & Int. Sys. sync start of
urgent buffer refill after last
transfer.
Main loop syncs refill of rest of
buffer to signal from ISR.

Timer & DMA sync
output update.
DMA & Int. Sys. sync
buffer switch and start
of old buffer refill after
last transfer.

Refer to
diagrams on

next page

68

W1. Thread loop calculates new output sample,
busy-waits for fixed number of instructions,

writes sample to DAC,
DAC updates output immediately

Output timing bad: very unstable and hard to predict (non-
deterministic). Timing is always vulnerable to variations in
time to calculate next sample, interference from other
software (in main loop, other processes, ISRs). Timing errors
accumulate.
Greedy, doesn’t share CPU.

Add 1-deep DAC input buffer
W4. Use Single-Entry DAC Input Buffer

Timer advances buffer data to DAC,
Timer ISR calculates next sample, writes it to buffer

Interrupt overhead for each sample wastes CPU time

WG Timing Stability Overview: What and Why Process Scheduling,
Synchronization &
Communication
Highlights

Version. Task/Thread,
ISR, HW

Changes to solve
problem(s).

Performance, behavior.
Problem(s).

W5. Timer advances buffer data to DAC.
Buffer low ISR writes next batch of data to buffer

Add N-deep DAC input buffer with low warning ISR
(W samples left)

Completely stable output update timing (no interference from main code
(just int. masking). Batch processing to refill buffer cuts overhead.
Deadline to refill first buffer entry extended to TSample*(W+1).
Must manage buffer access: what if refill catches up to timer-driven reads?

Main thread loop has no synchronization, just schedules
output updates based on fixed number of instructions.

Main loop synchronizes to hardware target time (counter value) before
updating output.

Timer & Interrupt system sync output update to hardware target time.
All of Main loop time available to do other application work.

Timer & DAC sync output update.
Timer & Int. Sys.sync calc./save next sample to when buffer is free.
All of Main loop time available to do other application work.

Timer & DAC sync output update.
Timer & Int. Sys. sync start of refilling buffer to when buffer is nearly empty.
All of Main loop time available to do other application work.
Synchronization issue with buffer: Could ISR possibly overwrite unused samples in buffer? Depends on timing
relationships between sample rate, refill rate, delays from other software processes. If so, how to handle it? (see deferring urgent
work design point.)

W2. Thread polls Hardware Timer
Thread loop calculates new output sample,

polls timer and blocks until reaching target time,
then writes to DAC, calculates next target time,

DAC updates output immediately

Output timing better: Tolerates more calculation variability and interference
(up to slack time between samples), and errors don’t accumulate.
Greedy, doesn’t share CPU. Timing is still somewhat vulnerable to other
software once per sample (between exiting sync loop and updating DAC).

Add HW timer (tracks time much better than SW)

W3. Hardware Timer triggers ISR
Timer ISR writes sample data to DAC, calculates next sample,

DAC updates output immediately

Output timing: Even better.
Still vulnerable to other ISRs and interrupt locking once per
sample (between timer IRQ and updating DAC).

Add HW timer ISR

Refer to
diagrams on

next page

69

Waveform Generator Design Evolution with Software and Hardware
Components: Want Output Updates with Stable Timing

W1

DAC

SW

HW VOut

W2

DAC
VOutTimer

Done?

W3

DAC
VOutTimer

ISR: Next
Sample

NVIC

W4

DAC
VOutTimer

ISR: Next
Sample

NVIC

W5

DAC
VOutTimer

ISR: Next
Sample

NVIC

W6

DAC
VOutTimer

ISR: Refill
Buffer

NVIC

W7

DAC
VOut

Timer

ISR:
Refill

Buffer

NVIC
DMA Transfer One Sample

W8

DAC
VOut

Timer

ISR: Switch
Buffers,

Refill Other

NVIC
DMA Transfer One Sample

W9

DAC
VOut

Timer

ISR: Start to
Refill Buffer

NVIC
DMA Transfer One Sample

Run
later

70

DESIGN EXAMPLE 3:
SCOPE (OSCILLOSCOPE)

71

 Basic concurrent system concepts
 Processes: Software thread(s) on CPU core + memory, Hardware (state

machines, digital and analog, etc.)
 Concurrency: Possible to overlap/interleave start/execution/stop of different

processes
 Scheduling: Sharing resources (CPU core) to make process execute
 Synchronization: At correct times/under right conditions, allow process (or

part) to run, or prevent it from running
 Communication: Sharing information between processes

 Simple control concepts
 Motivating Examples with LEDs: on/off, nightlight, dimmer (I/V curve

dependence on PVT), flasher
 Use Feedback? Open vs. closed loop
 When to Control: Event-driven, periodic, or both?
 Control activities: Read/detect input, compute new output value, update

output
 Stability: concept, dependence on timing of input, output

 Basic interfacing with external devices
 Simple signal types: Digital, analog, PWM
 Use synchronous I/O. Specific SW instructions:

 Trigger input read/sampling
 Trigger output change (maybe with small, fixed delay)

 Simple digital peripherals:
 Inputs and outputs: Port/GPIO

 Simple analog peripherals
 Sampling and quantization concepts
 Inputs: Comparator, ADC
 Outpus: DAC

 Timer Peripheral for PWM signal generation

 Sharing CPU among independent SW processes (scheduling)
 Simple software scheduling

 Merge conceptual processes into single SW process
 Implicit sequential code vs. cyclic executive loop

 Simple timing analysis
 Source vs. object code, instruction set
 System clock speed, instruction execution timing

 Sources of timing variability
 Dependence on data, control flow
 Timing interference from SW processes sharing CPU

 Could allocate CPU time better with better scheduler:
 Multirate tasks
 Better responsiveness from task prioritization and preemption

 Off-loading work from software to hardware
 Synchronizing software to timer peripheral overflow

 Polling, event detection, (scheduling/dispatching)
 Stabilizes timing somewhat

 Asynchronous Output
 Timer peripheral handles entire cycle, eliminates SW synchronization
 Stabilizing timing further (to design’s PWM period)

Scope Design Example Learning Objectives

72

 Input signal
 Start with simple one-bit digital signal (do

analog later)
 Pulses have irregular start times, changing

pulse widths

 Viewing the signal
 Oscilloscope (“scope”) plots signal value

(e.g. voltage) vertically vs. time horizontally
 Horizontal time base determines amount

of time (THoriz) represented on scope
display

 Display stability depends timing
relationship between when scope starts
displaying the signal, and when the signal
changes

Scope: Detect Input Trigger, Sample and Display Data

Time

Si
gn

al
 V

al
ue

(e

.g
. v

ol
ta

ge
)

THorizontal

73

HardwareSoftwareVer.

ISRsThreads

DMATimerPortDMATimerPortMain

Sample, Display1

Detect Trigger Condition, Sample,
Display

2

Detect Trigger Condition, Sample,
Update Display, Erase Display

3

Detect Trigger
Condition

Take Sample,
Update Display

Erase Display4, 5

Detect Trigger
Condition

Take SampleErase Display, Update Display6

Schedule
Sample

Detect Trigger
Condition

Take
Sample

Erase Display, Update Display7

Take
Sample

Schedule
Sample

Detect Trigger
Condition

Erase Display, Update Display8

Scope Example Processes

74

Erase DisplayUpdate
Display

Take
Sample

Schedule
Sample

Detect Trigger Condition

Sample, DisplaySW – Thread1

Detect Trigger Condition, Sample, DisplayHW

Scope Example Processes

75

Responsiveness Overview: What and Why
1. Starter.

Main thread reads digital port input bit,
plots values on display

Add Triggering:
Synchronize data acq/display
to input signal event

Input signal displayed
Unstable timing of signal on display

2. Trigger Data Acq. with Software.
Main blocks in polling loop until detecting rising edge of input

signal, then acquires/plots one screen of data.

Add erase button as digital port
input bit.

Stable display
Want to erase display manually

3. Erase Button.
Main polling loop also checks erase button, erases display if

pressed.

Use signal’s port input interrupt
to detect trigger condition

On-demand erasing
Slow trigger response while erasing

4. Trigger Data Acq. with Port Interrupt.
Port ISR captures data, plots it.
Main handles LCD erase as in 3.

Protect LCD commands
for mutually exclusive execution

Very fast trigger response
Pixels lost if triggered while erase code is

sending an LCD command

After port edge trigger, use timer
peripheral to trigger each data sample.

Much faster sample rate
Want to control sample rate

7. Precise, Adjustable Sample Timing
Port ISR starts timer, saves first sample in buffer.

Timer ISR runs once for each sample, saving it to buffer. With last sample,
marks buffer as full and disables timer.

Main polling loop handles LCD erase, displays new data when buffer is full.

Offload sampling/buffering from
CPU software (ISR) to hardware
(DMA)

8. Sample Data with DMA
Port ISR starts timer and DMA, saves first sample.

Timer triggers each port->buffer DMA transfer
DMA ISR runs after last transfer, disabling timer and marking buffer as full.
Main polling loop handles LCD erase, displays new data when buffer is full.

5. Atomic LCD controller commands
Port ISR captures data, plots it.

Main handles LCD erase as in 3, but also disables/ restores
interrupts around each LCD command.

6. Defer Display of Data to Thread.
Port ISR acquires screen-full of input data, saves in buffer, marks buffer as full.

Main polling loop handles LCD erase, displays new data when buffer is full.
LCD no longer shared with ISR, so don’t need to disable interrupt per LCD

command.

Defer non-urgent work until after
ISR using buffer.

Trigger during erase erases part of new signal
Max. sample rate limited by LCD update speed

Main loop syncs scope
work to signal edge.

Main loop syncs scope
work to signal edge, erase
work to button press.

Interrupt system & I/O port
sync scope work/ISR (data
acq. & plot) to signal edge.
Main loop syncs erase work
to button press

Int. Sys. & I/O port sync scope
work (ISR (data acq. & save) to
signal edge.
Main loop syncs display update to
full buffer, erase work to button
press.

(As in 4) Int. Sys. & I/O port sync
scope work/ISR (data acq. & plot)
to signal edge.
Main loop syncs erase work to
button press, prevents interrupt
during LCD command.

Int. Sys. & I/O port sync start of
data acquisition to signal edge.
Int. Sys. & Timer sync each data
sample and end of acq. to timer.
Main loop syncs display update to
full buffer, erase work to button.

Stable, HW-controlled sample rate
CPU interrupt overhead delays other

processing, limits max. sample rate

Main loop starts scope work
(data acquisition and display)
immediately (no sync).

Int. Sys. & I/O port sync start of
data acquisition to signal edge.
DMA system & Timer sync each
data sample to timer overflow.
Int. Sys. & I/O port sync end of data
acq. to last sample transfer.
Main loop syncs display update to
full buffer, erase work to button.

Process Scheduling,
Synchronization and
Communication Highlights

Version. Task/Thread,
ISR, HW

Changes
to solve problem(s).

Performance, behavior.
Problem(s).

TBD

Refer to diagrams
on next 3 pages

76

A Different Diagram Syntax

Hardware
Peripheral

Sync.
Data

Sync.
Code

Interrupt-level
Handler Code

Sync.
Flow

Interrupt Request
Sync. Flow

Data
Flow

Prog. I/O Data Flow

Interrupt Scheduling,
Dispatching Sync. Flow

SW
H

W CPU Interrupt
System

Sync.
Flow

Hardware
Peripheral

Thread-Level
Handler Code

Hardware
PeripheralData

Flow

Data
Flow

Hardware
Peripheral

Hardware
Peripheral

DMA Request
Sync. Flow

DMA
Controller

Data Flow

Arrows: Data and Synchronization (Control) Flows
Software activity data flow
Programmed I/O data flow (software-driven)
Hardware activity data flow (hardware-driven)
Synchronization flow
Interrupt flow

Boxes: Processes, code, and data objects
Handler Process (thread or interrupt level)
Synchronization Code (includes scheduling, dispatching at this level)
Interrupt System (includes scheduling, dispatching at this level)
Synchronization data object
Data buffer in architecturally-visible memory,available to software and
hardware

Data Buffer in
Arch-Visible

Memory

77

Port

H

S

Design Evolution with Software and Hardware Components

In Out LCD

SW
H

W VIn

H

1. Basic

In Out LCD

SW
H

W VIn

2. Polling Trigger
S H

Out LCD

SW
H

W VIn

4,5. Interrupt Trigger

InErase

S

In
Int. Sys.

H

Out LCD

SW
H

W VIn

6. Defer LCD Updates

InErase

In
Int. Sys.

H

Buffer

S

In Out LCD

SW
H

W VIn

3. Erase Button

InErase

S H

HS

S

Port

H

H

78

Design Evolution with Software and Hardware Components

Out LCD

SW
H

W VIn

7. Use Timer

InErase

In Timer

Out LCD

SW
H

W VIn

8. Use DMA and Timer

InErase

In

Buffer

Timer DMA

H
Port

H
Port

S H
Buffer

S

S H

S S

Timer

H H
S

DMA

H H

Int. Sys.

Int. Sys.Int. Sys.

Int. Sys.

79

Can Zoom into Source Code Details of Sync., Sched., etc.

Process B
while (1) {

osEventFlagWait(triggered);
x = 0;
for (n=0; n<NS; n++) {
y = scale(DataQ[n]);
LCD_Plot(x++,y);

}
}

ISR_1
for (n=0; n<NS; n++) {

r = ADC->Result;
}
osEventFlagSet(triggered);

Interrupts + RTOS

Busy Wait Process
…
// Detector/Synchronizer
while (ADC->Result < V_Threshold)

;
// No Scheduler
// No Dispatcher
// Handler process
x = 0;
for (n=0; n<NS; n++) {

r = ADC->Result;
y = scale(r);
LCD_Plot(x++,y);

}

Blocking Synchronization with
Programmed I/O

Scheduler Process
…
while (1) {

for (i=0; i<NT; i++) {
if (release_requested[i] > 0) {

release_requested[i]--;
task_pointer[i](); // dispatch
break;

}
}

Interrupts + Run-to-Completion
Tasks in Simple Co-op. Scheduler

ISR_timer_tick
for (i=0; i<NT; i++) {

if (is_waiting[i]) {
if (--delay_to_release[i] == 0) {

release_requested[i]++;
}

}
}

ISR_2
do urgent work;
release_requested[Deferred_Handler_2]

 Lightweight, responsive schedulers essential for many
embedded systems.
 Interrupt system (CPU’s built-in scheduler) is foundation.
 Synchronization, scheduling, dispatching/context switching, communication

may be implemented in hardware, application software, OS software

 Syntax supports range of approaches: from bare-metal through
preemptive OS. Examples on right.

Synchronization: Is code ready to
run?

Scheduling: Pick the ready code to
run

Dispatching: Save previous process’s
state if needed, then start/resume

running the scheduled code

Handler in Thread:
Do the work

Interrupt Handler:
Do the work

Hardware Peripheral detects
event/condition, starts

Synchronization: does handler need to
run?

CPU Interrupt System performs
Scheduling (selects highest-priority

requested interrupt) and Dispatching
(stacks partial CPU state, vectors to

interrupt handler)

80

RAW, UNUSED, OLD, LEFTOVER SLIDES

81

 Example System: Cypress PSoC6 MCU (CY8C62x8/A)
 IPC Peripheral

 16 IPC channels: hardware support for atomic
acquisition. SW write to indicate notify, release can
generate event information for any/all IPC interrupt
structures. Two data registers, status register.

 16 IPC interrupt structures: generate interrupt requests
based on monitored notify, release events

 How used
 Lock: Use IPC channel
 Message passing: Use IPC channel and IPC interrupt.

 Sender uses IPC channel to lock access to data
registers, notify of send triggering interrupt for
receiver, which releases channel after reception and
can notify sender with interrupt

Hardware Support for Multicore Synchronization

82

 TBD

Designs

83

Course Overview

Waveform Generator:
Synchronization for Output

Timing Stability

Scope: Synchronization &
Communication for Input
Responsiveness & Timing

Stability

Simple Digital I/O

Analog I/O

Complex Digital I/O:
PWM/PDM/PPM

Serial Communications

Dependability: WDT, LCD,
MCU, Supervisor/Privileged

Mode

ConcurrencyIntroduction

84

Top Level Course Map

Ti
m

in
g

St
ab

ilit
y

Re
sp

on
siv

en
es

s

O
S/

RT
O

S
Thread Preemption

and Context Switching

Interrupts

Design Example

Waveform Generator:
Synchronization for Output

Timing Stability

Hardware
Peripherals

Peripherals

Processes

Inter-Proc. Comm. Hardware interconnect

Coop/NP Thread
Scheduling

OS support for sync. & comm.

Peripherals for
Comm

Instructions for
Sync

Scope: Synchronization &
Communication for Input

Responsiveness & Timing Stability

Inter-Proc. Sync.

Peripherals for
Sync

Bare M
etal &

Interrupts

Cooperative
Scheduler &

Interrupts

Preem
ptive

Scheduler &

Interrupts

RTOS thread support

Peripheral Data
Buffers

In-Memory
Data Buffers

Shared variables

Main
Thread ISRs

Preemptive
Multi-threading

Scheduling

Coop/NP Thread
Scheduling

DMA

Processes

Non-Preemptive
Multi-tasking

85

Course Map

Ti
m

in
g

St
ab

ilit
y

Waveform Sampling and Generation: Interface
with Analog Inputs and Outputs

Oscilloscope: Concurrent, Communicating
Processes in HW and SW

Single SW Process

Re
sp

on
siv

en
es

s

OS/RTOS

Thread Context
Switching, Preemption

Sync and Comm concepts

HW and SW
Processes

Interrupt
System

Interrupts

Interrupts

Waveform Generator:
Timing Stability

Scope: Responsiveness, Sync. & Comm.

Design Example

Design Revisions

Design Revisions

Peripherals (on-demand)

Hardware Peripherals

Peripherals

Peripherals

Concurrent
Processes

Process
Synchronization &
Communication

Hardware
interconnect

CPU Thread
Scheduling: NP, P

OS support for
sync. & comm.

Hardware
Peripherals for
Sync & Comm

Instructions for
Sync & Comm

HW and SW
Processes

86

Goal-Oriented Map

Concepts for Single Process

Design software

Pulse Generation: Digital
Output Signal with Stable
Timing

Waveform Sampling and
Generation: Interface with
Analog Inputs and Outputs

Oscilloscope: Concurrent,
Communicating Processes in
HW and SW

Analog
Interfacing

CPU
Scheduling

87

Course Map

Timing
Stability

Waveform Sampling and Generation: Interface
with Analog Inputs and Outputs

Oscilloscope: Concurrent, Communicating
Processes in HW and SW

Using Simple Digital I/O Ports.
(synchronous/ polling/SW/Program IO)

Using Analog I/O. Analog Comparator,
ADC, DAC

Single SW Process

Timing Stability. Waveform
Generator Example. A.

Responsiveness: Scope
Example

Responsiveness

Design Example
Concurrency Support: RTOS

Thread Context Switching,
Preemption

Synchronization

Communication

Hardware Peripherals
Concurrency Support:

Interrupt System

Timer InterruptsB. SW polls timer to sync output update.

C. ISR updates output.

88

How are Embedded Computer Systems Different from General-Purpose Computers?
Emb. Sys. have concurrent processes with diverse, time-critical asynchronous I/O operations. Use HW peripherals for low-cost
solution.

System with concurrent processes requires sync & comm. Common
concepts, but specific methods & implementations vary since different

design points, w/different resources/mechansisms/costs

Embedded systems have time-critical I/O requirements. Synchronous
software I/O is bad fit, as SW timing obscurity/ambiguity/non-
determinism clash with I/O needs (req’ts for timing precision &

stability) and SW<->I/O rate mismatches (especially for burst activities)

Use Async I/O to bridge/tolerate timing
mismatches (between I/O and SW) at low cost

Implementing Async I/O requires deciding where to split
process, how those parts will sync and communicate.

Can implement process functionality, sync and comm in SW, HW or both.
Should select based on strengths and weaknesses of SW, HW for given need.

Implementations & Mechanisms
(outside of CPU ISA)

General HW
Peripherals

DMA

Sharing CPU: Interrupts, Scheduling, Real-Time
System Concepts

Programmable logic with
custom FSM. CLB, FPGA. Pico

Prog. I/O blocks (FSMs)

I/O timing requirements: input sampling, output
updates, compound signals, signal sequences,
processing chains, end-to-end response time

Sources of software timing obscurity:
inherent behavior of algorithm, arbitrary input event

sequences, program compilation, performance
variation/non-determinism (CPU, memory system),

task scheduling

Disconnect between source code and object code
timing: compilation, ISA features, optimizations

CPU performance variations: data-dependent
instruction timing, superscalar/dynamic

execution, pipelines, predictors, prefetching

Memory system
(caches, VM, interference in multicore, …)

Arbitrary input event sequences possible,
complicating system timing behavior

Interrupts and Scheduling to share CPU core(s).

Inherent behavior of algorithms
(control flow variations)

Efficiently crossing between HW and SW to implement
processes, sync and comm.

Embedded Systems

Mainstream just uses a subset of the Async I/O
design space. Targets gen-purpose computers
with a few I/O devices (user interface, storage,

network) and their use cases.
Interrupts/exceptions for timer tick, OS

interface, faults, I/O events (Rx or Tx complete,
error). DMA discussed if you dig deep enough

into system design.

When you have only a hammer,
everything looks like a nail.

CS education typically omits digital
design (other than CPU, maybe

memory system, AI accelerators, …).

Sync for initial triggering (event generators/detectors)

Supporting splits: Communication (esp. data buffering
w/timing requirements), more sync to support comm

(notifications, handshaking, overruns …)

Notes to self:
1. Classify typical design patterns and features provided by MCUs. Good exercise for students, too.
2. For design examples, quantify impact on CPU performance requirements (MHz).

General Design Pattern: func,
sync, comm (esp. buffering)

Use HW for some or all of func, sync, comm: less SW
needed (if any), easier SW deadlines (fewer, looser). Programmable

Coprocessors:
TI PRU (prog.

real-time unit), …

HW Peripherals for
Sync/Comm Support

Throw in
another core

agdean@ncsu.edu July 10, 2025

Event/Sync
Interconnect for

Peripherals

Must understand some digital design to effectively
recognize and assess HW implementation options

89

How are Embedded Computer Systems Different from General-Purpose Computers?
Emb. Sys. have concurrent processes with diverse, time-critical asynchronous I/O operations. Use HW peripherals for low-cost
solution.

Inherently Concurrent System:
Embedded system, complex application,

general purpose computer system

Performance, i.e. Speed! Create processes
to expose internal parallelism to use HW
resources (multicore, multiprocessors)

System with concurrent processes requires sync & comm. Common
concepts, but specific methods & implementations vary since different

design points, w/different resources/mechansisms/costs

Embedded systems have time-critical I/O requirements. Synchronous
software I/O is bad fit, as SW timing obscurity/ambiguity/non-
determinism clash with I/O needs (req’ts for timing precision &

stability) and SW<->I/O rate mismatches (especially for burst activities)

Use Async I/O to bridge/tolerate timing
mismatches (between I/O and SW) at low cost

Implementing Async I/O requires deciding where to split
process, how those parts will sync and communicate.

Can implement process functionality, sync and comm in SW, HW or both.
Should select based on strengths and weaknesses of SW, HW for given need.

Implementations & Mechanisms
(outside of CPU ISA)

General HW
Peripherals

DMA

Sharing CPU: Interrupts, Scheduling, Real-Time
System Concepts

Programmable logic with
custom FSM. CLB, FPGA. Pico

Prog. I/O blocks (FSMs)

I/O timing requirements: input sampling, output
updates, compound signals, signal sequences,
processing chains, end-to-end response time

Sources of software timing obscurity:
inherent behavior of algorithm, arbitrary input event

sequences, program compilation, performance
variation/non-determinism (CPU, memory system),

task scheduling

Disconnect between source code and object code
timing: compilation, ISA features, optimizations

CPU performance variations: data-dependent
instruction timing, superscalar/dynamic

execution, pipelines, predictors, prefetching

Memory system
(caches, VM, interference in multicore, …)

Arbitrary input event sequences possible,
complicating system timing behavior

Interrupts and Scheduling to share CPU core(s).

Inherent behavior of algorithms
(control flow variations)

Why Use Concurrent Processes?

Efficiently crossing between HW and SW to implement
processes, sync and comm.

Mainstream
concurrency education

Embedded SystemsOther

Mainstream just uses a subset of the Async I/O
design space. Targets gen-purpose computers
with a few I/O devices (user interface, storage,

network) and their use cases.
Interrupts/exceptions for timer tick, OS

interface, faults, I/O events (Rx or Tx complete,
error). DMA discussed if you dig deep enough

into system design.

When you have only a hammer,
everything looks like a nail.

CS education typically omits digital
design (other than CPU, maybe

memory system, AI accelerators, …).

Sync for initial triggering (event generators/detectors)

Supporting splits: Communication (esp. data buffering
w/timing requirements), more sync to support comm

(notifications, handshaking, overruns …)

Notes to self:
1. Classify typical design patterns and features provided by MCUs. Good exercise for students, too.
2. For design examples, quantify impact on CPU performance requirements (MHz).

General Design Pattern: func,
sync, comm (esp. buffering)

Use HW for some or all of func, sync, comm: less SW
needed (if any), easier SW deadlines (fewer, looser). Programmable

Coprocessors:
TI PRU (prog.

real-time unit), …

HW Peripherals for
Sync/Comm Support

Throw in
another core

agdean@ncsu.edu July 10, 2025

Event/Sync
Interconnect for

Peripherals

Must understand some digital design to effectively
recognize and assess HW implementation options

90

Software Hardware

Concurrent Systems

