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Embedded Systems Topics (and Dependencies)
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 Embedded Computer Systems frequently target control applications
 Get input (read signal, detect event), Compute new output value, Update output
 Microcontroller = Microprocessor + memory + hardware peripherals to support 

control
 Embedded Systems have processes, different implementation options

 Software can do almost anything (eventually). Timing is slow, very sloppy.
 Hardware is very fast and energy-efficient, uses dedicated circuits. Stable timing. 

Limited functionality available.
 Typically have multiple concurrent processes due to application requirements
 These processes often have diverse I/O operations 

 Digital signals, analog signals (must be converted to digital)
 Bursts of events (e.g. PWM, serialized data, etc.), 
 Sample input periodically vs. receive event notification, 
 Range of I/O operation frequencies

Embedded Systems High-Level View (1)
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 The I/O for a process often has challenging timing requirements
 Periodic events, events synched to other/previous events on this/other signals

 Decouple the I/O from compute software (bad timing characteristics) by 
splitting it into two or more processes to make input or output operations 
asynchronous to the compute operations.
 We may move some processing to hardware peripheral circuits. 

 These processes need to synchronize and communicate (data buffering). 
 We use interrupts, HW peripherals and DMA to make a low-cost and 

feasible solution with a low-frequency CPU.

Embedded Systems High-Level View (2)
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High-Level Topic Map

Process 
Implementation

Dependences 
between Processes

How: 
Hardware 
Processes

How: 
Software 
Processes

Scheduler: 
Share CPU 

Time

Communication

Mutual 
Exclusion

Mem-
Mapped 
Periph. 
Access

Embedded Systems 
Design Spaces

DMA 
Ctlr

Sync. to What? 
Why?

Intrpt
System

Notification/ 
Flow Ctl./ 

Handshaking

Data 
Buffering

Split Process? 
(e.g. Async I/O)

Direct or 
Indirect 
Comm.?

What & Why? 
HW, SW, Both?

Why? 
How?

Timing

CPU 
per 

Process

Application 
Characteristics

Requirements 
& Constraints

Concurrent 
Processes

Ordering/
Triggering

Synchronization: 
Do? Don’t?

Polling 
(Prog’d

I/O)

Why? 
Concepts

How? 
Methods

HW Shared Vars 
& DIY SW

Support from 
OS, Language

Why? 
How?

Why? 
How?

Why? 
How?

Why? 
How?

Example 
Applications

Periphs, 
Prog. Logic, 

DMA

How: Both Hardware 
and Software 

Processes

Development Processes: 
Embedded System 

Engineering

Functional 
Reqts.

Non-Funct. 
Reqts.

Design Development 
& Debugging

Testing Dependable 
Systems

HW Shared Vars 
& DIY SW

Support from 
OS, Language
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Yet Another Course Map
How ES are Different

Introduction to Example Applications: I/O, Processing, Timing, Sync and Comm

Timing Behavior 
& Analysis

Peripherals

Peripheral 
Interconnect

DMA 
System

Interrupt 
System

Blinky WaveGen Scope DevSys
(Shield & 
FRDM)

Level 1: Overviews

Level 3: Detailed Design with HW Peripherals, 
Cyclic Exec & Interrupts

Level 2: Foundations. Basic Concepts and Architectures

Cyclic 
Exec.

Cyclic Exec. 
& Intrpts

Coop. Sched. 
& Intrpts

Process 
Basics

Complex I/O. Dig, 
Ana, Basic Timing 

Reqts

HW Processes: 
Lim funct, precise 
timing, dedicated

Concurrency, Sync and 
Comm for SW and HW 

Procs

Sync. vs. Async. 
I/O

Basic 
Behavior 
(Control)

Dimensions

Sched. IPC 
Support

Digital & Analog 
Interfacing, Task 
Timing Reqts, 

Interf. and Sched.

Stabilizing Output 
Timing Synchronizing 

Processes (events 
and mutex), 

Stabilizing Input 
Timing, Data 

Buffering

TBD

Preemptive Sched. 
& Intrpts (RTOS)

Level Y: Re-Implement with Preemp. Sched (RTOS RTX5) Apply RTOS 
Services: TBD Apply RTOS 

Services: TBD
Apply RTOS 

Services: TBD Apply RTOS 
Services: TBD

Apply Coop Sched 
Services: TBD

Apply Coop Sched 
Services: TBD

Apply Coop Sched 
Services: TBD

Apply Coop Sched 
Services: TBD

SW Processes. Flex 
funct, sloppy timing, 

share/sched

Digital

Timing Reqts. 
in Detail

(See LN L2)
Analog

CPU Sharing: intrpts, 
sched. Roadmap: 
Preemption++ (4)

Async. I/O

Need & 
Concepts

AIO Imps

AIO with 
Interrupts

AIO Coop. 
Sched. & Intrpts

AIO with 
DMA and 
Interrupts

HW-HW SW-SWHW-SW

Prog’d
I/O

Shared 
Variables

Process Sync & Comm

Level X: Re-Implement with Coop Sched (RTCS)

Development 
Processes

DebuggingDesign 
before 
Coding

Problem-
Solving
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Extending the Topic Map

Process 
Implementation

Dependences 
between Processes

Hardware 
Processes

Software 
Processes

Sched: 
Share CPU 

Time

Communication

Mutual 
Exclusion

Both Hardware and 
Software Processes

Mem-
Mapped 
Periph. 
Access

Embedded Systems 
Design Space(s)

DMA 
Ctlr

Sync. to What?
Do or Don’t?

How?

Intrpt
System

Notification/ 
Flow Ctl./ 

Handshaking

Data Loss & 
Duplication

Buffering
Split 

Receiver 
Process?

Split urgent/ 
deferrable work

Direct or 
Indirect 
Comm.?

SW?

Why 
use…?

HW?

+ Coop. 
Sched. Tasks

Infinite 
loop in 
main

+ Task 
Priorities

+ Task 
Preemption

RTCS Run-to-
Completion 
Scheduler

RTXv5 
RTOS

FSMs for 
Responsiveness

How?

“DIY” Code Implementations
Shared 

Variables

How?

OS Mechanisms
Event Flag Semaphore

Shared 
Variables

Mutex Lock

Concepts How?

In 
Order?

Cost of Precise 
Timing

Buffering 
Concepts

Why?

Message 
Queue

How?

Double 
Buffer

Circular 
Buffer

Req/Ack 
Flags

DMA-
managed 

buffer

Mailbox

How?

Cost of 
Precise Timing

CPU 
per 

Process

Application 
Characteristics

Requirements 
& Constraints

Processes and Concurrency 
for Embedded Systems

Processes and 
Concurrency

Peri-
pherals

Dedic. HW 
Interconn.

DMA 
Ctlr

Ordering/
Triggering

Concepts

Synchronization

Polling 
(Prog’d

I/O)

+Interrupts
: Fore/Back 

ground
Serializing 

Server
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ExamplesProblem-SolvingConcepts and Methods
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Problem-SolvingConcepts and Methods

T
hr

ou
gh

pu
t

C
om

pu
te

 E
ffi

ci
en

cy

R
es

po
ns

iv
en

es
s

T
im

in
g 

St
ab

ili
ty

C
or

re
ct

 F
un

ct
io

na
lit

y

Pr
oc

es
s 

Sy
nc

hr
on

iz
at

io
n 

an
d 

C
om

m
un

ic
at

io
n

Pr
oc

es
s

Sc
he

du
lin

g

Pr
oc

es
s 

Im
pl

em
en

ta
tio

n

D
ev

el
op

m
en

t 
Pr

oc
es

se
sApplication 

Requirements

T
im

in
g, 

ot
he

r 
N

on
-F

un
ct

io
na

l

In
pu

ts
, O

ut
pu

ts
, 

Fu
nc

tio
na

lit
y

HW->SWSW->HWSWHWSWHWSWHW

Overhead, 
batch 
processing, 
SW ->HW

Overhead, 
batch 
processing, 
SW->HW

SW process 
Timing 
Analysis , 
System 
Response 
time 
analysis, 
Prioritizatio
n, blocking, 
preemption, 
Real-Time 

Timing 
analysis, 
Time 
synchronizat
ion, Timer 
peripheral, 
sched/OS 
timer, 
preemption 
& blocking

Concurrency 
bugs, Testing, 
Debugging, 
Dependable 
system 
architecture

Sync Input, 
Interrupts, 
Async Input, 
Data buffering

Sync. Output, 
Async. Output, 
Data buffering

Shared 
variables with 
algorithms, 
OS/Language 
support

Peripheral 
interconn., 
DMA

Events vs. 
polling, While 1 
loop, Interrupt 
system, 
Cooperative 
tasks, 
Preemptive 
Tasks. Priorities, 
preemption

Peripheral 
interconn., 
DMA

Source 
code, 
build 
toolchain, 
object 
code

Peripherals, 
DMA 
controller
Prog. logic, 

Defining 
requirements, 
Design before 
coding, Estimation, 
Design for X, 
Testing, Dev. 
Processes for 
dependable and 
safety-critical 
systems

I/O event timing, 
internal timing, 
power and energy 
consumption, 
code size

User interface, 
Control 
Systems, Media 
DSP, Data 
logging, Sensor 
data processing 
& fusion, etc. …

Many Interconnected Methods
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 Review of how ES computers are different from GP, 
and why
 Diagram with factors and decisions
 Scope example

 Uses common hardware peripherals to offload 
work from software, improve performance

 Scope triggering is one kind of synchronization
 Low cost hardware

 Timing
 Timing variability of software
 System response time

 Example application overview and types of timing 
requirements
 ECE 306 line-following car

 Motor speed and position control
 Input timing requirements for shaft position 

encoder. In -> Compute. Response activities, 
response time limits shaft speed, missing deadline 
may give wrong direction.

 Output timing requirements for variable speed 
(pulse-width modulated) motor drive.  Out -> Out. 
Missing deadline (early or late) affects motor 
speed, but less critical (inertia limits impact of 
error).

 Waveform Generator
 Stabilize output update time

 Comparing timing requirements with system timing 
capabilities and behaviors of hardware and 
software

Class 02 Overview
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Computers for Embedded Systems vs. General-Purpose Systems

Range of processing activities needed to handle inputs, 
determine control actions, update outputs.

System with concurrent processes requires sync & comm

Synchronous software I/O is bad fit for time-critical I/O requirements. SW timing 
obscurity/ambiguity/non-determinism clash with I/O needs (req’ts for timing precision 

& stability) and SW<->I/O rate mismatches (especially for burst activities)

Use Async I/O to bridge/tolerate timing mismatches 
(between I/O and SW) at low cost

Implementing Async I/O requires deciding where to split
process, how those parts will sync and communicate.

Can implement process functionality, sync and comm in SW, HW or both. 
Should select based on strengths and weaknesses of SW, HW for given need.

Implementations & Mechanisms 
(outside of CPU ISA)

General HW 
Peripherals

DMA

Sharing CPU: Interrupts, Scheduling, Real-Time 
System Concepts

Programmable logic with 
custom FSM. CLB, FPGA. Pico 

Prog. I/O blocks (FSMs)

Sources of software timing obscurity: 
inherent behavior of algorithm, arbitrary input event 

sequences, program compilation, performance 
variation/non-determinism (CPU, memory system), 

task scheduling

Disconnect between source code and object code 
timing: compilation, ISA features, optimizations

CPU performance variations: data-dependent 
instruction timing, superscalar/dynamic 

execution, pipelines, predictors, prefetching

Memory system 
(caches, VM, interference in multicore, …)

Arbitrary input event sequences possible, 
complicating system timing behavior

Interrupts and Scheduling to share CPU core(s). 

Inherent behavior of algorithms 
(control flow variations)

Efficiently crossing between HW and SW to implement 
procs, sync and comm. Interrupts, DMA vs. prog I/O.

Mainstream computing just uses a subset of the 
Async I/O design space. Targets gen-purpose 

computers with a few I/O devices (user 
interface, storage, network) and their use cases. 

Interrupts/exceptions for timer tick, OS 
interface, faults, I/O events (Rx or Tx complete, 
error). DMA discussed if you dig deep enough 

into system design.

When you have only a hammer, 
everything looks like a nail. 
CS education typically omits 

digital design (other than CPU, 
maybe memory system, AI 

accelerators, …). 

Sync for initial triggering (event generators/detectors)

Supporting splits: Communication (esp. data buffering 
w/timing requirements), more sync to support comm 

(notifications, handshaking, overruns …)

General Design Pattern: functionality, 
sync, comm (esp. buffering)

Use HW for some or all of func, sync, comm: less SW 
needed (if any), easier SW deadlines (fewer, looser). Programmable 

Coprocessors: 
TI PRU (prog. 

real-time unit), …

HW Peripherals for 
Sync/Comm Support

Throw in 
another core

agdean@ncsu.edu August 18, 2025

Event/Sync 
Interconnect for 

Peripherals

Must understand some digital design to effectively 
recognize and assess HW implementation options

Embedded (Computer) System enhances larger system: e.g. improves 
performance, adds safety protections, simplifies maintenance & diagnostics.  

Must monitor inputs and control outputs.

Inherently concurrent system. Often is most practical to implement 
with multiple concurrent processes (some SW, some HW). Wide range of timing requirements (absolute time, update rate & phase, synchronization 

(among signals, with clock, with system substate), response time, timing stability vs. jitter 
…) for input signals, output signals, and between them (I->I, I->O, O->O).

Wide range of input and output signals. Digital, 
analog, differential, bit-dominance (wired-or), etc. 

“How slow can your CPU go and still be on time?”  Embedded Systems have concurrent compute processes with diverse I/O operations. Often the I/O for a process has challenging timing 
requirements, so we decouple it from compute software (bad timing characteristics) by splitting it into two or more processes to make input or output operations asynchronous to the compute 
operations.These processes need to synchronize and communicate (data buffering). We may even move some processing to hardware. We use interrupts, HW peripherals and DMA to make a low-
cost and feasible solution with a low-frequency CPU. 

Some I/O operations step through a sequence of I/O sub-operations triggered by 
events or time delays, creating new linked timing requirements.  UART RX operation, 

PWM, synchronous control of motor/SMPS, network with bit dominance, etc. 
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Process Relationships

 Sequential: Finish current process before starting another
 Finish red before starting any other process

 Concurrent: Process execution may overlap in time
 Can start green, yellow before finishing red

 Execution of concurrent processes
 Hardware: Dedicated circuit per process, 

so able to run at the same time

 Software: depends on # of CPU cores
 Each core works on one process at a specific point in time

Start                               End Start                                   End Start                                   End

SStart EndS E E

S

Start End
S E

E

Start                               End

Start                               End
S ES E

Start                               End

1 Core

2 Cores

3 Cores
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 (A thread is a type of a software process)
 Don’t let Thread B start to execute section B2 until Thread 

A has completed section A1
 Includes case where each thread has only one section

 Four possible cases based on thread priority, initial thread 
execution order

May Need to Synchronize Process Execution

A
 r

a
n

 f
ir

s
t

B
 r

a
n

 f
ir

s
t

Thread B

Thread A A1 A2

B1 B2

A1 A2

B1 B2

B2 can runB2 must wait

Blocked Ready

A1 A2

B1 B2

B2 can runB2 must wait

Ready

Blocked Ready Blocked

A1 A2

B1 B2

B2 can runB2 must wait

Ready Ready

A1 A2

B1 B2

B2 can runB2 must wait

Blocked

ReadyReady

PA > PB PA < PB
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 Input signal
 Start with simple one-bit digital signal (do analog later)
 Pulses have irregular start times, changing pulse widths

 Displaying the signal
 Oscilloscope (“scope”) plots signal value (e.g. voltage) vertically vs. 

time horizontally 
 Horizontal time base determines amount of time (THoriz) 

represented on scope display
 Display stability depends timing relationship between when 

scope starts displaying the signal, and when the signal changes
 “Infinite persistence” accumulates all acquired traces on display until 

erase button is pressed

Synchronization: Simple Oscilloscope Example

Time

Si
gn

al
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al
ue

 
(e

.g
.v
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ta

ge
)

THorizontal
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 Sequence
 Display signal from 0 to THoriz

 Display signal from THoriz to 2*THoriz

 Display signal from 2*THoriz to 3*THoriz

 Display signal from 3*THoriz to 4*THoriz

 Display signal from 4*THoriz to 5*THoriz

 Display signal from 5*THoriz to 6*THoriz

 Display signal from 6*THoriz to 7*THoriz

 etc.

 Resulting display is unstable, jumps around 
over time. 

Simple Method: Display Signal Continuously
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 Scope does nothing until triggered 
 Event from input signal (e.g. 0 to 1 edge) 

triggers scope to start displaying signal
 Triggering synchronizes the scope’s start of 

data display to input signal event

 Resulting display is much more stable
 Rising edge of signal is stable
 Except for last acquisition, where time 

between rising edges < Thoriz

 Falling edge is not stable, because pulse width 
varies

Stabilize Display with Triggering
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 Synchronize: In Process A

 Schedule: Implicit

 Dispatch: Implicit

Simple Busy-Wait Loop
Process A
…
// Detector/Synchronizer
while (ADC->Result < V_Threshold)

;
// No Scheduler
// No Dispatcher
// Handler process
x = 0;
for (n=0; n<NS; n++) {

r = ADC->Result;
y = scale(r);
LCD_Plot(x++,y);

}

GPIO GPIO LCD

So
ft

w
ar

e
H

ar
dw

ar
e VIn
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 Software
 Program gives very flexible functionality
 Interrupt system (e.g. NVIC) and scheduler 

(if any) determines what software runs on 
CPU and when

 Software very vulnerable to timing 
interference. Need synchronization. Use 
interrupts, scheduler to improve timing 
stability

 Hardware
 Very stable timing (when independent of 

software)
 Functionality limited to what is built into 

hardware (and your creativity)

Use Software or Hardware? Flexibility vs. Timing Stability
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Software Timing Analysis
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 Responsiveness depends on sequence of activities
between input event and system’s response

 Hardware process timing:
fast, very stable, predictable
 Typically faster than time for 

CPU to execute an instruction 
 Uses hardware circuits which are 

dedicated (not shared) 
 Exceptions later: shared buses, etc.

 Software process timing: much slower, unstable, 
hard to predict precisely
 Time to execute a software process is hard to tell 

from source code. Often varies when input data 
triggers different behavior (conditionals, loops, etc.)

 Sharing CPU among multiple software processes 
delays a process
 Inherent delays and processing overhead (may be in 

program, interrupt system, OS/executive) for:
 Synchronization: deciding if process may run (is ready) or must 

wait for event/condition
 Scheduling: deciding which ready software process to run next
 Context Switching and/or Dispatching: saving and restoring 

process contexts, starting next process running
 Timing interference (preemption, blocking) from other 

software processes (threads, interrupt handlers)

System Responsiveness Depends on Processes

VIn

Timing Close-Up
(nanoseconds)

So
ft

w
ar

e
H

ar
dw

ar
e OutIn

Time (microseconds)

CPU 
Instruction

CPU 
Instruction

CPU 
Instruction

VIn
VOut

Event
Response

CPU Sharing Overhead: 
Synchronization, Scheduling, Context Switching/Dispatching

Int. Handler

Process 0

Process 1

Process 2
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Improve Timing by Moving from Software to Hardware

Out LCD

SW
H

W VIn

Trigger Detection by Hardware

InErase

S

In
Int. Sys.

H

Port

H

Out LCD

SW
H

W VIn

Use DMA and Timer for Data Acquisition

InErase

In

Buffer

Timer DMA

H
Port

S H

S S
DMA

H H

Int. Sys.Int. Sys.

In Out LCD
SW

H
W VIn

Trigger Detection by Software
S H
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 Development costs
 Hardware costs

 Slower MCU

 Maintenance costs

Goals – Low Costs
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DESIGN EXAMPLES: LEVEL 1
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Scope (Oscilloscope): One Process 

Timing RequirementsOutput 
Devices

Output 
Peripherals

ProcessingInput 
Peripheral

Input 
Device

Process
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ECE 306 Truck/Car
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Alt 306 Truck Diagram
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Processes in ECE 306 Truck

Timing RequirementsOutput 
Devices

Output 
Peripherals

ProcessingInput 
Peripheral

Input 
Device

Process
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Timing RequirementsOutput 
Devices

Output 
Peripherals

ProcessingInput 
Peripheral

Input 
Device

Process

Motor Speed and Position Control
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Waveform Generator Subsystem: One Process

 Part of a larger system with other processes (e.g. user interface)
 Want to update DAC output every 50 us for a 20 kHz update rate 

 DAC signal amplified to drive speaker

W1. WaveGen, base design

AmplifierDig. to Ana. 
Conv.

SW
H

W

Compute/Update

Speaker

Timing RequirementsOutput 
Devices

Output 
Peripherals

ProcessingInput 
Peripheral

Input 
Device

Process

Every 50 us, +/- 5 us (?)Amplifier & 
Speaker

Digital-to-analog 
converter

Calculate new output value, 
wait fixed time, 
write output value to DAC

n/an/aW: Waveform 
Generator
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Blinky Control Panel: Four Concurrent Processes

DIn DOut LED

SW
H

W

Switch

R/C/U
B-A1. On/Off LED

B-B1. Nightlight LED

Analog 
Comp. DOut LED

Light
Sensor

SW
H

W

R/C/U

B-C1. Analog-Dimmable LED

Ana. to 
Dig. Conv. LEDKnob 

(Pot.)
Dig. to Ana. 

Conv.

SW
H

W

R/C/U

B-D1. Flashing LED 

LEDDout

SW
H

W DInSwitch

R/C/U

Timing 
Req’d.

Output 
Device

Output 
Peripheral

ProcessingInput 
Peripheral

Input 
Device

Process

Within 100 
ms

LEDDigital output portRead port, mask off switch input bit, shift it to LED’s bit 
position in output port and write it.

Digital input portSwitchA: Switched 
LED

Within 500 
ms

LEDDigital output portRead port, mask off comparator’s output bit, shift it to 
LED’s bit position in output port.

Analog comparatorPhotosensorB: Night-Light 
LED

Within 100 
ms

LEDDigital-to-analog 
converter (DAC)

Convert analog voltage to digital value, process reading 
(negate and scale), convert digital value to analog 
voltage

Analog-to-digital 
converter (ADC)

Potentiometer 
voltage divider

C: Dimmable 
LED

Within 100 
ms 

LEDDigital output portRead port, mask off switch input bit, shift it to LED’s bit 
position in output port and write it.

Digital input portSwitchD: Switched 
Flashing LED
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FRDM: Serial Communications Subsystem 

Timing RequirementsOutput 
Devices

Output 
Peripherals

ProcessingInput 
Peripheral

Input 
Device

Process
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FRDM: Accelerometer (& I2C) Subsystem 

Timing RequirementsOutput 
Devices

Output 
Peripherals

ProcessingInput 
Peripheral

Input 
Device

Process
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Shield: SMPS Controller Subsystem 

Timing RequirementsOutput 
Devices

Output 
Peripherals

ProcessingInput 
Peripheral

Input 
Device

Process
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Shield LCD Interface: 

Timing RequirementsOutput 
Devices

Output 
Peripherals

ProcessingInput 
Peripheral

Input 
Device

Process
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Shield: Touchscreen Interface

Timing RequirementsOutput 
Devices

Output 
Peripherals

ProcessingInput 
Peripheral

Input 
Device

Process
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Timing Requirements
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Timing Requirements vs. Capabilities
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Timing Characteristics of Software
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Waveform Generator Design Evolution with Software and 
Hardware Components: Want Output Updates with Stable 
TimingW1

DAC

SW

HW VOut

W2

DAC
VOutTimer

Done?

W3

DAC
VOutTimer

ISR: Next 
Sample
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Waveform Generator Design Evolution with Software and Hardware 
Components: Want Output Updates with Stable Timing
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Port
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Scope Design Evolution with Software and Hardware Components
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Scope Design Evolution with Software and Hardware Components
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Sync. and Comm. Paths for HW and SW Processes

So
ft

w
ar

e
H

ar
dw

ar
e

HW 
Process

HW 
Process

Interrupt 
Controller

SW 
Process

SW 
Process

Interrupt 
Handler

Dedicated Interconnect

Direct Memory Access

Variables shared with correct algorithms

OS Synch & Comm primitives: Sem, etc.

Producer: 
Event/Data Source

Consumer: 
Event/Data User
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 How to access memory and peripherals?
 CPU uses memory bus (address, data, control) to 

access memory and peripheral devices
 Memory bus can also be controlled by DMA 

Controller (DMAC) peripheral 

 DMA features
 DMAC can transfer (copy) N data items within 

memory space from SrcAdx to DstAdx
 SrcAdx, DstAdx: fixed or increment per item copied
 Allows direct copy, but also accessing sequential items 

in memory array (“Save the next N ADC data values in 
memory starting at this address”)

 Transfer can be triggered by: 
 Hardware (DMA Request from peripheral device) 
 Software (CPU writing to DMA request control register)

 Configurable bus sharing with CPU: can be greedy 
(burst of all transfers), round-robin, etc.

 DMAC can generate interrupt when done
 DMAC has multiple channels, each with individual 

trigger source, Adx pointers and behaviors, item 
count, interrupt behavior

Direct Memory Access Controller
Allows Hardware->Hardware communication without using CPU

CPU

D
M

A
C

on
tr

ol
le

r

Control Signals
(Read,Write)

Address
Data

Memory Peripheral Peripheral

In
te

rr
up

t
C

on
tr

ol
le

r

Interrupt Requests (IRQs) DMA Requests (DRQs)
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Big Picture 2: Synchronization, Communication and Scheduling
All three are interconnected. Different goals -> diff. design points -> diff. implementations

Process 
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Example
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How?
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 Teach through problem solving for design 
challenges. How to …
 Read inputs, write outputs. Simple digital, analog
 Stabilize timing for reading inputs, writing outputs
 Support multiple processes
 Synchronize processes
 Let processes within system communicate
 Let different systems communicate (protocols: SPI, 

serial/UART, I2C, etc.)
 Analyze and improve system responsiveness
 Tolerate timing mismatches/variability
 Improve dependability and robustness
 Improve efficiency

 Iterative, demand-driven design process. Pull 
methods and approaches from “toolboxes”

 HW peripherals: port, timers/counter, ADC, DAC, 
comparator, SPI, UART

 CPU Sharing: 
 Scheduling concurrent software processes (interrupts, 

non-preemptive & preemptive threads) 
 HW and SW process sync. and comm.

 SW->SW, SW->HW, HW->SW, HW->HW
 In design examples, iterative refinement may move 

sched/sync/comm components between hardware, 
thread SW, OS SW

 Response time analysis for SW & HW. Concepts, 
modeling, experimental measurement

 Data buffering
 Homework assignments

 Theory: Concepts, what-ifs
 Practical: Hands-on development of systems and 

code, debugging, analysis with test equipment

General Approach
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 Processes
 Single vs. multiple processes. Sequential vs. concurrent processes
 Implementing processes in software (universal functionality, poor 

timing) or hardware (limited functionality, fast stable timing)
 Running multiple software processes to share CPU core(s) requires 

scheduling those processes (big topic)
 Process Interactions

 Which processes interact?
 From an input signal/event to a process (e.g. async. input)
 From a process to another process
 From a process to an output signal/event

 What interactions are possible?
 Synchronization, communication, both

 Processes aren’t just SW, but HW too. Domains and sync/comm 
methods: 
 SW->SW: user SW, OS mechanisms 
 SW->HW: programmed I/O
 HW->SW: interrupts, programmed I/O
 HW->HW: peripheral features, periph. interconnect, DMA transfers

 Implementation of sched., sync. and comm.
 Components may be in SW and/or HW. 

 Some are tightly coupled, affecting design choice viability
 CPU’s Interrupt System is built-in scheduler which syncs ISRs to requests (from 

HW peripherals, system exceptions…)
 SW components may be in application thread(s), OS or both. 
 Many possible solutions. Must balance efficiency, responsiveness, 

complexity, maintainability, etc. based on requirements and constraints.

 Understanding System Timing Requirements
 What to do?

 Sample inputs, update outputs at given times
 Respond to input events/changes within a given relative time

 What is reference for timing requirements? 
 Elapsed time, absolute time (wall-clock). Periodic input every 10 us, etc.
 Input event, phase of input signal, subsystem state. 0->1 transition, AC 

power zero-crossing.
 Strictness of timing requirements

 Are early/late responses useful? -> Value vs. timing error -> Timing window 
width, hard vs. soft deadline

 Designing to Meet Timing Requirements
 What is system’s actual timing behavior (distribution, bounds, 

statistics)? 
 Derive periodic task model (execution times, periodicity, deadlines)
 Define process interactions
 Select suitable Sched/Sync/Comm approaches
 Model system timing behavior based on HW, task model and 

sched/sync/comm approaches used
 Add data buffers between processes

 Tolerate timing mismatches. Set buffer size based on timing of producer activity 
bursts, and delayed consumer service.

 Improve efficiency with batch processing, reducing overhead
 Does it meet requirements? Iterate as needed

Concurrent Process View of an Embedded System 
A Time-Sensitive System of Concurrent HW and SW Processes Interacting with the Environment and Each Other
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 How fast does the CPU have to be to 
get the work done on time?
 Slower is usually cheaper (and uses 

less power or energy)

 Depends on 
 Timing requirements
 Design decisions

 What parts should go into 
software? What should go into 
hardware?

 How should those parts interact 
with each other?

 Some design approaches need fewer 
CPU cycles than others

Drivers and Constraints
Processing activities (including 

evaluating inputs, updating output)

I/O timing requirements – some 
loose (easy), some tight (hard)

Input and output signals

Real-Time Systems 
Analysis and Design

Identify processing activities, determine synchronization and 
communication patterns among them and I/O signals

Hardware Processes

OS Support: 
Comm and Sync

Multicore

Support in OS and Language 
for Sync. and Comm in 

Concurrent Systems

Prog/Lang/OS: Ad 
Hoc, Co-routines, 

Threads, Scheduling

Dedicated Core 
per SW Process

Implementing Concurrent 
Programs

If multiple software activities 
share same CPU core, need to 

schedule activities

Cost 
Constraints

System Requirements

Detailed Design/Implementation Decisions

Architectural Design Decisions

SW Processes 
share core(s)

Partition activities, allocate to 
hardware and software

Software Processes

Synchronization and Communication

Peripherals & 
Interconnect DMA

CPU Support: 
Interrupts & ISRs

Scheduling

CPU Support: Sync 
Instructions

HW Support: Sync & 
Comm in Peripherals

System Response Time 
and Utilization Analysis

How fast of a CPU do we need to 
get the work done on time?
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Concurrency Goals and Background
 Introduce students to features needed to support 

concurrent HW and SW processes
 Synchronization: is the process ready to run? or must not 

run yet?
 Scheduling (essential if more software processes than CPU 

cores): pick which ready process to run
 Dispatching/Context Switching: save previous process’s state 

if needed, then start/resume running the scheduled code 
 Communication: sharing information between processes, 

often includes synchronization for correctness/hand-
shaking/flow control

 Use multiple examples, iteratively refine them
 Waveform Generator with stable output timing (and more!)
 Scope (Oscilloscope) with responsive input edge detection 

(triggering), stable input sample timing (and more!)
 Range of approaches used across embedded systems

 main while (1) -> ? -> (Arduino) -> ? -> ? -> RTOS -> ? -> ROS 
-> ? -> Linux

 Approaches may use both software and hardware to 
provide features for 
sync/sched/dispatching/CS/communication

 Software features may be implemented in one or more 
places: user thread code, ISR, OS/RTOS.

 Key points in scheduler (etc.) design space
 Start with cyclic executive loop in main thread
 Add interrupt system and peripherals

 Peripherals synchronize SW to HW: detect events, request 
interrupt service

 Interrupt controller (& CPU) 
 Save partial context (HW register stacking)
 Schedule highest-priority interrupt request
 Dispatch handler 
 CPU executes handler, returns from interrupt
 Restore partial context (HW register unstacking)
 CPU resumes previous execution

 Add cooperative scheduling
 Non-preemptive scheduling of prioritized tasks 
 Dispatch via subroutine calls, so tasks must be run-to-completion
 Basic synchronization (timer tick, periodic task releases, etc.)
 Improve responsiveness by converting long tasks into SW FSMs

 Replace coop. sched. of RTC tasks with preemptive 
scheduling of run-forever threads. Build on interrupt/ 
exception system:
 Access OS through exception instructions (software interrupts, 

supervisor/service calls, etc.)
 Build context switches on existing partial context save/restore 

performed in hardware for interrupt/exception processing
 Leverage PendSVC exception for user ISR to trigger RTOS activities 

(Arm Cortex-M)
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1. Concurrency in an embedded system starts long before reaching multithreaded software and/or multicore 
hardware. It starts with the hardware peripherals in MCUs, which provide concurrent execution of various 
common activities, simplifying the software and lowering the bar for CPU performance.

2. For concurrent processes to interact, they need synchronization and communication. They need scheduling to get 
time on a CPU according to the sync/comm relationships. Even the most basic MCU provides a foundation for 
these needs with its peripheral interconnect, interrupt system, and DMA system. Designers must solve 
sched/sync/comm problems here to make the system work correctly, and they may cross between software and 
hardware.

3. The design space changes when you scale up to multithreaded programming and/or multicore systems, but the 
same problems occur. The available solutions may change (mechanisms in OS/RTOS,  hardware peripherals, 
instructions, memory system support for coherence and consistency) as will their costs. So it is good to learn these 
concepts now.

The Basic Concurrency Story 
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Big Picture 1: Building Up a System with Concurrent HW and SW Processes

Concepts of Process Synchronization and Communication

Concepts for Single Process

HW Implemementation
of Process

SW Implementation 
of Process on CPU

What: Add more processes (independent and concurrent)

What: Implement single process

HW Implem. 
of each Process

Multiple Dedicated 
CPU Cores

Design hardware

Add more HW

Design software

Add CPU Core per 
SW process Share CPU

At least one 
shared CPU

What: Provide synchronization and communication between processes

Scheduling concepts 
(big field, with 
interconnected 

topics)

HW→HW SW→HW HW→SW SW→SW

Dedicated 
Interconnect

Direct 
Memory 
Access

Programmed I/O: 
SW writes to 
peripherals

Programmed I/O: 
SW reads/polls 

peripherals

Interrupt System:  
HW event triggers 

SW Handler

Variables shared 
using correct 
algorithms

OS Synch. & Comm. 
mechanisms: Sem, 

mutex, queue, socket, 
etc.

Start simple, then examine options as you build up the system

Peripheral!

Peripherals!

Multicore 
processors

Multicore 
comm. 
HW
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ORPHANS
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Top Level Course Map
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Design Examples

Waveform Generator: 
Synchronization for Output 

Timing Stability

Scope: Synchronization 
& Communication for 
Input Responsiveness 

& Timing Stability

Blinky Control Panel: 
Digital I/O, Analog I/O, 

PWM

Peripherals main thread

main thread

Hardware Software

Si
m

pl
e 

I/O

Interrupt System

While 1 loop Programmed I/O 
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Main Design Examples Used: Waveform Generator & Scope
Concurrent HW & SW process scheduling, synchronization and communication: Why and How

Ti
m

in
g 

St
ab

ilit
y

Re
sp

on
siv

en
es

s

Build with Bare Metal 
& Interrupts

Build with Cooperative 
Scheduler & Interrupts

Build with RTOS:  
Preemptive Scheduler 

& Interrupts
Waveform Generator v1. 

Programmed I/O, while 1 
loop scheduler, HW timer, 

timer overflow interrupt, ISR-
>main thread data buffer, 
DMA, sync. with shared 

variable

Scope v1. 
+ Port edge interrupt,  

Interrupt masking for mutual 
exclusion,  more sync. with 

shared variable 
(handshaking), deferring 

work to main thread

Wave Gen. v2. 
Scheduler task creation 
& management, basic 

sync.

Scope v2. 
+ More scheduler task 

sync & comm

Wave Gen. v3. 
RTOS thread 

creation/mgt., event 
flag, semaphore, ISR

Scope v3. 
+ RTOS mutex, event 

flag, semaphore, 
message queue

Sync. (& scheduling)
for Output Timing 

Stability (& Correctness)

Sync. & Comm. 
(& scheduling) for 

Input Responsiveness & 
Timing Stability & 

Correctness
Scope: Synchronization & 
Communication for Input 
Responsiveness (& Timing 
Stability & Correctness)

Processes Interactions
Hardware 
Peripherals 

Synchronization

SW Process: 
main thread

ISRs

Scheduling

Communication

Waveform Generator: 
Synchronization for Output 

Timing Stability (& Correctness)

Processes Interactions
Hardware 
Peripherals 

Synchronization

SW Process: 
main thread

ISRs

Scheduling

Communication
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Getting HW Signals To and From SW: Dimensions

 Software Refresher
 Runs on digital hardware (CPU, memory, etc.)
 Uses instructions (read, write, in, out) to read digital value 

from input hardware, write digital value to output hardware

 Digital vs. Analog
 Digital: signal has 2 possible levels
 Analog: signal has >2 (many, infinite) possible levels 

 Signal Direction: Input vs. Output
 Input: HW -> SW
 Output: SW -> HW

 Timing relationship between SW and HW
 Synchronous timing couples SW and HW activities

 SW instruction execution causes HW signal to be read or 
written immediately (or with tiny fixed delay)

 Asynchronous timing decouples SW and HW activities 
 Output: SW write instruction executes, eventually HW 

output event happens
 Input: HW input event happens, eventually SW read 

executes, getting that saved data
 Eventually? Depends on processing and other events. 
 Very useful for a system with concurrent processes 

where timing matters
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SW/HW timing relationship: Synchronous vs. Asynchronous

 What’s decoupled?
 Control (SW execution): HW input event causes SW 

instruction(s) to eventually execute. Example: input 
interrupts triggers interrupt service routine

 Data decoupling: SW gets input HW value saved previously at 
event

 Both: Input event triggers timer capture and requests 
interrupt. ISR reads buffered timer value.

 Synchronous: SW instruction (read in, write out) 
determines activity timing

 Input: SW reads input’s present value. SW determines the 
timing.

 Output: SW write to output immediately changes output. SW 
determines the timing.

 Asynchronous: HW event determines activity timing
 Input: HW signal event (e.g. rising edge) triggers software 

activity (ISR), captures timer counter value, etc.
 Output: HW signal event (e.g. periodic timer event) triggers 

output update from buffered value

OutputInput

SW write instruction updates output signal immediately.SW read instruction gets current value of input signal.Synchronous

SW write instruction updates buffer. HW is later triggered 
by an event to update output signal from buffer.
Output Update: SW writes new output data to buffer, 
which HW uses when triggered by a timing reference

HW signal event happens before software executes, is 
saved/buffered until used by SW. 
Port Input Interrupt: input event triggers later SW 
(ISR) execution.  Buffered data: Which interrupt 
happened?
Input Time Capture: input event triggers capture of 
time stamp (from timer’s counter) to be read later by 
SW. Buffered data: time stamp, capture has happened.

Asynchronous
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More Async Digital Signals

 PWM signal
 What PWM is, why it is useful
 Is async from software – want output to 

change at fixed time, loosening SW timing 
requirements

 Absolute timing is critical, hard to do in SW, so 
offload time tracking, output generation to 
HW

 Approach: sync to hardware timer, which 
tracks absolute time. Buffered count value, so 
output is updated in next HW timer period

 Some overlap with WaveGen example

 Communication protocols, e.g. UART, SPI, 
I2C, USB, modulated analog signals, …

 UART vs. SPI

Blinky Control Panel: 
Digital I/O, Analog I/O, 

PWM
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DESIGN EXAMPLE 1: 
BLINKY CONTROL PANEL 
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 Basic concurrent system concepts
 Processes: Software thread(s) on CPU core + memory, Hardware 

(state machines, digital and analog, etc.)
 Concurrency: Possible to overlap/interleave start/execution/stop 

of different processes
 Scheduling: Sharing resources (CPU core) to make process execute
 Synchronization: At correct times/under right conditions, allow 

process (or part) to run, or prevent it from running
 Communication: Sharing information between processes

 Simple control concepts
 Motivating Examples with LEDs: on/off, nightlight, dimmer (I/V 

curve dependence on PVT), flasher
 Use Feedback? Open vs. closed loop
 When to Control: Event-driven, periodic, or both?
 Control activities: Read/detect input, compute new output value, 

update output
 Stability: concept, dependence on timing of input, output

 Basic interfacing with external devices
 Simple signal types: Digital, analog, PWM
 Use synchronous I/O. Specific SW instructions:

 Trigger input read/sampling
 Trigger output change (maybe with small, fixed delay)

 Simple digital peripherals: 
 Inputs and outputs: Port/GPIO 

 Simple analog peripherals
 Sampling and quantization concepts
 Inputs: Comparator, ADC
 Outpus: DAC

 Timer Peripheral for PWM signal generation
 Sharing CPU among independent SW processes (scheduling)

 Simple software scheduling
 Merge conceptual processes into single SW process
 Implicit sequential code vs. cyclic executive loop

 Simple timing analysis
 Source vs. object code, instruction set
 System clock speed, instruction execution timing

 Sources of timing variability
 Dependence on data, control flow
 Timing interference from SW processes sharing CPU

 Could allocate CPU time better with better scheduler:
 Multirate tasks
 Better responsiveness from task prioritization and preemption

 Off-loading work from software to hardware
 Synchronizing software to timer peripheral overflow

 Polling, event detection, (scheduling/dispatching)
 Stabilizes timing somewhat

 Asynchronous Output 
 Timer peripheral handles entire cycle, eliminates SW synchronization 
 Stabilizing timing further (to design’s PWM period)

Blinky Control Panel Design Example Learning Objectives
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Blinky Control Panel Design Evolution
A

B
C1

D1

C2

D2

C3

Or DC motor driver, or power supply 
dropping voltage (voltage averaging -> 

buck converter)
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Design Evolution with Software and Hardware Components
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Design Evolution with Software and Hardware Components
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PollingPollingPollingPollingCode
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DESIGN EXAMPLE 2: 
WAVEFORM GENERATOR
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 Motivating Example: 
 Change DAC output signal periodically at specific times to generate 

accurate signal despite timing interference of other system software

 Stabilize output timing
 Compensate or avoid timing interference from other processes
 Poll HW timer to synchronize output
 Convert to asynchronous output using hardware support
 Improving timing stability

 Handle events in better software or else hardware
 Reduce number of events to handle in software
 Progression: thread code per sample, interrupt code per sample, 

hardware event per sample & interrupt code per buffer refill

 Other benefits
 Ease timing requirements for software to refill buffer
 Reduce CPU overhead per sample

 Concurrent system concepts
 Scheduling: Using interrupts to schedule SW (ISRs) on CPU
 Synchronization: Move from Sync. output to Async. output, leveraging 

HW sync. signals (IRQ, DRQ, event)
 Revisit SW sync to timer overflow with polling, then convert to interrupt
 SW to HW: Must trigger code to 

 update DAC output, 
 refill periph. HW buffer (single, FIFO)
 refill correct double buffer in memory
 refill correct buffer in memory: ISR for urgent buffer, thread code for non-

urgent buffer
 HW to HW: 

 timer triggers DAC & buffer updates
 timer triggers DMA transfer

 Communication: 
 SW storing output data in DAC or buffer (peripheral or memory)
 Select which double buffer to refill, which to reload from

 Off-loading work from software to hardware
 Asynchronous Output 

 HW+SW: Timer peripheral generates interrupt request, interrupt handler/ISR 
updates output

 HW+HW: Timer peripheral triggers data transfer from HW buffer/FIFO to 
DAC.  Buffer may generate interrupt requesting refill.

 HW+HW: Timer peripheral triggers DMA to transfer data from memory 
buffer to DAC. DMA triggers interrupt when done with set of transfers.

Waveform Generation Design Example Learning Objectives
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Waveform Generator: Update Output Signal at Correct Times
 Some  output signals may need to be updated at 

specific times
 Audio signal reconstruction needs periodic updates: 

change output every TSample

 Controlling a switch-mode power converter or motor 
driver needs updates synchronized to system phase

 How does an early or late update affect the system 
performance?
 Absolute, hard deadlines: updating output without meeting 

timing requirements is useless
 Deadline: do it before TDeadline

 Window: do it before TWOpen and before TWClose

 Soft deadlines: ok to be earlier or late, or miss a deadline 
occasionally. Impact depends on timing error.

 Do all valid update times give the same performance, 
or are some better than others? Value function 
indicates impact of timing error. Flat top vs sloping.

 As window gets narrower, becomes harder create 
system which meets timing requirements 

 Where are the sweet spots for timing windows?
 Depends on: instruction execution time, code to do the 

work, interrupts (response latency, higher-priority, masking, 
blocking), scheduler (cooperative/preemptive, context 
switching latency, higher-priority, scheduler locking, 
blocking), 

 Timing controllability and determinism depend on 
system implementation and interference by other 
parts of system
 Hardware:
 Software: how concurrency is handled. 

Synchronization, event detection, scheduling approach 
(if sharing CPU), event handling (may include more 
synchronization and communication) 

 Hard to stabilize timing for software processes
 Translation (compilation) obscures timing of source 

code.
 Source code is translated to executable machine code

 Can measure and observe machine code, not source code

 Sharing CPU with other processes and handlers 
(scheduling) can delay or preempt code generating 
output signals

 Use hardware (and software) to help stabilize output 
timing of DAC (Digital to Analog Converter)
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Waveform Generator Design Details

 Want to update DAC output every 50 us for a 20 kHz update rate 
 DAC signal amplified to drive speaker

 Timing analysis approach - Vulnerabilities?
 What kinds of events and over what time periods can affect the 

output update time?
 Events

 Unbuffered solutions: each sample
 Buffered solutions: each buffer refill

 Solutions
 Use hardware to help (or even replace) software doing 

synchronization, scheduling, or work.
 Synchronization: determining when to update output
 Scheduling: selecting code to run 
 Work: updating output

 Buffer data to loosen (simplify) software timing requirements
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W1. Thread loop calculates new output sample, 
busy-waits for fixed number of instructions, 

writes sample to DAC, 
DAC updates output immediately

W7. Timer triggers each 
buffer->DAC DMA transfer, 

DMA ISR runs after last transfer 
to switch buffers and reload old 

buffer with new data

Use double buffering, split into two buffers (each 
N/2 entries) to ease first sample’s deadline and cut 

ISR duration in half.
W8. Timer triggers each 

buffer->DAC DMA transfer,
DMA ISR writes urgent data (U 

samples) to buffer and releases 
task to write rest of data to buffer

Output timing bad:  very unstable and hard to predict (non-deterministic). 
Timing is always vulnerable to variations in time to calculate next sample, 
interference from other software (in main loop, other processes, ISRs). 
Timing errors accumulate. 
Greedy, doesn’t share CPU.

Add 1-deep  DAC input buffer
D. Use Single-Entry DAC Input Buffer
Timer advances buffer data to DAC, 

Timer ISR calculates next sample, writes it to buffer

Interrupt overhead for each sample wastes CPU time

WG Timing Stability Overview 1: What and Why Process Scheduling, 
Synchronization & 
Communication 
Highlights

Version. Task/Thread, 
ISR, HW

Changes to solve 
problem(s).

Performance, behavior. 
Problem(s).

E2. Timer advances buffer data to DAC. 
Buffer low ISR writes next batch of data to buffer

Add N-deep DAC input buffer with low warning ISR 
(W samples left)

Completely stable output update timing (no interference from main code 
(just int. masking). Batch processing to refill buffer cuts overhead.
Deadline to refill first buffer entry extended to TSample*(W+1).
Must manage buffer access: what if refill catches up to timer-driven reads?

Stable output update timing (no interference from main 
code (just int. masking). Batch processing to refill buffer 
cuts overhead.
Deadline to refill first buffer entry extended to 
TSample*(N/2+1).
DMA ISR updates buffer with N/2 samples, delays other 
processing.

Stable output update timing (no interference from main 
code (just int. masking). Batch processing to refill buffer 
cuts overhead.
Deadline to refill first buffer entry extended to 
TSample*(N/2+1).
DMA ISR shorter, only updates U samples. 
Task must start to update buffer (write sample U+1) within 
TSample*(U+1). 

Main thread loop has no synchronization, 
just schedules output updates based on 
fixed number of instructions.

Main loop synchronizes to 
hardware target time 
(counter value) before 
updating output.

Timer & Interrupt system 
sync output update to 
hardware target time.
All of Main loop time 
available to do other 
application work. 

Timer & DAC sync output update.
Timer & Int. Sys.sync calc./save 
next sample to when buffer is free. 
All of Main loop time available to 
do other application work. 

Timer & DAC sync output update.
Timer & Int. Sys. sync start of refilling buffer to when buffer is nearly empty. 
All of Main loop time available to do other application work. 
Synchronization issue with buffer: Could ISR possibly overwrite unused samples in 
buffer? Depends on timing relationships between sample rate, refill rate, delays from other software 
processes. If so, how to handle it? (see deferring urgent work design point.)

Split buffer refill work. Do urgent work 
(U samples) in ISR, move non-urgent 

work (last N-U samples) to task

W6. Timer triggers each buffer->DAC DMA transfer,
DMA ISR runs after last transfer to reload buffer with new data

Stable output update timing. No interference from main code (just int. 
sys. & masking). 
Refilling buffer with batch processing cuts overhead.
1.Tight Deadline: ISR must write first new sample to buffer within TSample
or else old data will be reused.
2. DMA ISR updates buffer with N samples, delays other processing

Add HW timer, DMA with ISR, sample buffer in memory

B. Thread polls Hardware Timer
Thread loop calculates new output sample, 

polls timer and blocks until reaching target time, 
then writes to DAC, calculates next target time, 

DAC updates output immediately

Output timing better: Tolerates more calculation variability and interference 
(up to slack time between samples), and errors don’t accumulate.
Greedy, doesn’t share CPU. Timing is still somewhat vulnerable to other 
software once per sample (between exiting sync loop and updating DAC). 

Add HW timer (tracks time much better than SW)

C. Hardware Timer triggers ISR
Timer ISR writes sample data to DAC, calculates next sample, 

DAC updates output immediately

Output timing: Even better. 
Still vulnerable to other ISRs and interrupt locking once per 
sample (between timer IRQ and updating DAC).

Add HW timer ISR

Timer & DMA sync output update.
DMA & Int. Sys. sync start of buffer 
refill after last transfer (buffer empty).

Timer & DMA sync output update.
DMA & Int. Sys. sync start of 
urgent buffer refill after last 
transfer.
Main loop syncs refill of rest of 
buffer to signal from ISR.

Timer & DMA sync 
output update.
DMA & Int. Sys. sync 
buffer switch and start 
of old buffer refill after 
last transfer.

Refer to 
diagrams on 

next page
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W1. Thread loop calculates new output sample, 
busy-waits for fixed number of instructions, 

writes sample to DAC, 
DAC updates output immediately

Output timing bad:  very unstable and hard to predict (non-
deterministic). Timing is always vulnerable to variations in 
time to calculate next sample, interference from other 
software (in main loop, other processes, ISRs). Timing errors 
accumulate. 
Greedy, doesn’t share CPU.

Add 1-deep  DAC input buffer
W4. Use Single-Entry DAC Input Buffer

Timer advances buffer data to DAC, 
Timer ISR calculates next sample, writes it to buffer

Interrupt overhead for each sample wastes CPU time

WG Timing Stability Overview: What and Why Process Scheduling, 
Synchronization & 
Communication 
Highlights

Version. Task/Thread, 
ISR, HW

Changes to solve 
problem(s).

Performance, behavior. 
Problem(s).

W5. Timer advances buffer data to DAC. 
Buffer low ISR writes next batch of data to buffer

Add N-deep DAC input buffer with low warning ISR 
(W samples left)

Completely stable output update timing (no interference from main code 
(just int. masking). Batch processing to refill buffer cuts overhead.
Deadline to refill first buffer entry extended to TSample*(W+1).
Must manage buffer access: what if refill catches up to timer-driven reads?

Main thread loop has no synchronization, just schedules 
output updates based on fixed number of instructions.

Main loop synchronizes to hardware target time (counter value) before 
updating output.

Timer & Interrupt system sync output update to hardware target time.
All of Main loop time available to do other application work. 

Timer & DAC sync output update.
Timer & Int. Sys.sync calc./save next sample to when buffer is free. 
All of Main loop time available to do other application work. 

Timer & DAC sync output update.
Timer & Int. Sys. sync start of refilling buffer to when buffer is nearly empty. 
All of Main loop time available to do other application work. 
Synchronization issue with buffer: Could ISR possibly overwrite unused samples in buffer? Depends on timing 
relationships between sample rate, refill rate, delays from other software processes. If so, how to handle it? (see deferring urgent 
work design point.)

W2. Thread polls Hardware Timer
Thread loop calculates new output sample, 

polls timer and blocks until reaching target time, 
then writes to DAC, calculates next target time, 

DAC updates output immediately

Output timing better: Tolerates more calculation variability and interference 
(up to slack time between samples), and errors don’t accumulate.
Greedy, doesn’t share CPU. Timing is still somewhat vulnerable to other 
software once per sample (between exiting sync loop and updating DAC). 

Add HW timer (tracks time much better than SW)

W3. Hardware Timer triggers ISR
Timer ISR writes sample data to DAC, calculates next sample, 

DAC updates output immediately

Output timing: Even better. 
Still vulnerable to other ISRs and interrupt locking once per 
sample (between timer IRQ and updating DAC).

Add HW timer ISR

Refer to 
diagrams on 

next page
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Waveform Generator Design Evolution with Software and Hardware 
Components: Want Output Updates with Stable Timing

W1

DAC

SW

HW VOut

W2

DAC
VOutTimer

Done?

W3

DAC
VOutTimer

ISR: Next 
Sample

NVIC

W4

DAC
VOutTimer

ISR: Next 
Sample

NVIC

W5

DAC
VOutTimer

ISR: Next 
Sample

NVIC

W6

DAC
VOutTimer

ISR: Refill 
Buffer

NVIC

W7

DAC
VOut

Timer

ISR: 
Refill 

Buffer

NVIC
DMA Transfer One Sample

W8

DAC
VOut

Timer

ISR: Switch 
Buffers, 

Refill Other

NVIC
DMA Transfer One Sample

W9

DAC
VOut

Timer

ISR: Start to 
Refill Buffer

NVIC
DMA Transfer One Sample

Run
later
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DESIGN EXAMPLE 3: 
SCOPE (OSCILLOSCOPE)
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 Basic concurrent system concepts
 Processes: Software thread(s) on CPU core + memory, Hardware (state 

machines, digital and analog, etc.)
 Concurrency: Possible to overlap/interleave start/execution/stop of different 

processes
 Scheduling: Sharing resources (CPU core) to make process execute
 Synchronization: At correct times/under right conditions, allow process (or 

part) to run, or prevent it from running
 Communication: Sharing information between processes

 Simple control concepts
 Motivating Examples with LEDs: on/off, nightlight, dimmer (I/V curve 

dependence on PVT), flasher
 Use Feedback? Open vs. closed loop
 When to Control: Event-driven, periodic, or both?
 Control activities: Read/detect input, compute new output value, update 

output
 Stability: concept, dependence on timing of input, output

 Basic interfacing with external devices
 Simple signal types: Digital, analog, PWM
 Use synchronous I/O. Specific SW instructions:

 Trigger input read/sampling
 Trigger output change (maybe with small, fixed delay)

 Simple digital peripherals: 
 Inputs and outputs: Port/GPIO 

 Simple analog peripherals
 Sampling and quantization concepts
 Inputs: Comparator, ADC
 Outpus: DAC

 Timer Peripheral for PWM signal generation

 Sharing CPU among independent SW processes (scheduling)
 Simple software scheduling

 Merge conceptual processes into single SW process
 Implicit sequential code vs. cyclic executive loop

 Simple timing analysis
 Source vs. object code, instruction set
 System clock speed, instruction execution timing

 Sources of timing variability
 Dependence on data, control flow
 Timing interference from SW processes sharing CPU

 Could allocate CPU time better with better scheduler:
 Multirate tasks
 Better responsiveness from task prioritization and preemption

 Off-loading work from software to hardware
 Synchronizing software to timer peripheral overflow

 Polling, event detection, (scheduling/dispatching)
 Stabilizes timing somewhat

 Asynchronous Output 
 Timer peripheral handles entire cycle, eliminates SW synchronization 
 Stabilizing timing further (to design’s PWM period)

Scope Design Example Learning Objectives
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 Input signal
 Start with simple one-bit digital signal (do 

analog later)
 Pulses have irregular start times, changing 

pulse widths

 Viewing the signal
 Oscilloscope (“scope”) plots signal value 

(e.g. voltage) vertically vs. time horizontally 
 Horizontal time base determines amount 

of time (THoriz) represented on scope 
display

 Display stability depends timing 
relationship between when scope starts 
displaying the signal, and when the signal 
changes

Scope: Detect Input Trigger, Sample and Display Data

Time
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HardwareSoftwareVer.

ISRsThreads

DMATimerPortDMATimerPortMain

Sample, Display1

Detect Trigger Condition, Sample, 
Display

2

Detect Trigger Condition, Sample, 
Update Display, Erase Display

3

Detect Trigger 
Condition

Take Sample, 
Update Display

Erase Display4, 5

Detect Trigger 
Condition

Take SampleErase  Display, Update Display6

Schedule 
Sample

Detect Trigger 
Condition

Take 
Sample

Erase Display, Update Display7

Take 
Sample

Schedule 
Sample

Detect Trigger 
Condition

Erase Display, Update Display8

Scope Example Processes
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Erase DisplayUpdate 
Display

Take 
Sample

Schedule 
Sample

Detect Trigger Condition

Sample, DisplaySW – Thread1

Detect Trigger Condition, Sample, DisplayHW

Scope Example Processes
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Responsiveness Overview: What and Why
1. Starter. 

Main thread reads digital port input bit, 
plots values on display

Add Triggering:
Synchronize data acq/display 
to input signal event

Input signal displayed
Unstable timing of signal on display

2.  Trigger Data Acq. with Software. 
Main blocks in polling loop until detecting rising edge of input 

signal, then acquires/plots one screen of data.

Add erase button as digital port 
input bit.

Stable display
Want to erase display manually

3. Erase Button.
Main polling loop also checks erase button, erases display if 

pressed.

Use signal’s port input interrupt 
to detect trigger condition

On-demand erasing
Slow trigger response while erasing

4.  Trigger Data Acq. with Port Interrupt. 
Port ISR captures data, plots it. 
Main handles LCD erase as in 3.

Protect LCD commands 
for mutually exclusive execution

Very fast trigger response
Pixels lost if triggered while erase code is 

sending an LCD command

After port edge trigger, use timer 
peripheral to trigger each data sample. 

Much faster sample rate
Want to control sample rate

7. Precise, Adjustable Sample Timing
Port ISR starts timer, saves first sample in buffer.

Timer ISR runs once for each sample, saving it to buffer.  With last sample, 
marks buffer as full and disables timer. 

Main polling loop handles LCD erase, displays new data when buffer is full.

Offload sampling/buffering from 
CPU software (ISR) to hardware 
(DMA)

8. Sample Data with DMA 
Port ISR starts timer and DMA, saves first sample.

Timer triggers each port->buffer DMA transfer
DMA ISR runs after last transfer, disabling timer and marking buffer as full. 
Main polling loop handles LCD erase, displays new data when buffer is full.

5. Atomic LCD controller commands
Port ISR captures data, plots it. 

Main handles LCD erase as in 3, but also disables/ restores 
interrupts around each LCD command.

6.  Defer Display of Data to Thread.
Port ISR acquires screen-full of input data, saves in buffer, marks buffer as full. 

Main polling loop handles LCD erase, displays new data when buffer is full. 
LCD no longer shared with ISR, so don’t need to disable interrupt per LCD 

command.

Defer non-urgent work until after 
ISR using buffer.

Trigger during erase erases part of new signal
Max. sample rate limited by LCD update speed

Main loop syncs scope 
work to signal edge.

Main loop syncs scope 
work to signal edge, erase 
work to button press.

Interrupt system & I/O port 
sync scope work/ISR (data 
acq. & plot) to signal edge.
Main loop syncs erase work 
to button press

Int. Sys. & I/O port sync scope 
work (ISR (data acq. & save) to 
signal edge.
Main loop syncs display update to 
full buffer, erase work to button 
press.

(As in 4) Int. Sys. & I/O port sync 
scope work/ISR (data acq. & plot) 
to signal edge.
Main loop syncs erase work to 
button press, prevents interrupt 
during LCD command. 

Int. Sys. & I/O port sync start of 
data acquisition to signal edge.
Int. Sys. & Timer sync each data 
sample and end of acq. to timer.
Main loop syncs display update to 
full buffer, erase work to button.

Stable, HW-controlled sample rate
CPU interrupt overhead delays other 

processing, limits max. sample rate

Main loop starts scope work 
(data acquisition and display) 
immediately (no sync).

Int. Sys. & I/O port sync start of 
data acquisition to signal edge.
DMA system & Timer sync each 
data sample to timer overflow. 
Int. Sys. & I/O port sync end of data 
acq. to last sample transfer.
Main loop syncs display update to 
full buffer, erase work to button.

Process Scheduling, 
Synchronization and 
Communication Highlights

Version. Task/Thread, 
ISR, HW

Changes
to solve problem(s).

Performance, behavior. 
Problem(s).

TBD

Refer to diagrams 
on next 3 pages
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A Different Diagram Syntax

Hardware 
Peripheral

Sync. 
Data

Sync. 
Code

Interrupt-level 
Handler Code

Sync. 
Flow

Interrupt Request 
Sync. Flow

Data 
Flow

Prog. I/O Data Flow 

Interrupt Scheduling, 
Dispatching Sync. Flow

SW
H

W CPU Interrupt 
System

Sync. 
Flow

Hardware 
Peripheral

Thread-Level 
Handler Code

Hardware 
PeripheralData 

Flow

Data 
Flow

Hardware 
Peripheral

Hardware 
Peripheral

DMA Request 
Sync. Flow

DMA 
Controller

Data Flow

Arrows: Data and Synchronization (Control) Flows
Software activity data flow
Programmed I/O data flow (software-driven)
Hardware activity data flow (hardware-driven)
Synchronization flow
Interrupt flow

Boxes: Processes, code, and data objects
Handler Process (thread or interrupt level)
Synchronization Code (includes scheduling, dispatching at this level)
Interrupt System (includes scheduling, dispatching at this level)
Synchronization data object
Data buffer in architecturally-visible memory,available to software and 
hardware 

Data Buffer in 
Arch-Visible 

Memory



77

Port

H

S

Design Evolution with Software and Hardware Components

In Out LCD

SW
H

W VIn

H

1. Basic

In Out LCD

SW
H

W VIn

2. Polling Trigger
S H

Out LCD

SW
H

W VIn

4,5. Interrupt Trigger

InErase

S

In
Int. Sys.

H

Out LCD

SW
H

W VIn

6. Defer LCD Updates

InErase

In
Int. Sys.

H

Buffer

S

In Out LCD

SW
H

W VIn

3. Erase Button

InErase

S H

HS

S

Port

H

H
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Design Evolution with Software and Hardware Components

Out LCD

SW
H

W VIn

7. Use Timer

InErase

In Timer

Out LCD

SW
H

W VIn

8. Use DMA and Timer

InErase

In

Buffer

Timer DMA

H
Port

H
Port

S H
Buffer

S

S H

S S

Timer

H H
S

DMA

H H

Int. Sys.

Int. Sys.Int. Sys.

Int. Sys.
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Can Zoom into Source Code Details of Sync., Sched., etc.

Process B
while (1) {

osEventFlagWait(triggered);
x = 0;
for (n=0; n<NS; n++) {
y = scale(DataQ[n]);
LCD_Plot(x++,y);

}
}

ISR_1
for (n=0; n<NS; n++) {

r = ADC->Result;
}
osEventFlagSet(triggered);

Interrupts + RTOS

Busy Wait Process
…
// Detector/Synchronizer
while (ADC->Result < V_Threshold)

;
// No Scheduler
// No Dispatcher
// Handler process
x = 0;
for (n=0; n<NS; n++) {

r = ADC->Result;
y = scale(r);
LCD_Plot(x++,y);

}

Blocking Synchronization with 
Programmed I/O

Scheduler Process
…
while (1) {

for (i=0; i<NT; i++) {
if (release_requested[i] > 0) {

release_requested[i]--;
task_pointer[i](); // dispatch
break; 

}
}

Interrupts + Run-to-Completion 
Tasks in Simple Co-op. Scheduler

ISR_timer_tick
for (i=0; i<NT; i++) {

if (is_waiting[i]) {
if (--delay_to_release[i] == 0) {

release_requested[i]++;
}

}
}

ISR_2
do urgent work;
release_requested[Deferred_Handler_2]

 Lightweight, responsive schedulers essential for many 
embedded systems. 
 Interrupt system (CPU’s built-in scheduler) is foundation.
 Synchronization, scheduling, dispatching/context switching, communication 

may be implemented in hardware, application software, OS software

 Syntax supports range of approaches: from bare-metal through 
preemptive OS. Examples on right.

Synchronization: Is code ready to 
run?

Scheduling: Pick the ready code to 
run

Dispatching: Save previous process’s 
state if needed, then start/resume 

running the scheduled code 

Handler in Thread: 
Do the work

Interrupt Handler: 
Do the work

Hardware Peripheral detects 
event/condition, starts  

Synchronization: does handler need to 
run?

CPU Interrupt System performs 
Scheduling (selects highest-priority 

requested interrupt) and Dispatching
(stacks partial CPU state, vectors to 

interrupt handler)
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RAW, UNUSED, OLD, LEFTOVER SLIDES
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 Example System: Cypress PSoC6 MCU (CY8C62x8/A)
 IPC Peripheral

 16 IPC channels: hardware support for atomic 
acquisition. SW write to indicate notify, release can 
generate event information for any/all IPC interrupt 
structures. Two data registers, status register.

 16 IPC interrupt structures: generate interrupt requests 
based on monitored notify, release events

 How used
 Lock: Use IPC channel
 Message passing: Use IPC channel and IPC interrupt. 

 Sender uses IPC channel to lock access to data 
registers, notify of send triggering interrupt for 
receiver, which releases channel after reception and 
can notify sender with interrupt

Hardware Support for Multicore Synchronization
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 TBD

Designs
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Course Overview

Waveform Generator: 
Synchronization for Output 

Timing Stability

Scope: Synchronization & 
Communication for Input 
Responsiveness & Timing 

Stability

Simple Digital I/O

Analog I/O

Complex Digital I/O: 
PWM/PDM/PPM

Serial Communications

Dependability: WDT, LCD, 
MCU, Supervisor/Privileged 

Mode

ConcurrencyIntroduction
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Top Level Course Map
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Thread Preemption 

and Context Switching

Interrupts

Design Example

Waveform Generator: 
Synchronization for Output 

Timing Stability

Hardware 
Peripherals 

Peripherals

Processes

Inter-Proc. Comm. Hardware interconnect

Coop/NP Thread 
Scheduling

OS support for sync. & comm.

Peripherals for 
Comm

Instructions for 
Sync

Scope: Synchronization & 
Communication for Input 

Responsiveness & Timing Stability

Inter-Proc. Sync.

Peripherals for 
Sync

Bare M
etal &

 
Interrupts

Cooperative 
Scheduler &

 
Interrupts

Preem
ptive 

Scheduler &
 

Interrupts

RTOS thread support

Peripheral Data 
Buffers

In-Memory 
Data Buffers

Shared variables

Main 
Thread ISRs

Preemptive 
Multi-threading

Scheduling

Coop/NP Thread 
Scheduling

DMA

Processes

Non-Preemptive 
Multi-tasking
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Course Map
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with Analog Inputs and Outputs

Oscilloscope: Concurrent, Communicating 
Processes in HW and SW

Single SW Process
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OS/RTOS

Thread Context 
Switching, Preemption

Sync and Comm concepts

HW and SW 
Processes

Interrupt 
System

Interrupts

Interrupts

Waveform Generator: 
Timing Stability

Scope: Responsiveness, Sync. & Comm.

Design Example

Design Revisions

Design Revisions

Peripherals (on-demand)

Hardware Peripherals 

Peripherals

Peripherals

Concurrent 
Processes

Process 
Synchronization & 
Communication

Hardware 
interconnect

CPU Thread 
Scheduling: NP, P

OS support for 
sync. & comm.

Hardware 
Peripherals for 
Sync & Comm

Instructions for 
Sync & Comm

HW and SW 
Processes
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Goal-Oriented Map

Concepts for Single Process

Design software

Pulse Generation: Digital 
Output Signal with Stable 
Timing

Waveform Sampling and 
Generation: Interface with 
Analog Inputs and Outputs

Oscilloscope: Concurrent, 
Communicating Processes in 
HW and SW

Analog 
Interfacing

CPU 
Scheduling
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Course Map

Timing 
Stability

Waveform Sampling and Generation: Interface 
with Analog Inputs and Outputs

Oscilloscope: Concurrent, Communicating 
Processes in HW and SW

Using Simple Digital I/O Ports. 
(synchronous/ polling/SW/Program IO)

Using Analog I/O. Analog Comparator, 
ADC, DAC

Single SW Process

Timing Stability. Waveform 
Generator Example. A.

Responsiveness: Scope 
Example

Responsiveness

Design Example
Concurrency Support: RTOS

Thread Context Switching, 
Preemption

Synchronization

Communication

Hardware Peripherals 
Concurrency Support: 

Interrupt System

Timer InterruptsB. SW polls timer to sync output update.

C. ISR updates output.
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How are Embedded Computer Systems Different from General-Purpose Computers?
Emb. Sys. have concurrent processes with diverse, time-critical asynchronous I/O operations. Use HW peripherals for low-cost 
solution.

System with concurrent processes requires sync & comm. Common 
concepts, but specific methods & implementations vary since different 

design points, w/different resources/mechansisms/costs

Embedded systems have time-critical I/O requirements. Synchronous 
software I/O is bad fit, as SW timing obscurity/ambiguity/non-
determinism clash with I/O needs (req’ts for timing precision & 

stability) and SW<->I/O rate mismatches (especially for burst activities)

Use Async I/O to bridge/tolerate timing 
mismatches (between I/O and SW) at low cost

Implementing Async I/O requires deciding where to split
process, how those parts will sync and communicate.

Can implement process functionality, sync and comm in SW, HW or both. 
Should select based on strengths and weaknesses of SW, HW for given need.

Implementations & Mechanisms 
(outside of CPU ISA)

General HW 
Peripherals

DMA

Sharing CPU: Interrupts, Scheduling, Real-Time 
System Concepts

Programmable logic with 
custom FSM. CLB, FPGA. Pico 

Prog. I/O blocks (FSMs)

I/O timing requirements:  input sampling, output 
updates, compound signals, signal sequences, 
processing chains, end-to-end response time

Sources of software timing obscurity: 
inherent behavior of algorithm, arbitrary input event 

sequences, program compilation, performance 
variation/non-determinism (CPU, memory system), 

task scheduling

Disconnect between source code and object code 
timing: compilation, ISA features, optimizations

CPU performance variations: data-dependent 
instruction timing, superscalar/dynamic 

execution, pipelines, predictors, prefetching

Memory system 
(caches, VM, interference in multicore, …)

Arbitrary input event sequences possible, 
complicating system timing behavior

Interrupts and Scheduling to share CPU core(s). 

Inherent behavior of algorithms 
(control flow variations)

Efficiently crossing between HW and SW to implement 
processes, sync and comm.

Embedded Systems

Mainstream just uses a subset of the Async I/O 
design space. Targets gen-purpose computers 
with a few I/O devices (user interface, storage, 

network) and their use cases. 
Interrupts/exceptions for timer tick, OS 

interface, faults, I/O events (Rx or Tx complete, 
error). DMA discussed if you dig deep enough 

into system design.

When you have only a hammer, 
everything looks like a nail. 

CS education typically omits digital 
design (other than CPU, maybe 

memory system, AI accelerators, …). 

Sync for initial triggering (event generators/detectors)

Supporting splits: Communication (esp. data buffering 
w/timing requirements), more sync to support comm 

(notifications, handshaking, overruns …)

Notes to self: 
1. Classify typical design patterns and features provided by MCUs. Good exercise for students, too. 
2. For design examples, quantify impact on CPU performance requirements (MHz).

General Design Pattern: func, 
sync, comm (esp. buffering)

Use HW for some or all of func, sync, comm: less SW 
needed (if any), easier SW deadlines (fewer, looser). Programmable 

Coprocessors: 
TI PRU (prog. 

real-time unit), …

HW Peripherals for 
Sync/Comm Support

Throw in 
another core

agdean@ncsu.edu July 10, 2025

Event/Sync 
Interconnect for 

Peripherals

Must understand some digital design to effectively 
recognize and assess HW implementation options
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How are Embedded Computer Systems Different from General-Purpose Computers?
Emb. Sys. have concurrent processes with diverse, time-critical asynchronous I/O operations. Use HW peripherals for low-cost 
solution.

Inherently Concurrent System: 
Embedded system, complex application, 

general purpose computer system

Performance, i.e. Speed! Create processes 
to expose internal parallelism to use HW 
resources (multicore, multiprocessors)

System with concurrent processes requires sync & comm. Common 
concepts, but specific methods & implementations vary since different 

design points, w/different resources/mechansisms/costs

Embedded systems have time-critical I/O requirements. Synchronous 
software I/O is bad fit, as SW timing obscurity/ambiguity/non-
determinism clash with I/O needs (req’ts for timing precision & 

stability) and SW<->I/O rate mismatches (especially for burst activities)

Use Async I/O to bridge/tolerate timing 
mismatches (between I/O and SW) at low cost

Implementing Async I/O requires deciding where to split
process, how those parts will sync and communicate.

Can implement process functionality, sync and comm in SW, HW or both. 
Should select based on strengths and weaknesses of SW, HW for given need.

Implementations & Mechanisms 
(outside of CPU ISA)

General HW 
Peripherals

DMA

Sharing CPU: Interrupts, Scheduling, Real-Time 
System Concepts

Programmable logic with 
custom FSM. CLB, FPGA. Pico 

Prog. I/O blocks (FSMs)

I/O timing requirements:  input sampling, output 
updates, compound signals, signal sequences, 
processing chains, end-to-end response time

Sources of software timing obscurity: 
inherent behavior of algorithm, arbitrary input event 

sequences, program compilation, performance 
variation/non-determinism (CPU, memory system), 

task scheduling

Disconnect between source code and object code 
timing: compilation, ISA features, optimizations

CPU performance variations: data-dependent 
instruction timing, superscalar/dynamic 

execution, pipelines, predictors, prefetching

Memory system 
(caches, VM, interference in multicore, …)

Arbitrary input event sequences possible, 
complicating system timing behavior

Interrupts and Scheduling to share CPU core(s). 

Inherent behavior of algorithms 
(control flow variations)

Why Use Concurrent Processes?

Efficiently crossing between HW and SW to implement 
processes, sync and comm.

Mainstream 
concurrency education

Embedded SystemsOther

Mainstream just uses a subset of the Async I/O 
design space. Targets gen-purpose computers 
with a few I/O devices (user interface, storage, 

network) and their use cases. 
Interrupts/exceptions for timer tick, OS 

interface, faults, I/O events (Rx or Tx complete, 
error). DMA discussed if you dig deep enough 

into system design.

When you have only a hammer, 
everything looks like a nail. 

CS education typically omits digital 
design (other than CPU, maybe 

memory system, AI accelerators, …). 

Sync for initial triggering (event generators/detectors)

Supporting splits: Communication (esp. data buffering 
w/timing requirements), more sync to support comm 

(notifications, handshaking, overruns …)

Notes to self: 
1. Classify typical design patterns and features provided by MCUs. Good exercise for students, too. 
2. For design examples, quantify impact on CPU performance requirements (MHz).

General Design Pattern: func, 
sync, comm (esp. buffering)

Use HW for some or all of func, sync, comm: less SW 
needed (if any), easier SW deadlines (fewer, looser). Programmable 

Coprocessors: 
TI PRU (prog. 

real-time unit), …

HW Peripherals for 
Sync/Comm Support

Throw in 
another core

agdean@ncsu.edu July 10, 2025

Event/Sync 
Interconnect for 

Peripherals

Must understand some digital design to effectively 
recognize and assess HW implementation options
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Software Hardware

Concurrent Systems


